1
|
Auger M, Sorroza-Martinez L, Brahiti N, Huppé CA, Faucher-Giguère L, Arbi I, Hervault M, Cheng X, Gaillet B, Couture F, Guay D, Soultan AH. Enhancing peptide and PMO delivery to mouse airway epithelia by chemical conjugation with the amphiphilic peptide S10. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102290. [PMID: 39233851 PMCID: PMC11372590 DOI: 10.1016/j.omtn.2024.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
Delivery of antisense oligonucleotides (ASOs) to airway epithelial cells is arduous due to the physiological barriers that protect the lungs and the endosomal entrapment phenomenon, which prevents ASOs from reaching their intracellular targets. Various delivery strategies involving peptide-, lipid-, and polymer-based carriers are being investigated, yet the challenge remains. S10 is a peptide-based delivery agent that enables the intracellular delivery of biomolecules such as GFP, CRISPR-associated nuclease ribonucleoprotein (RNP), base editor RNP, and a fluorescent peptide into lung cells after intranasal or intratracheal administrations to mice, ferrets, and rhesus monkeys. Herein, we demonstrate that covalently attaching S10 to a fluorescently labeled peptide or a functional splice-switching phosphorodiamidate morpholino oligomer improves their intracellular delivery to airway epithelia in mice after a single intranasal instillation. Data reveal a homogeneous delivery from the trachea to the distal region of the lungs, specifically into the cells lining the airway. Quantitative measurements further highlight that conjugation via a disulfide bond through a pegylated (PEG) linker was the most beneficial strategy compared with direct conjugation (without the PEG linker) or conjugation via a permanent thiol-maleimide bond. We believe that S10-based conjugation provides a great strategy to achieve intracellular delivery of peptides and ASOs with therapeutic properties in lungs.
Collapse
Affiliation(s)
- Maud Auger
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
- Département de génie chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Bureau 3550, Québec, QC G1V 0A6, Canada
| | - Luis Sorroza-Martinez
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
- Département de génie chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Bureau 3550, Québec, QC G1V 0A6, Canada
| | - Nadine Brahiti
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| | - Carole-Ann Huppé
- Centre Collégial de Transfert de Technologie en Biotechnologies TransBIOTech, 201 Rue Monseigneur-Bourget, Lévis, QC G6V 6Z3, Canada
| | | | - Imen Arbi
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| | - Maxime Hervault
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| | - Xue Cheng
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| | - Bruno Gaillet
- Département de génie chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Bureau 3550, Québec, QC G1V 0A6, Canada
| | - Frédéric Couture
- Centre Collégial de Transfert de Technologie en Biotechnologies TransBIOTech, 201 Rue Monseigneur-Bourget, Lévis, QC G6V 6Z3, Canada
| | - David Guay
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
- Département de génie chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Bureau 3550, Québec, QC G1V 0A6, Canada
| | - Al-Halifa Soultan
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| |
Collapse
|
2
|
Delaney R, O'Halloran KD. Respiratory performance in Duchenne muscular dystrophy: Clinical manifestations and lessons from animal models. Exp Physiol 2024; 109:1426-1445. [PMID: 39023735 PMCID: PMC11363095 DOI: 10.1113/ep091967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal genetic neuromuscular disease. Lack of dystrophin in skeletal muscles leads to intrinsic weakness, injury, subsequent degeneration and fibrosis, decreasing contractile function. Dystropathology eventually presents in all inspiratory and expiratory muscles of breathing, severely curtailing their critical function. In people with DMD, premature death is caused by respiratory or cardiac failure. There is an urgent need to develop therapies that improve quality of life and extend life expectancy in DMD. Surprisingly, there is a dearth of information on respiratory control in animal models of DMD, and respiratory outcome measures are often limited or absent in clinical trials. Characterization of respiratory performance in murine and canine models has revealed extensive remodelling of the diaphragm, the major muscle of inspiration. However, significant compensation by extradiaphragmatic muscles of breathing is evident in early disease, contributing to preservation of peak respiratory system performance. Loss of compensation afforded by accessory muscles in advanced disease is ultimately associated with compromised respiratory performance. A new and potentially more translatable murine model of DMD, the D2.mdx mouse, has recently been developed. Respiratory performance in D2.mdx mice is yet to be characterized fully. However, based on histopathological features, D2.mdx mice might serve as useful preclinical models, facilitating the testing of new therapeutics that rescue respiratory function. This review summarizes the pathophysiological mechanisms associated with DMD both in humans and in animal models, with a focus on breathing. We consider the translational value of each model to human DMD and highlight the urgent need for comprehensive characterization of breathing in representative preclinical models to better inform human trials.
Collapse
|
3
|
Trundle J, Lu-Nguyen N, Malerba A, Popplewell L. Targeted Antisense Oligonucleotide-Mediated Skipping of Murine Postn Exon 17 Partially Addresses Fibrosis in D2. mdx Mice. Int J Mol Sci 2024; 25:6113. [PMID: 38892298 PMCID: PMC11172600 DOI: 10.3390/ijms25116113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Periostin, a multifunctional 90 kDa protein, plays a pivotal role in the pathogenesis of fibrosis across various tissues, including skeletal muscle. It operates within the transforming growth factor beta 1 (Tgf-β1) signalling pathway and is upregulated in fibrotic tissue. Alternative splicing of Periostin's C-terminal region leads to six protein-coding isoforms. This study aimed to elucidate the contribution of the isoforms containing the amino acids encoded by exon 17 (e17+ Periostin) to skeletal muscle fibrosis and investigate the therapeutic potential of manipulating exon 17 splicing. We identified distinct structural differences between e17+ Periostin isoforms, affecting their interaction with key fibrotic proteins, including Tgf-β1 and integrin alpha V. In vitro mouse fibroblast experimentation confirmed the TGF-β1-induced upregulation of e17+ Periostin mRNA, mitigated by an antisense approach that induces the skipping of exon 17 of the Postn gene. Subsequent in vivo studies in the D2.mdx mouse model of Duchenne muscular dystrophy (DMD) demonstrated that our antisense treatment effectively reduced e17+ Periostin mRNA expression, which coincided with reduced full-length Periostin protein expression and collagen accumulation. The grip strength of the treated mice was rescued to the wild-type level. These results suggest a pivotal role of e17+ Periostin isoforms in the fibrotic pathology of skeletal muscle and highlight the potential of targeted exon skipping strategies as a promising therapeutic approach for mitigating fibrosis-associated complications.
Collapse
MESH Headings
- Animals
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Mice
- Fibrosis
- Exons
- Mice, Inbred mdx
- Oligonucleotides, Antisense/pharmacology
- Oligonucleotides, Antisense/genetics
- Alternative Splicing
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/therapy
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Transforming Growth Factor beta1/metabolism
- Transforming Growth Factor beta1/genetics
- Fibroblasts/metabolism
- Disease Models, Animal
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Male
Collapse
Affiliation(s)
- Jessica Trundle
- Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, Surrey TW20 0EX, UK; (J.T.); (N.L.-N.)
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Ngoc Lu-Nguyen
- Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, Surrey TW20 0EX, UK; (J.T.); (N.L.-N.)
| | - Alberto Malerba
- Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, Surrey TW20 0EX, UK; (J.T.); (N.L.-N.)
| | - Linda Popplewell
- Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, Surrey TW20 0EX, UK; (J.T.); (N.L.-N.)
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| |
Collapse
|
4
|
Gushchina LV, Bradley AJ, Vetter TA, Lay JW, Rohan NL, Frair EC, Wein N, Flanigan KM. Persistence of exon 2 skipping and dystrophin expression at 18 months after U7snRNA-mediated therapy in the Dup2 mouse model. Mol Ther Methods Clin Dev 2023; 31:101144. [PMID: 38027058 PMCID: PMC10679948 DOI: 10.1016/j.omtm.2023.101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive X-linked disease caused by mutations in the DMD gene that prevent the expression of a functional dystrophin protein. Exon duplications represent 6%-11% of mutations, and duplications of exon 2 (Dup2) are the most common (∼11%) of duplication mutations. An exon-skipping strategy for Dup2 mutations presents a large therapeutic window. Skipping one exon copy results in full-length dystrophin expression, whereas skipping of both copies (Del2) activates an internal ribosomal entry site (IRES) in exon 5, inducing the expression of a highly functional truncated dystrophin isoform. We have previously confirmed the therapeutic efficacy of AAV9.U7snRNA-mediated skipping in the Dup2 mouse model and showed the absence of off-target splicing effects and lack of toxicity in mice and nonhuman primates. Here, we report long-term dystrophin expression data following the treatment of 3-month-old Dup2 mice with the scAAV9.U7.ACCA vector. Significant exon 2 skipping and robust dystrophin expression in the muscles and hearts of treated mice persist at 18 months after treatment, along with the partial rescue of muscle function. These data extend our previous findings and show that scAAV9.U7.ACCA provides long-term protection by restoring the disrupted dystrophin reading frame in the context of exon 2 duplications.
Collapse
Affiliation(s)
- Liubov V. Gushchina
- The Center for Gene Therapy, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Adrienne J. Bradley
- The Center for Gene Therapy, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
| | - Tatyana A. Vetter
- The Center for Gene Therapy, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Jacob W. Lay
- The Center for Gene Therapy, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
| | - Natalie L. Rohan
- The Center for Gene Therapy, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
| | - Emma C. Frair
- The Center for Gene Therapy, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
| | - Nicolas Wein
- The Center for Gene Therapy, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Kevin M. Flanigan
- The Center for Gene Therapy, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
5
|
Chang M, Cai Y, Gao Z, Chen X, Liu B, Zhang C, Yu W, Cao Q, Shen Y, Yao X, Chen X, Sun H. Duchenne muscular dystrophy: pathogenesis and promising therapies. J Neurol 2023:10.1007/s00415-023-11796-x. [PMID: 37258941 DOI: 10.1007/s00415-023-11796-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive, muscle-wasting disease, characterized by progressive deterioration of skeletal muscle that causes rapid loss of mobility. The failure in respiratory and cardiac muscles is the underlying cause of premature death in most patients with DMD. Mutations in the gene encoding dystrophin result in dystrophin deficiency, which is the underlying pathogenesis of DMD. Dystrophin-deficient myocytes are dysfunctional and vulnerable to injury, triggering a series of subsequent pathological changes. In this review, we detail the molecular mechanism of DMD, dystrophin deficiency-induced muscle cell damage (oxidative stress injury, dysregulated calcium homeostasis, and sarcolemma instability) and other cell damage and dysfunction (neuromuscular junction impairment and abnormal differentiation of muscle satellite). We also describe aberrant function of other cells and impaired muscle regeneration due to deterioration of the muscle microenvironment, and dystrophin deficiency-induced multiple organ dysfunction, while summarizing the recent advances in the treatment of DMD.
Collapse
Affiliation(s)
- Mengyuan Chang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yong Cai
- Department of Neurology, Binhai County People's Hospital, Yancheng, 224500, Jiangsu, People's Republic of China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Cheng Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Weiran Yu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Qianqian Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Xiaoyang Chen
- Department of Ultrasound, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
- Research and Development Center for E-Learning, Ministry of Education, Beijing, 100816, People's Republic of China.
| |
Collapse
|
6
|
Gushchina LV, Vetter TA, Frair EC, Bradley AJ, Grounds KM, Lay JW, Huang N, Suhaiba A, Schnell FJ, Hanson G, Simmons TR, Wein N, Flanigan KM. Systemic PPMO-mediated dystrophin expression in the Dup2 mouse model of Duchenne muscular dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:479-492. [PMID: 36420217 PMCID: PMC9678653 DOI: 10.1016/j.omtn.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating muscle-wasting disease that arises due to the loss of dystrophin expression, leading to progressive loss of motor and cardiorespiratory function. Four exon-skipping approaches using antisense phosphorodiamidate morpholino oligomers (PMOs) have been approved by the FDA to restore a DMD open reading frame, resulting in expression of a functional but internally deleted dystrophin protein, but in patients with single-exon duplications, exon skipping has the potential to restore full-length dystrophin expression. Cell-penetrating peptide-conjugated PMOs (PPMOs) have demonstrated enhanced cellular uptake and more efficient dystrophin restoration than unconjugated PMOs. In the present study, we demonstrate widespread PPMO-mediated dystrophin restoration in the Dup2 mouse model of exon 2 duplication, representing the most common single-exon duplication among patients with DMD. In this proof-of-concept study, a single intravenous injection of PPMO targeting the exon 2 splice acceptor site induced 45% to 68% exon 2-skipped Dmd transcripts in Dup2 skeletal muscles 15 days post-injection. Muscle dystrophin restoration peaked at 77% to 87% average dystrophin-positive fibers and 41% to 51% of normal signal intensity by immunofluorescence, and 15.7% to 56.8% of normal by western blotting 15 to 30 days after treatment. These findings indicate that PPMO-mediated exon skipping is a promising therapeutic strategy for muscle dystrophin restoration in the context of exon 2 duplications.
Collapse
Affiliation(s)
- Liubov V. Gushchina
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Tatyana A. Vetter
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Emma C. Frair
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Adrienne J. Bradley
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kelly M. Grounds
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Jacob W. Lay
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Nianyuan Huang
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Aisha Suhaiba
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | | | | | - Tabatha R. Simmons
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Nicolas Wein
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Kevin M. Flanigan
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
7
|
Boulinguiez A, Duhem C, Mayeuf-Louchart A, Pourcet B, Sebti Y, Kondratska K, Montel V, Delhaye S, Thorel Q, Beauchamp J, Hebras A, Gimenez M, Couvelaere M, Zecchin M, Ferri L, Prevarskaya N, Forand A, Gentil C, Ohana J, Piétri-Rouxel F, Bastide B, Staels B, Duez H, Lancel S. NR1D1 controls skeletal muscle calcium homeostasis through myoregulin repression. JCI Insight 2022; 7:153584. [PMID: 35917173 PMCID: PMC9536258 DOI: 10.1172/jci.insight.153584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
The sarcoplasmic reticulum (SR) plays an important role in calcium homeostasis. SR calcium mishandling is described in pathological conditions such as myopathies. Here, we investigated whether the nuclear receptor subfamily 1 group D member (NR1D1, also called REV-ERBα) regulates skeletal muscle SR calcium homeostasis. Our data demonstrate that NR1D1 deficiency in mice impairs SERCA-dependent SR calcium uptake. NR1D1 acts on calcium homeostasis by repressing the SERCA inhibitor myoregulin through direct binding to its promoter. Restoration of myoregulin counteracts the effects of NR1D1 overexpression on SR calcium content. Interestingly, myoblasts from Duchenne myopathy patients display lower NR1D1 expression, whereas pharmacological NR1D1 activation ameliorates SR calcium homeostasis, and improves muscle structure and function in dystrophic mdx/Utr+/- mice. Our findings demonstrate that NR1D1 regulates muscle SR calcium homeostasis, pointing to its therapeutic interest for mitigating myopathy.
Collapse
Affiliation(s)
- Alexis Boulinguiez
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Christian Duhem
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Alicia Mayeuf-Louchart
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Benoit Pourcet
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Yasmine Sebti
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Kateryna Kondratska
- U1003 - PHYCEL - Physiologie Cellulaire, University Lille, Inserm,, Villeneuve d'Ascq, France
| | - Valérie Montel
- URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale,, Lille, France
| | - Stéphane Delhaye
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Quentin Thorel
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Justine Beauchamp
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Aurore Hebras
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Marion Gimenez
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Marie Couvelaere
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Mathilde Zecchin
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Lise Ferri
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Natalia Prevarskaya
- U1003 - PHYCEL - Physiologie Cellulaire, University Lille, Inserm, Villeneuve d'Ascq, France
| | - Anne Forand
- INSERM U845, Université Paris Descartes, Paris, France
| | | | - Jessica Ohana
- MyoLine, Sorbonne Université-UMRS974-Inserm-Institut de Myologie, Paris, France
| | | | - Bruno Bastide
- URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale,, Lille, France
| | - Bart Staels
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Helene Duez
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Steve Lancel
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
8
|
Mhandire DZ, Burns DP, Roger AL, O'Halloran KD, ElMallah MK. Breathing in Duchenne muscular dystrophy: Translation to therapy. J Physiol 2022; 600:3465-3482. [PMID: 35620971 PMCID: PMC9357048 DOI: 10.1113/jp281671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/17/2022] [Indexed: 11/08/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease caused by a deficiency in dystrophin - a structural protein which stabilizes muscle during contraction. Dystrophin deficiency adversely affects the respiratory system leading to sleep-disordered breathing, hypoventilation, and weakness of the expiratory and inspiratory musculature, which culminate in severe respiratory dysfunction. Muscle degeneration associated respiratory impairment in neuromuscular disease is a result of disruptions at multiple sites of the respiratory control network, including sensory and motor pathways. As a result of this pathology, respiratory failure is a leading cause of premature death in DMD patients. Currently available treatments for DMD respiratory insufficiency attenuate respiratory symptoms without completely reversing the underlying pathophysiology. This underscores the need to develop curative therapies to improve quality of life and longevity of DMD patients. This review summarises research findings on the pathophysiology of respiratory insufficiencies in DMD disease in humans and animal models, the clinical interventions available to ameliorate symptoms, and gene-based therapeutic strategies uncovered by preclinical animal studies. Abstract figure legend: Summary of the therapeutic strategies for respiratory insufficiency in DMD (Duchenne muscular dystrophy). Treatment options currently in clinical use only attenuate respiratory symptoms without reversing the underlying pathology of DMD-associated respiratory insufficiencies. Ongoing preclinical and clinical research is aimed at developing curative therapies that both improve quality of life and longevity of DMD patients. AAV - adeno-associated virus, PPMO - Peptide-conjugated phosphorodiamidate morpholino oligomer This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Doreen Z Mhandire
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - David P Burns
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Angela L Roger
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Mai K ElMallah
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| |
Collapse
|
9
|
de Zélicourt A, Fayssoil A, Dakouane-Giudicelli M, De Jesus I, Karoui A, Zarrouki F, Lefebvre F, Mansart A, Launay JM, Piquereau J, Tarragó MG, Bonay M, Forand A, Moog S, Piétri-Rouxel F, Brisebard E, Chini CCS, Kashyap S, Fogarty MJ, Sieck GC, Mericskay M, Chini EN, Gomez AM, Cancela JM, de la Porte S. CD38-NADase is a new major contributor to Duchenne muscular dystrophic phenotype. EMBO Mol Med 2022; 14:e12860. [PMID: 35298089 PMCID: PMC9081905 DOI: 10.15252/emmm.202012860] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive muscle degeneration. Two important deleterious features are a Ca2+ dysregulation linked to Ca2+ influxes associated with ryanodine receptor hyperactivation, and a muscular nicotinamide adenine dinucleotide (NAD+) deficit. Here, we identified that deletion in mdx mice of CD38, a NAD+ glycohydrolase‐producing modulators of Ca2+ signaling, led to a fully restored heart function and structure, with skeletal muscle performance improvements, associated with a reduction in inflammation and senescence markers. Muscle NAD+ levels were also fully restored, while the levels of the two main products of CD38, nicotinamide and ADP‐ribose, were reduced, in heart, diaphragm, and limb. In cardiomyocytes from mdx/CD38−/− mice, the pathological spontaneous Ca2+ activity was reduced, as well as in myotubes from DMD patients treated with isatuximab (SARCLISA®) a monoclonal anti‐CD38 antibody. Finally, treatment of mdx and utrophin–dystrophin‐deficient (mdx/utr−/−) mice with CD38 inhibitors resulted in improved skeletal muscle performances. Thus, we demonstrate that CD38 actively contributes to DMD physiopathology. We propose that a selective anti‐CD38 therapeutic intervention could be highly relevant to develop for DMD patients.
Collapse
Affiliation(s)
- Antoine de Zélicourt
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France.,Institut des Neurosciences Paris-Saclay, CNRS, Université Paris-Saclay, Saclay, France
| | | | | | - Isley De Jesus
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France
| | - Ahmed Karoui
- Signalisation et Physiopathologie Cardiovasculaire, INSERM, UMR-S 1180 - Université Paris-Saclay, Châtenay-Malabry, France
| | - Faouzi Zarrouki
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France
| | - Florence Lefebvre
- Signalisation et Physiopathologie Cardiovasculaire, INSERM, UMR-S 1180 - Université Paris-Saclay, Châtenay-Malabry, France
| | - Arnaud Mansart
- Université Paris-Saclay, UVSQ, Inserm, 2I, Versailles, France
| | - Jean-Marie Launay
- Service de Biochimie, INSERM UMR S942, Hôpital Lariboisière, Paris, France
| | - Jerome Piquereau
- Signalisation et Physiopathologie Cardiovasculaire, INSERM, UMR-S 1180 - Université Paris-Saclay, Châtenay-Malabry, France
| | - Mariana G Tarragó
- Department of Anesthesiology and Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Marcel Bonay
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France
| | - Anne Forand
- Centre de Recherche en Myologie, Faculté de Médecine de la Pitié Salpêtrière, Sorbonne Université-UMRS974-Inserm-Institut de Myologie, Paris, France.,Inovarion, Paris, France
| | - Sophie Moog
- Centre de Recherche en Myologie, Faculté de Médecine de la Pitié Salpêtrière, Sorbonne Université-UMRS974-Inserm-Institut de Myologie, Paris, France.,Inovarion, Paris, France
| | - France Piétri-Rouxel
- Centre de Recherche en Myologie, Faculté de Médecine de la Pitié Salpêtrière, Sorbonne Université-UMRS974-Inserm-Institut de Myologie, Paris, France
| | | | - Claudia C S Chini
- Department of Anesthesiology and Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Sonu Kashyap
- Department of Anesthesiology and Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew J Fogarty
- Department of Anesthesiology and Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Gary C Sieck
- Department of Anesthesiology and Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Mathias Mericskay
- Signalisation et Physiopathologie Cardiovasculaire, INSERM, UMR-S 1180 - Université Paris-Saclay, Châtenay-Malabry, France
| | - Eduardo N Chini
- Department of Anesthesiology and Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Ana Maria Gomez
- Signalisation et Physiopathologie Cardiovasculaire, INSERM, UMR-S 1180 - Université Paris-Saclay, Châtenay-Malabry, France
| | - José-Manuel Cancela
- Institut des Neurosciences Paris-Saclay, CNRS, Université Paris-Saclay, Saclay, France
| | | |
Collapse
|
10
|
Overby SJ, Cerro-Herreros E, González-Martínez I, Varela MA, Seoane-Miraz D, Jad Y, Raz R, Møller T, Pérez-Alonso M, Wood MJ, Llamusí B, Artero R. Proof of concept of peptide-linked blockmiR-induced MBNL functional rescue in myotonic dystrophy type 1 mouse model. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1146-1155. [PMID: 35282418 PMCID: PMC8888893 DOI: 10.1016/j.omtn.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/06/2022] [Indexed: 01/25/2023]
Abstract
Myotonic dystrophy type 1 is a debilitating neuromuscular disease causing muscle weakness, myotonia, and cardiac dysfunction. The phenotypes are caused by muscleblind-like (MBNL) protein sequestration by toxic RNA in the DM1 protein kinase (DMPK) gene. DM1 patients exhibit a pathogenic number of repetitions in DMPK, which leads to downstream symptoms. Another disease characteristic is altered microRNA (miRNA) expression. It was previously shown that miR-23b regulates the translation of MBNL1 into protein. Antisense oligonucleotide (AON) treatment targeting this miRNA can improve disease symptoms. Here, we present a refinement of this strategy targeting a miR-23b binding site on the MBNL1 3' UTR in DM1 model cells and mice by using AONs called blockmiRs. BlockmiRs linked to novel cell-penetrating peptide chemistry showed an increase in MBNL1 protein in DM1 model cells and HSALR mice. They also showed an increase in muscle strength and significant rescue of downstream splicing and histological phenotypes in mice without disturbing the endogenous levels of other miR-23b target transcripts.
Collapse
Affiliation(s)
- Sarah J Overby
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Estefanía Cerro-Herreros
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Irene González-Martínez
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Miguel A Varela
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - David Seoane-Miraz
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Yahya Jad
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Richard Raz
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | | | - Manuel Pérez-Alonso
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Matthew J Wood
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Beatriz Llamusí
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Rubén Artero
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| |
Collapse
|
11
|
Lesman D, Rodriguez Y, Rajakumar D, Wein N. U7 snRNA, a Small RNA with a Big Impact in Gene Therapy. Hum Gene Ther 2021; 32:1317-1329. [PMID: 34139889 DOI: 10.1089/hum.2021.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The uridine-rich 7 (U7) small nuclear RNA (snRNA) is a component of a small nuclear ribonucleoprotein (snRNP) complex. U7 snRNA naturally contains an antisense sequence that identifies histone premessenger RNAs (pre-mRNAs) and is involved in their 3' end processing. By altering this antisense sequence, researchers have turned U7 snRNA into a versatile tool for targeting pre-mRNAs and modifying splicing. Encapsulating a modified U7 snRNA into a viral vector such as adeno-associated virus (also referred as vectorized exon skipping/inclusion, or VES/VEI) enables the delivery of this highly efficacious splicing modulator into a range of cell lines, primary cells, and tissues. In addition, and in contrast to antisense oligonucleotides, viral delivery of U7 snRNA enables long-term expression of antisense sequences in the nucleus as part of a stable snRNP complex. As a result, VES/VEI has emerged as a promising therapeutic platform for treating a large variety of human diseases caused by errors in pre-mRNA splicing or its regulation. Here we provide an overview of U7 snRNA's natural function and its applications in gene therapy.
Collapse
Affiliation(s)
- Daniel Lesman
- Center for Gene Therapy, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Yacidzohara Rodriguez
- Center for Gene Therapy, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Dhanarajan Rajakumar
- Center for Gene Therapy, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Nicolas Wein
- Center for Gene Therapy, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatric, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
12
|
Choi E, Koo T. CRISPR technologies for the treatment of Duchenne muscular dystrophy. Mol Ther 2021; 29:3179-3191. [PMID: 33823301 DOI: 10.1016/j.ymthe.2021.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
The emerging clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome editing technologies have progressed remarkably in recent years, opening up the potential of precise genome editing as a therapeutic approach to treat various diseases. The CRISPR-CRISPR-associated (Cas) system is an attractive platform for the treatment of Duchenne muscular dystrophy (DMD), which is a neuromuscular disease caused by mutations in the DMD gene. CRISPR-Cas can be used to permanently repair the mutated DMD gene, leading to the expression of the encoded protein, dystrophin, in systems ranging from cells derived from DMD patients to animal models of DMD. However, the development of more efficient therapeutic approaches and delivery methods remains a great challenge for DMD. Here, we review various therapeutic strategies that use CRISPR-Cas to correct or bypass DMD mutations and discuss their therapeutic potential, as well as obstacles that lie ahead.
Collapse
Affiliation(s)
- Eunyoung Choi
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Taeyoung Koo
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea; Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea; Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
13
|
McKim DA, Cripe TP, Cripe LH. The effect of emerging molecular and genetic therapies on cardiopulmonary disease in Duchenne muscular dystrophy. Pediatr Pulmonol 2021; 56:729-737. [PMID: 33142052 DOI: 10.1002/ppul.25079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 01/22/2023]
Abstract
Gene therapy is an attractive approach being intensively studied to prevent muscle deterioration in patients with Duchenne muscular dystrophy. While clinical trials are only in early stages, initial reports are promising for its effects on ambulation. Cardiopulmonary failure, however, is the most common cause of mortality in Duchenne muscular dystrophy (DMD) patients, and little is known regarding the prospects for gene therapy on alleviating DMD-associated cardiomyopathy and respiratory failure. Here we review current knowledge regarding effects of gene therapy on DMD cardiomyopathy and discuss respiratory endpoints that should be considered as outcome measures in future clinical trials.
Collapse
Affiliation(s)
- Douglas A McKim
- Division of Respiratory Medicine, CANVent Respiratory Rehabilitation Services, The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Timothy P Cripe
- Division of Pediatric Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Linda H Cripe
- Division of Pediatric Cardiology, Nationwide Children's Hospital, Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
14
|
Beckers P, Caberg JH, Dideberg V, Dangouloff T, den Dunnen JT, Bours V, Servais L, Boemer F. Newborn screening of duchenne muscular dystrophy specifically targeting deletions amenable to exon-skipping therapy. Sci Rep 2021; 11:3011. [PMID: 33542429 PMCID: PMC7862591 DOI: 10.1038/s41598-021-82725-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/25/2021] [Indexed: 11/08/2022] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a lethal progressive muscle-wasting disease. New treatment strategies relying on DMD gene exon-skipping therapy have recently been approved and about 30% of patients could be amenable to exon 51, 53 or 45 skipping. We evaluated the spectrum of deletions reported in DMD registries, and designed a method to screen newborns and identify DMD deletions amenable to exon 51, 53 and 45 skipping. We developed a multiplex qPCR assay identifying hemi(homo)-zygotic deletions of the flanking exons of these therapeutic targets in DMD exons (i.e. exons 44, 46, 50, 52 and 54). We conducted an evaluation of our new method in 51 male patients with a DMD phenotype, 50 female carriers of a DMD deletion and 19 controls. Studies were performed on dried blood spots with patient's consent. We analyzed qPCR amplification curves of controls, carriers, and DMD patients to discern the presence or the absence of the target exons. Analysis of the exons flanking the exon-skipping targets permitted the identification of patients that could benefit from exon-skipping. All samples were correctly genotyped, with either presence or absence of amplification of the target exon. This proof-of-concept study demonstrates that this new assay is a highly sensitive method to identify DMD patients carrying deletions that are rescuable by exon-skipping treatment. The method is easily scalable to population-based screening. This targeted screening approach could address the new management paradigm in DMD, and could help to optimize the beneficial therapeutic effect of DMD therapies by permitting pre-symptomatic care.
Collapse
Affiliation(s)
- Pablo Beckers
- Biochemical Genetics Laboratory, Human Genetic Department, CHU de Liège, Université de Liège, CHU Sart-Tilman, Domaine Universitaire du Sart-Tilman, Avenue de l'Hôpital, 1, 4000, Liège, Belgium
| | - Jean-Hubert Caberg
- Molecular Genetics Laboratory, Human Genetic Department, CHU Sart-Tilman, University of Liege, Liège, Belgium
| | - Vinciane Dideberg
- Molecular Genetics Laboratory, Human Genetic Department, CHU Sart-Tilman, University of Liege, Liège, Belgium
| | - Tamara Dangouloff
- Division of Child Neurology, Neuromuscular Reference Center Disease, Department of Pediatrics, University Hospital Liège & University of Liège, Liège, Belgium
| | - Johan T den Dunnen
- Department of Human Genetics and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent Bours
- Head of Human Genetics Department, CHU Sart-Tilman, University of Liege, Liège, Belgium
| | - Laurent Servais
- Division of Child Neurology, Neuromuscular Reference Center Disease, Department of Pediatrics, University Hospital Liège & University of Liège, Liège, Belgium
- Department of Paediatrics, MDUK Neuromuscular Center, University of Oxford, Oxford, UK
| | - François Boemer
- Biochemical Genetics Laboratory, Human Genetic Department, CHU de Liège, Université de Liège, CHU Sart-Tilman, Domaine Universitaire du Sart-Tilman, Avenue de l'Hôpital, 1, 4000, Liège, Belgium.
| |
Collapse
|