1
|
Ross JD, Diaz-Thomas A. Perioperative Evaluation and Management of Children with Osteoporosis and Low Bone Mineral Density. Orthop Clin North Am 2024; 55:345-353. [PMID: 38782506 DOI: 10.1016/j.ocl.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
As medical and surgical treatment options for children with osteoporosis expand, multidisciplinary strategies for bone health optimization become more important. Each patient's bone mineral density and fracture history should be interpreted in context. Off-label bisphosphonate use is a standard pharmacologic intervention for children with osteoporosis for optimal bone accrual. It is possible to continue this therapy perioperatively under certain circumstances. The rare side effects (osteonecrosis of the jaw and atypical femur fractures) seem less common in children. Physical therapy, vitamin D supplementation, and other interventions are also important tools for optimal bone health perioperatively and for satisfactory surgical outcomes.
Collapse
Affiliation(s)
- Jordan D Ross
- University of Tennessee Health Science Center, Faculty Office Building, Room 119, 49 North Dunlap, Memphis, TN 38103, USA.
| | - Alicia Diaz-Thomas
- Division of Pediatric Endocrinology, University of Tennessee Heath Science Center, Suite 1006, 910 Madison Avenue, Memphis, TN 38163, USA; Division of Pediatric Endocrinology, Le Bonheur Children's Hospital, Memphis, TN, USA
| |
Collapse
|
2
|
Restrepo-Noriega VE, Serna Maya ID, Guzmán-Benedek DL, Corrales-González M. Artroplastia total de cadera en paciente con enfermedad de Paget: presentación de un caso. REVISTA DE LA ASOCIACIÓN ARGENTINA DE ORTOPEDIA Y TRAUMATOLOGÍA 2022. [DOI: 10.15417/issn.1852-7434.2022.87.5.1386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Introducción: La enfermedad de Paget es un trastorno metabólico de etiología desconocida, secundario a un incremento en la función de los osteoclastos y la consecuente respuesta de los osteoblastos a la formación exagerada de hueso. Compromete con mayor frecuencia el fémur proximal y, a menudo, se diagnostica incidentalmente. Se presenta el caso de una mujer con antecedente de enfermedad de Paget y pseudoartrosis de cadera izquierda, con indicaciones de prótesis total de cadera izquierda y un episodio único de luxación, sin complicaciones posteriores y una adecuada evolución.
Conclusión: El manejo quirúrgico en casos de fractura de cadera permite restablecer la marcha y mejorar la calidad de vida de los pacientes con enfermedad de Paget. A pesar de ser una patología que dificulta el manejo de los pacientes, la enfermedad de Paget no es una contraindicación para la artroplastia total de cadera y permite mejorar el dolor y recuperar la funcionalidad
Collapse
|
3
|
Alhayek A, Abdelsamie AS, Schönauer E, Camberlein V, Hutterer E, Posselt G, Serwanja J, Blöchl C, Huber CG, Haupenthal J, Brandstetter H, Wessler S, Hirsch AKH. Discovery and Characterization of Synthesized and FDA-Approved Inhibitors of Clostridial and Bacillary Collagenases. J Med Chem 2022; 65:12933-12955. [PMID: 36154055 PMCID: PMC9574867 DOI: 10.1021/acs.jmedchem.2c00785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 12/04/2022]
Abstract
In view of the worldwide antimicrobial resistance (AMR) threat, new bacterial targets and anti-infective agents are needed. Since important roles in bacterial pathogenesis have been demonstrated for the collagenase H and G (ColH and ColG) from Clostridium histolyticum, collagenase Q1 and A (ColQ1 and ColA) from Bacillus cereus represent attractive antivirulence targets. Furthermore, repurposing FDA-approved drugs may assist to tackle the AMR crisis and was addressed in this work. Here, we report on the discovery of two potent and chemically stable bacterial collagenase inhibitors: synthesized and FDA-approved diphosphonates and hydroxamates. Both classes showed high in vitro activity against the clostridial and bacillary collagenases. The potent diphosphonates reduced B. cereus-mediated detachment and death of cells and Galleria mellonella larvae. The hydroxamates were also tested in a similar manner; they did not have an effect in infection models. This might be due to their fast binding kinetics to bacterial collagenases.
Collapse
Affiliation(s)
- Alaa Alhayek
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus Building C2. 3, 66123 Saarbrücken, Germany
| | - Ahmed S. Abdelsamie
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
- Department
of Chemistry of Natural and Microbial Products, Institute of Pharmaceutical and Drug Industries Research, National
Research Centre, El-Buhouth
St., Dokki, 12622 Cairo, Egypt
| | - Esther Schönauer
- Department
of Biosciences and Medical Biology, University
of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
| | - Virgyl Camberlein
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Evelyn Hutterer
- Department
of Biosciences and Medical Biology, University
of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
| | - Gernot Posselt
- Department
of Biosciences and Medical Biology, University
of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
| | - Jamil Serwanja
- Department
of Biosciences and Medical Biology, University
of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
| | - Constantin Blöchl
- Department
of Biosciences and Medical Biology, University
of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
| | - Christian G. Huber
- Department
of Biosciences and Medical Biology, University
of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
| | - Jörg Haupenthal
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Hans Brandstetter
- Department
of Biosciences and Medical Biology, University
of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
| | - Silja Wessler
- Department
of Biosciences and Medical Biology, University
of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
| | - Anna K. H. Hirsch
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus Building C2. 3, 66123 Saarbrücken, Germany
| |
Collapse
|
4
|
Hu W, Yu Y, Sun Y, Yuan F, Zhao F. MiR-25 overexpression inhibits titanium particle-induced osteoclast differentiation via down-regulation of mitochondrial calcium uniporter in vitro. J Orthop Surg Res 2022; 17:133. [PMID: 35241114 PMCID: PMC8895597 DOI: 10.1186/s13018-022-03030-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Mitochondrial calcium uniporter (MCU) is an important ion channel regulating calcium transport across the mitochondrial membrane. Calcium signaling, particularly via the Ca2+/NFATc1 pathway, has been identified as an important mediator of the osteoclast differentiation that leads to osteolysis around implants. The present study aimed to investigate whether down-regulation of MCU using microRNA-25 (miR-25) mimics could reduce osteoclast differentiation induced upon exposure to titanium (Ti) particles. Methods Ti particles were prepared. Osteoclast differentiation of RAW264.7 cells was induced by adding Ti particles and determined by TRAP staining. Calcium oscillation was determined using a dual-wavelength technique. After exposure of the cells in each group to Ti particles or control medium for 5 days, relative MCU and NFATc1 mRNA expression levels were determined by RT-qPCR. MCU and NFATc1 protein expression was determined by western blotting. NFATc1 activation was determined by immunofluorescence staining. Comparisons among multiple groups were conducted using one-way analysis of variance followed by Tukey test, and differences were considered significant if p < 0.05. Results MCU expression was reduced in response to miR-25 overexpression during the process of RAW 264.7 cell differentiation induced by Ti particles. Furthermore, osteoclast formation was inhibited, as evidenced by the low amplitude of calcium ion oscillation, reduced NFATc1 activation, and decreased mRNA and protein expression levels of nuclear factor-κB p65 and calmodulin kinases II/IV. Conclusions Regulation of MCU expression can impact osteoclast differentiation, and the underlying mechanism likely involves the Ca2+/NFATc1 signal pathway. Therefore, MCU may be a promising target in the development of new strategies to prevent and treat periprosthetic osteolysis. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-022-03030-7.
Collapse
Affiliation(s)
- Weifan Hu
- Department of Orthopedics, The People's Hospital of Jiawang District of Xuzhou, Xuzhou, 221000, People's Republic of China.,Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Quanshan District, Xuzhou City, Jiangsu Province, 221000, People's Republic of China
| | - Yongbo Yu
- Department of Orthopedics, The People's Hospital of Jiawang District of Xuzhou, Xuzhou, 221000, People's Republic of China
| | - Yang Sun
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Quanshan District, Xuzhou City, Jiangsu Province, 221000, People's Republic of China
| | - Feng Yuan
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Quanshan District, Xuzhou City, Jiangsu Province, 221000, People's Republic of China
| | - Fengchao Zhao
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Quanshan District, Xuzhou City, Jiangsu Province, 221000, People's Republic of China.
| |
Collapse
|
5
|
Thurner GC, Haybaeck J, Debbage P. Targeting Drug Delivery in the Elderly: Are Nanoparticles an Option for Treating Osteoporosis? Int J Mol Sci 2021; 22:8932. [PMID: 34445639 PMCID: PMC8396227 DOI: 10.3390/ijms22168932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles bearing specific targeting groups can, in principle, accumulate exclusively at lesion sites bearing target molecules, and release therapeutic agents there. However, practical application of targeted nanoparticles in the living organism presents challenges. In particular, intravasally applied nanoparticles encounter physical and physiological barriers located in blood vessel walls, blocking passage from the blood into tissue compartments. Whereas small molecules can pass out of the blood, nanoparticles are too large and need to utilize physiological carriers enabling passage across endothelial walls. The issues associated with crossing blood-tissue barriers have limited the usefulness of nanoparticles in clinical applications. However, nanoparticles do not encounter blood-tissue barriers if their targets are directly accessible from the blood. This review focuses on osteoporosis, a disabling and common disease for which therapeutic strategies are limited. The target sites for therapeutic agents in osteoporosis are located in bone resorption pits, and these are in immediate contact with the blood. There are specific targetable biomarkers within bone resorption pits. These present nanomedicine with the opportunity to treat a major disease by use of simple nanoparticles loaded with any of several available effective therapeutics that, at present, cannot be used due to their associated side effects.
Collapse
Affiliation(s)
- Gudrun C. Thurner
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria;
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria;
- Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Paul Debbage
- Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Müllerstraße 59, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Wilkinson JM. The use of bisphosphonates to meet orthopaedic challenges. Bone 2020; 137:115443. [PMID: 32445893 DOI: 10.1016/j.bone.2020.115443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 11/17/2022]
Abstract
The anti-resorptive properties of bisphosphonates have been explored to manage several conditions that traditionally have required a surgical solution. In osteonecrosis, their use is predicated on the principle that bone collapse occurs during the revascularisation phase of the disease. If the associated resorptive activity were modulated, the resultant preserved joint architecture may improve clinical outcome and reduce the need for joint replacement. Pre-clinical and small-scale clinical studies have given non-conclusive support for this principle. Adequately powered clinical trials with relevant long-term endpoints are still required to firmly clarify the clinical efficacy of this treatment. Several clinical studies have shown that bisphosphonates can reduce periprosthetic bone loss and, in some situations, enhance implant fixation in the early period after joint replacement. This may be advantageous in settings where osseointegration is problematic. However, the ultimate goals of their use in joint replacement has been to reduce the incidence of late periprosthetic inflammatory osteolysis, the main cause of prosthesis failure. Population-based observational studies have associated bisphosphonate use with a lower incidence of revision surgery, supported by pre-clinical data. However, clinical trials have, to date, failed to demonstrate any efficacy for the human disease. The timing of bisphosphonate administration for secondary prevention after acute osteoporotic fracture has been subject to extensive investigation, with pre-clinical studies showing increased callus formation but decreased remodelling and no effect on the restoration of mechanical integrity of bone. Meta-analysis of clinical trial data indicates that early administration of bisphosphonate after acute fracture does not adversely affect fracture union, pain or functional outcomes. Finally, bisphosphonates have also been explored as a treatment for complex regional pain syndrome type-I. A recent meta-analysis has shown a beneficial effect on visual analogue scale pain scores, but an increase in mild adverse events.
Collapse
Affiliation(s)
- J Mark Wilkinson
- Department of Oncology and Metabolism, University of Sheffield, United Kingdom.
| |
Collapse
|
7
|
Prophylactic Fixation Can Be Cost-effective in Preventing a Contralateral Bisphosphonate-associated Femur Fracture. Clin Orthop Relat Res 2019; 477:480-490. [PMID: 30394950 PMCID: PMC6382193 DOI: 10.1097/corr.0000000000000545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Bisphosphonates reduce the risk of fractures associated with osteoporosis but increase the risk of atypical subtrochanteric femur fractures. After unilateral atypical femur fracture, there is risk of contralateral fracture, but the indications for prophylactic fixation are controversial. QUESTIONS/PURPOSES The purpose of this study is to use Markov modeling to determine whether contralateral prophylactic femur fracture fixation is cost-effective after a bisphosphonate-associated atypical femur fracture and, if so, what patient-related factors may influence that determination. METHODS Markov modeling was used to determine the cost-effectiveness of contralateral prophylactic fixation after an initial atypical femur fracture. Simulated patients aged 60 to 90 years were included and separated into standard and high fracture risk cohorts. Patients with standard fracture risk were defined as those presenting with one atypical femur fracture but without symptoms or findings in the contralateral femur, whereas patients with high fracture risk were typified as those with more than one risk factor, including Asian ethnicity, prodromal pain, femoral geometry changes, or radiographic findings in the contralateral femur. Outcome probabilities and utilities were derived from studies matching to patient characteristics, and fragility fracture literature was used when atypical femur fracture data were not available. Associated costs were largely derived from Medicare 2015 reimbursement rates. Sensitivity analysis was performed on all model parameters within defined ranges. RESULTS Prophylactic fixation for a 70-year-old patient with standard risk for fracture costs USD 131,300/quality-adjusted life-year (QALY) and for high-risk patients costs USD 22,400/QALY. Sensitivity analysis revealed that prophylaxis for high-risk patients is cost-effective at USD 100,000/QALY when the cost of prophylaxis was less than USD 29,400, the probability of prophylaxis complications was less than 21%, or if the patient was younger than 89 years old. The parameters to which the model was most sensitive were the cost of prophylaxis, patient age, and probability of prophylaxis-related complications. CONCLUSIONS Prophylactic fixation of the contralateral side after unilateral atypical femur fracture is not cost-effective for standard-risk patients but is cost-effective among high-risk patients between 60 and 89 years of age with a high risk for an atypical femur fracture defined by patients with more than one risk factor such as Asian ethnicity, prodromal pain, varus proximal femur geometry, femoral bowing, or radiographic changes such as periosteal beaking and a transverse radiolucent line. However, our findings are based on several key assumptions for modeling such as the probability of fractures and complications, the costs associated for each health state, and the risks of surgical treatment. Future research should prospectively evaluate the degree of risk contributed by known radiographic and demographic parameters to guide management of the contralateral femur after a patient presents with an atypical femur fracture. LEVEL OF EVIDENCE Level III, economic and decision analyses.
Collapse
|
8
|
Multiscale Stem Cell Technologies for Osteonecrosis of the Femoral Head. Stem Cells Int 2019; 2019:8914569. [PMID: 30728843 PMCID: PMC6341242 DOI: 10.1155/2019/8914569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/21/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023] Open
Abstract
The last couple of decades have seen brilliant progress in stem cell therapies, including native, genetically modified, and engineered stem cells, for osteonecrosis of the femoral head (ONFH). In vitro studies evaluate the effect of endogenous or exogenous factor or gene regulation on osteogenic phenotype maintenance and/or differentiation towards osteogenic lineage. The preclinical and clinical outcomes accelerate the clinical translation. Bone marrow mesenchymal stem cells and adipose-derived stem cells have demonstrated better effects in the treatment of femoral head necrosis. Various materials have been used widely in the ONFH treatment in both preclinical and clinical trials. In a word, in vivo and multiscale efforts are expected to overcome obstacles in the approaches for treating ONFH and provide clinical relevance and commercial strategies in the future. Therefore, we will discuss the above aspects in this paper and present our opinions.
Collapse
|
9
|
Prognostic Factors of Patients With Malignant Epithelioid Vascular Tumors in the Spine: Retrospective Analysis of 46 Patients in a Single Center. Spine (Phila Pa 1976) 2018; 43:E1218-E1224. [PMID: 29649089 DOI: 10.1097/brs.0000000000002670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A retrospective study of 46 patients with malignant epithelioid vascular tumors (MEVT) in the spine was performed. OBJECTIVE The purpose of this study was to illustrate the clinic characteristics of MEVT in the spine and to discuss prognostic factors by survival analysis. SUMMARY OF BACKGROUND DATA MEVT in the spine is relatively uncommon, and there is little published information regarding this subject. Therefore, prognostic factors of this disease are still controversial. METHOD The univariate and multivariate analysis of various clinic characteristics were performed to identify the independent factor that affects prognosis for patients with MEVT in the spine who underwent surgical treatment in Changzheng Hospital Orthopedics Oncological Center (CHOOC) between 2005 and 2015. Disease-free survival (DFS) and overall survival (OS) were estimated by Kaplan-Meier method to identify potential prognostic factors. Factors with P values of 0.1 or less were subjected to multivariate analysis by Cox regression analysis. P values of 0.05 or less was considered statistically significant. RESULT A total of 46 patients with MEVT in the spine were included in the study. The mean follow-up period was 42.6 months (range, 5-143 mo). Recurrence was detected in 22 patients after initial surgery in our center, whereas death in 18 patients. The univariate analysis suggested that age (<30 yr/≥30 yr), metastasis, preoperative Frankel score, postoperative Frankel score, malignant grade and resection mode were potential prognostic factors for DFS and OS. However, as they were submitted to multivariate analyses, only malignant grade and resection mode were independent prognostic factors. CONCLUSION Total en bloc spondylectomy can significantly improve DFS for MEVT in the spine and low-grade malignancy was favorable factor for DFS. Total spondylectomy and low-grade malignancy considerably improve OS for patients with MEVT in the spine. LEVEL OF EVIDENCE 4.
Collapse
|
10
|
Kapasa ER, Giannoudis PV, Jia X, Hatton PV, Yang XB. The Effect of RANKL/OPG Balance on Reducing Implant Complications. J Funct Biomater 2017; 8:E42. [PMID: 28937598 PMCID: PMC5748549 DOI: 10.3390/jfb8040042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022] Open
Abstract
Despite the phenomenal success of implants particularly in the realms of dentistry and orthopaedics, there are still challenges to overcome. The failure of implants resulting from infection, prosthetic loosening, and non-union continue to be the most notorious examples. The cascade of fracture healing and bone repair, especially with the presence of an implant, is complex because it involves a multifaceted immune response alongside the intricate process of bone formation and remodelling. Bone loss is a serious clinical problem that is frequently accompanied by chronic inflammation, illustrating that there is a convoluted relationship between inflammation and bone erosion. The effects of pro-inflammatory factors play a significant role in initiating and maintaining osteoclastogenesis that results in bone resorption by osteoclasts. This is because there is a disruption of the relative ratio between Receptor Activator of Nuclear Factor κB-Ligand (RANKL) and osteoprotegerin (OPG), which is central to modulating bone repair and remodelling. This review aims to provide a background to the bone remodelling process, the bone repair cascade post-implantation, and the associated complications. Furthermore, current clinical solutions that can influence bone formation via either internal or extrinsic mechanisms will be described. These efficacious treatments for osteolysis via targeting the RANKL/OPG ratio may be crucial to reducing the incidence of related implant failures in the future.
Collapse
Affiliation(s)
- Elizabeth R Kapasa
- Doctoral Training Centre-Regenerative Medicine, Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK.
- Biomaterials and Tissue Engineering Group, School of Dentistry, University of Leeds, Leeds LS2 9JT, UK.
| | - Peter V Giannoudis
- Department of Trauma and Orthopaedic Surgery, School of Medicine, University of Leeds, Leeds LS2 9JT, UK.
| | - Xiaodong Jia
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK.
| | - Paul V Hatton
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK.
| | - Xuebin B Yang
- Doctoral Training Centre-Regenerative Medicine, Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK.
- Biomaterials and Tissue Engineering Group, School of Dentistry, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
11
|
Aderibigbe B, Aderibigbe I, Popoola P. Design and Biological Evaluation of Delivery Systems Containing Bisphosphonates. Pharmaceutics 2016; 9:E2. [PMID: 28035945 PMCID: PMC5374368 DOI: 10.3390/pharmaceutics9010002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023] Open
Abstract
Bisphosphonates have found application in the treatment of reoccurrence of bone diseases, breast cancer, etc. They have also been found to exhibit antimicrobial, anticancer and antimalarial activities. However, they suffer from pharmacological deficiencies such as toxicity, poor bioavailability and low intestinal adsorption. These shortcomings have resulted in several researchers developing delivery systems that can enhance their overall therapeutic effectiveness. This review provides a detailed overview of the published studies on delivery systems designed for the delivery of bisphosphonates and the corresponding in vitro/in vivo results.
Collapse
Affiliation(s)
- Blessing Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa.
| | - Isiaka Aderibigbe
- Department of Chemical and Metallurgical Engineering, Tshwane University of Technology, Pretoria 0001, South Africa.
| | - Patricia Popoola
- Department of Chemical and Metallurgical Engineering, Tshwane University of Technology, Pretoria 0001, South Africa.
| |
Collapse
|
12
|
Abstract
Osteoporosis is a degenerative bone disease commonly related to aging. With an increase in life expectancies worldwide, the prevalence of the disease is expected to rise. Current clinical therapeutic treatments are not able to offer long-term solutions to counter the bone mass loss and the increased risk of fractures, which are the primary characteristics of the disease. However, the combination of bioactive nanomaterials within a biomaterial scaffold shows promise for the development of a localized, long-term treatment for those affected by osteoporosis. This review summarizes the unique characteristics of engineered nanoparticles that render them applicable for bone regeneration and recaps the current body of knowledge on nanomaterials with potential for osteoporosis treatment and bone regeneration. Specifically, we highlight new developments that are shaping this emerging field and evaluate applications of recently developed nanomaterials for osteoporosis treatment. Finally, we will identify promising new research directions in nanotechnology for bone regeneration.
Collapse
Affiliation(s)
- Mikayla Barry
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77841, USA
| | - Hannah Pearce
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77841, USA
| | - Lauren Cross
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77841, USA
| | - Marco Tatullo
- Maxillofacial Unit, Calabrodental Clinic, Crotone, 88900, Italy
- Regenerative Medicine Section, Tecnologica Research Institute, Crotone, 88900, Italy
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77841, USA.
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77841, USA.
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
13
|
Abstract
Background:
Bisphosphonates are drugs commonly used for the medication and prevention of diseases caused by decreased mineral density. Despite such important medicinal use, they display a variety of physiologic activities, which make them promising anti-cancer, anti-protozoal, antibacterial and antiviral agents.
Objective:
To review physiological activity of bisphosphonates with special emphasis on their ongoing and potential applications in medicine and agriculture.
Method:
Critical review of recent literature data.
Results:
Comprehensive review of activities revealed by bisphosphonates.
Conclusion:
although bisphosphonates are mostly recognized by their profound effects on bone physiology their medicinal potential has not been fully evaluated yet. Literature data considering enzyme inhibition suggest possibilities of far more wide application of these compounds. These applications are, however, limited by their low bioavailability and therefore intensive search for new chemical entities overcoming this shortage are carried out.
Collapse
|
14
|
Abstract
The current understanding of Paget disease of bone (PDB) has vastly changed since Paget described the first case in 1877. Medical management of this condition remains the mainstay of treatment. Surgical intervention is usually only used in fractures through pagetic bone, need for realignment to correct deformity in major long bones, prophylactic treatment of impending fractures, joint arthroplasty in severe arthritis, or spinal decompression in cases of bony compression of neural elements. Advances in surgical technique have allowed early return to function and mobilization. Despite medical and surgical intervention, a small subset of patients with PDB develops Paget sarcoma.
Collapse
|
15
|
Sarkar M, Bhardwaj R, Madabhavi I, Khatana J. Osteoporosis in chronic obstructive pulmonary disease. CLINICAL MEDICINE INSIGHTS-CIRCULATORY RESPIRATORY AND PULMONARY MEDICINE 2015; 9:5-21. [PMID: 25788838 PMCID: PMC4358421 DOI: 10.4137/ccrpm.s22803] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/28/2015] [Accepted: 02/11/2015] [Indexed: 12/21/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a lifestyle-related chronic inflammatory pulmonary disease associated with significant morbidity and mortality worldwide. COPD is associated with various comorbidities found in all stages of COPD. The comorbidities have significant impact in terms of morbidity, mortality, and economic burden in COPD. Management of comorbidities should be incorporated into the comprehensive management of COPD as this will also have an effect on the outcome in COPD patients. Various comorbidities reported in COPD include cardiovascular disease, skeletal muscle dysfunction, anemia, metabolic syndrome, and osteoporosis. Osteoporosis is a significant comorbidity in COPD patients. Various risk factors, such as tobacco smoking, systemic inflammation, vitamin D deficiency, and the use of oral or inhaled corticosteroids (ICSs) are responsible for its occurrence in patients with COPD. This review will focus on the prevalence, pathogenesis, risk factors, diagnosis, and treatment of osteoporosis in COPD patients.
Collapse
Affiliation(s)
- Malay Sarkar
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Rajeev Bhardwaj
- Department of Cardiology, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Irappa Madabhavi
- Department of Medical and Pediatric Oncology, GCRI, Ahmedabad, Gujarat, India
| | - Jasmin Khatana
- Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| |
Collapse
|