1
|
Bray J, Eward W, Breen M. Defining the relevance of surgical margins. Part two: Strategies to improve prediction of recurrence risk. Vet Comp Oncol 2023; 21:145-158. [PMID: 36745110 DOI: 10.1111/vco.12881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/03/2022] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
Due to the complex nature of tumour biology and the integration between host tissues and molecular processes of the tumour cells, a continued reliance on the status of the microscopic cellular margin should not remain our only determinant of the success of a curative-intent surgery for patients with cancer. Based on current evidence, relying on a purely cellular focus to provide a binary indication of treatment success can provide an incomplete interpretation of potential outcome. A more holistic analysis of the cancer margin may be required. If we are to move ahead from our current situation - and allow treatment plans to be more intelligently tailored to meet the requirements of each individual tumour - we need to improve our utilisation of techniques that either improve recognition of residual tumour cells within the surgical field or enable a more comprehensive interrogation of tumour biology that identifies a risk of recurrence. In the second article in this series on defining the relevance of surgical margins, the authors discuss possible alternative strategies for margin assessment and evaluation in the canine and feline cancer patient. These strategies include considering adoption of the residual tumour classification scheme; intra-operative imaging systems including fluorescence-guided surgery, optical coherence tomography and Raman spectroscopy; molecular analysis and whole transcriptome analysis of tissues; and the development of a biologic index (nomogram). These techniques may allow evaluation of individual tumour biology and the status of the resection margin in ways that are different to our current techniques. Ultimately, these techniques seek to better define the risk of tumour recurrence following surgery and provide the surgeon and patient with more confidence in margin assessment.
Collapse
Affiliation(s)
| | - Will Eward
- Orthopedic Surgical Oncologist, Duke Cancer Center, Durham, North Carolina, USA
| | - Matthew Breen
- Oscar J. Fletcher Distinguished Professor of Comparative Oncology Genetics, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
2
|
Christensen A, Grønhøj C, Jensen JS, Lelkaitis G, Kiss K, Juhl K, Charabi BW, Mortensen J, Kjær A, Von Buchwald C. Expression patterns of uPAR, TF and EGFR and their potential as targets for molecular imaging in oropharyngeal squamous cell carcinoma. Oncol Rep 2022; 48:147. [PMID: 35775375 PMCID: PMC9263836 DOI: 10.3892/or.2022.8359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
The clinical introduction of molecular imaging for the management of oropharyngeal squamous cell carcinoma (OPSCC) relies on the identification of relevant cancer-specific biomarkers. The application of three membrane-bound receptors, namely urokinase-type plasminogen activator receptor (uPAR), tissue factor (TF) and EGFR have been previously explored for targeted imaging and therapeutic strategies in a broad range of solid cancers. The present study aimed to investigate the expression patterns of uPAR, EGFR and TF by immunohistochemistry (IHC) to evaluate their potential for targeted imaging and prognostic value in OPSCC. In a retrospective cohort of 93 patients with primary OPSCC, who were balanced into the 45 human papillomavirus (HPV)-positive and 48 HPV-negative groups, the IHC-determined expression profiles of uPAR, TF and EGFR in large biopsy or tumor resection specimens were analyzed. Using the follow-up data, overall survival (OS) and recurrence-free survival were measured. Specifically, associations between survival outcome, biomarker expression and clinicopathological factors were examined using Cox proportional hazards model and log-rank test following Kaplan-Meier statistics. After comparing the expression pattern of biomarkers within the tumor compartment with that in the adjacent normal tissues, uPAR and TF exhibited a highly tumor-specific expression pattern, whereas EGFR showed a homogeneous expression within the tumor compartment as well as a consistent expression in the normal mucosal epithelium and salivary gland tissues. The positive expression rate of uPAR, TF and EGFR in the tumors was 98.9, 76.3 and 98.9%, respectively. No statistically significant association between biomarker expression and survival outcome could be detected. Higher uPAR expression levels had a trend towards reduced OS according to results from univariate analysis (P=0.07; hazard ratio=2.01; 95% CI=0.92-4.37). Taken together, these results suggest that uPAR, TF and EGFR may be suitable targets for molecular imaging and therapy in OPSCC. In particular, uPAR may be an attractive target owing to their high positive expression rates in tumors and a highly tumor-specific expression pattern.
Collapse
Affiliation(s)
- Anders Christensen
- Department of Otolaryngology, Head & Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Christian Grønhøj
- Department of Otolaryngology, Head & Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Jakob Schmidt Jensen
- Department of Otolaryngology, Head & Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Giedrius Lelkaitis
- Department of Pathology, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Katalin Kiss
- Department of Pathology, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Karina Juhl
- Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Birgitte Wittenborg Charabi
- Department of Otolaryngology, Head & Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Jann Mortensen
- Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Andreas Kjær
- Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Christian Von Buchwald
- Department of Otolaryngology, Head & Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| |
Collapse
|
3
|
Wilson BC, Eu D. Optical Spectroscopy and Imaging in Surgical Management of Cancer Patients. TRANSLATIONAL BIOPHOTONICS 2022. [DOI: 10.1002/tbio.202100009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Brian C. Wilson
- Princess Margaret Cancer Centre/University Health Network 101 College Street Toronto Ontario Canada
- Department of Medical Biophysics, Faculty of Medicine University of Toronto Canada
| | - Donovan Eu
- Department of Otolaryngology‐Head and Neck Surgery‐Surgical Oncology, Princess Margaret Cancer Centre/University Health Network University of Toronto Canada
- Department of Otolaryngology‐Head and Neck Surgery National University Hospital System Singapore
| |
Collapse
|
4
|
olde Heuvel J, de Wit-van der Veen BJ, Huizing DM, van der Poel HG, van Leeuwen PJ, Bhairosing PA, Stokkel MP, Slump CH. State-of-the-art Intraoperative Imaging Technologies for Prostate Margin Assessment: A Systematic Review. Eur Urol Focus 2021; 7:733-741. [DOI: 10.1016/j.euf.2020.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/06/2020] [Accepted: 02/05/2020] [Indexed: 12/29/2022]
|
5
|
Favril S, Abma E, Stock E, Devriendt N, Van Goethem B, Blasi F, Brioschi C, Polis I, De Cock H, Miragoli L, Oliva P, Valbusa G, Vanderperren K, de Rooster H. Fluorescence-guided surgery using indocyanine green in dogs with superficial solid tumours. Vet Rec 2020; 187:273. [PMID: 32345608 DOI: 10.1136/vr.105554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Near-infrared fluorescence (NIRF) imaging is a relatively novel technique that can aid surgeons during intraoperative tumour identification. METHODS Nine canine oncology patients (five mammary gland tumours, three mast cell tumours and one melanoma) received intravenous indocyanine green (ICG). After 24 hours, tumours were resected and fluorescence intensities of tumours and surroundings were evaluated. Additional wound bed tissue was resected if residual fluorescence was present after tumour resection. Ex vivo, fluorescence-guided dissection was performed to separate tumour from surrounding tissue. RESULTS Intraoperative NIRF-guided tumour delineation was feasible in four out of nine dogs. Wound bed imaging after tumour removal identified nine additional fluorescent lesions, of which four contained tumour tissue. One of these four true positive in vivo lesions was missed by standard-of-care inspection. Ex vivo fluorescence-guided tumour dissection showed a sensitivity of 72 per cent and a specificity of 80 per cent in discriminating between tumour and surrounding tissue. CONCLUSION The value of ICG for intraoperative tumour delineation seems more limited than originally thought. Although NIRF imaging using ICG did identify remaining tumour tissue in the wound bed, a high false positive rate was also observed.
Collapse
Affiliation(s)
- Sophie Favril
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium .,Cancer Research Institute Ghent (CRIG), Medical Research Building, University Hospital, Ghent, Belgium
| | - Eline Abma
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Cancer Research Institute Ghent (CRIG), Medical Research Building, University Hospital, Ghent, Belgium
| | - Emmelie Stock
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Nausikaa Devriendt
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bart Van Goethem
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | - Ingeborgh Polis
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | - Paolo Oliva
- Bracco Imaging SpA, Colleretto Giacosa, Italy
| | | | - Katrien Vanderperren
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hilde de Rooster
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Cancer Research Institute Ghent (CRIG), Medical Research Building, University Hospital, Ghent, Belgium
| |
Collapse
|
6
|
Santos IP, Barroso EM, Bakker Schut TC, Caspers PJ, van Lanschot CGF, Choi DH, van der Kamp MF, Smits RWH, van Doorn R, Verdijk RM, Noordhoek Hegt V, von der Thüsen JH, van Deurzen CHM, Koppert LB, van Leenders GJLH, Ewing-Graham PC, van Doorn HC, Dirven CMF, Busstra MB, Hardillo J, Sewnaik A, Ten Hove I, Mast H, Monserez DA, Meeuwis C, Nijsten T, Wolvius EB, Baatenburg de Jong RJ, Puppels GJ, Koljenović S. Raman spectroscopy for cancer detection and cancer surgery guidance: translation to the clinics. Analyst 2018; 142:3025-3047. [PMID: 28726868 DOI: 10.1039/c7an00957g] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oncological applications of Raman spectroscopy have been contemplated, pursued, and developed at academic level for at least 25 years. Published studies aim to detect pre-malignant lesions, detect cancer in less invasive stages, reduce the number of unnecessary biopsies and guide surgery towards the complete removal of the tumour with adequate tumour resection margins. This review summarizes actual clinical needs in oncology that can be addressed by spontaneous Raman spectroscopy and it provides an overview over the results that have been published between 2007 and 2017. An analysis is made of the current status of translation of these results into clinical practice. Despite many promising results, most of the applications addressed in scientific studies are still far from clinical adoption and commercialization. The main hurdles are identified, which need to be overcome to ensure that in the near future we will see the first Raman spectroscopy-based solutions being used in routine oncologic diagnostic and surgical procedures.
Collapse
Affiliation(s)
- Inês P Santos
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Favril S, Abma E, Blasi F, Stock E, Devriendt N, Vanderperren K, de Rooster H. Clinical use of organic near-infrared fluorescent contrast agents in image-guided oncologic procedures and its potential in veterinary oncology. Vet Rec 2018; 183:354. [DOI: 10.1136/vr.104851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Sophie Favril
- Small Animal Department, Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
- Cancer Research Institute Ghent (CRIG); Ghent Belgium
| | - Eline Abma
- Small Animal Department, Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
- Cancer Research Institute Ghent (CRIG); Ghent Belgium
| | - Francesco Blasi
- Ephoran Multi-Imaging Solutions s.r.l.; Colleretto Giacosa Italy
| | - Emmelie Stock
- Department of Medical Imaging of Domestic Animals, Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - Nausikaa Devriendt
- Small Animal Department, Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - Katrien Vanderperren
- Department of Medical Imaging of Domestic Animals, Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - Hilde de Rooster
- Small Animal Department, Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
- Cancer Research Institute Ghent (CRIG); Ghent Belgium
| |
Collapse
|
8
|
New Techniques for Diagnosis and Treatment of Musculoskeletal Tumors: Methods of Intraoperative Margin Detection. Tech Orthop 2018. [DOI: 10.1097/bto.0000000000000290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Roberts PR, Jani AB, Packianathan S, Albert A, Bhandari R, Vijayakumar S. Upcoming imaging concepts and their impact on treatment planning and treatment response in radiation oncology. Radiat Oncol 2018; 13:146. [PMID: 30103786 PMCID: PMC6088418 DOI: 10.1186/s13014-018-1091-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
For 2018, the American Cancer Society estimated that there would be approximately 1.7 million new diagnoses of cancer and about 609,640 cancer-related deaths in the United States. By 2030 these numbers are anticipated to exceed a staggering 21 million annual diagnoses and 13 million cancer-related deaths. The three primary therapeutic modalities for cancer treatments are surgery, chemotherapy, and radiation therapy. Individually or in combination, these treatment modalities have provided and continue to provide curative and palliative care to the myriad victims of cancer. Today, CT-based treatment planning is the primary means through which conventional photon radiation therapy is planned. Although CT remains the primary treatment planning modality, the field of radiation oncology is moving beyond the sole use of CT scans to define treatment targets and organs at risk. Complementary tissue scans, such as magnetic resonance imaging (MRI) and positron electron emission (PET) scans, have all improved a physician’s ability to more specifically identify target tissues, and in some cases, international guidelines have even been issued. Moreover, efforts to combine PET and MR to define solid tumors for radiotherapy planning and treatment evaluation are also gaining traction. Keeping these advances in mind, we present brief overviews of other up-and-coming key imaging concepts that appear promising for initial treatment target definition or treatment response from radiation therapy.
Collapse
Affiliation(s)
- Paul Russell Roberts
- Department of Radiation Oncology, University of Mississippi Medical Center, 350 Woodrow Wilson Drive Suite 1600, Jackson, MS, 39213, USA
| | - Ashesh B Jani
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, 1365 Clifton Rd, Atlanta, GA, 30322, USA
| | - Satyaseelan Packianathan
- Department of Radiation Oncology, University of Mississippi Medical Center, 350 Woodrow Wilson Drive Suite 1600, Jackson, MS, 39213, USA
| | - Ashley Albert
- Department of Radiation Oncology, University of Mississippi Medical Center, 350 Woodrow Wilson Drive Suite 1600, Jackson, MS, 39213, USA
| | - Rahul Bhandari
- Department of Radiation Oncology, University of Mississippi Medical Center, 350 Woodrow Wilson Drive Suite 1600, Jackson, MS, 39213, USA
| | - Srinivasan Vijayakumar
- Department of Radiation Oncology, University of Mississippi Medical Center, 350 Woodrow Wilson Drive Suite 1600, Jackson, MS, 39213, USA.
| |
Collapse
|
10
|
The promising impact of molecular profiling on treatment strategies in oral cancers. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2017; 118:242-247. [PMID: 28576460 DOI: 10.1016/j.jormas.2017.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 12/19/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a major cause of cancer-associated morbidity and mortality. Although OSCC may develop from easily accessible oral preneoplastic lesions (OPLs), no intervention has been reported so far that reduces the rate of malignant transformation. A comprehensive molecular characterization of oral carcinogenesis may help refining treatment strategies both in patients with OPLs and OSCC. Herein, we review main molecular alterations occurring at different steps during oral carcinogenesis and show how molecularly-based medicine and surgery may impact the outcome of OSCC in the future.
Collapse
|