1
|
McMurphy TB, Park A, Heizer PJ, Bottenfield C, Kurasawa JH, Ikeda Y, Doran MR. AAV-mediated co-expression of an immunogenic transgene plus PD-L1 enables sustained expression through immunological evasion. Sci Rep 2024; 14:28853. [PMID: 39572604 PMCID: PMC11582688 DOI: 10.1038/s41598-024-75698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/08/2024] [Indexed: 11/24/2024] Open
Abstract
Adeno-associated virus (AAV) vectors can mediate long-term expression of immunogenic transgenes in vivo through transduction of tolerogenic cells in the liver. Tissue-targeted AAV vectors allow transduction of non-hepatic cells, but this necessitates development of strategies to minimize transgene immunogenicity. Here, we first validated that AAV capsids with tissue-specific tropism and transgene promoters enabled expression of the immunogenic protein, firefly luciferase, in liver, muscle, or adipose tissue. Cellular immunity was detectable in animals where luciferase was expressed in muscle or adipose, but not liver tissue. With the objective of enhancing tolerance of transduced non-hepatic cells, AAV vectors were engineered to co-express luciferase plus the immune checkpoint protein, PD-L1. In animals where transduced cells expressed luciferase but not PD-L1, there was incremental depletion of transduced cells over time. By contrast, the bioluminescent signal increased incrementally over the study, and was significantly greater, in the muscle and adipose tissue of animals where PD-L1 was co-expressed with luciferase. Our data demonstrate that PD-L1 co-expression facilitates persistent, tissue-targeted expression of immunogenic transgenes without transducing tolerogenic hepatic cells. Our strategy of PD-L1 co-expression may provide a versatile platform for sustained expression of immunogenic transgenes in gene and cell therapies.
Collapse
Affiliation(s)
- Travis B McMurphy
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Andrew Park
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Patrick J Heizer
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Crystal Bottenfield
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - James H Kurasawa
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Yasuhiro Ikeda
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.
| | - Michael R Doran
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.
| |
Collapse
|
2
|
Wang JH, Gessler DJ, Zhan W, Gallagher TL, Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther 2024; 9:78. [PMID: 38565561 PMCID: PMC10987683 DOI: 10.1038/s41392-024-01780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a pivotal delivery tool in clinical gene therapy owing to its minimal pathogenicity and ability to establish long-term gene expression in different tissues. Recombinant AAV (rAAV) has been engineered for enhanced specificity and developed as a tool for treating various diseases. However, as rAAV is being more widely used as a therapy, the increased demand has created challenges for the existing manufacturing methods. Seven rAAV-based gene therapy products have received regulatory approval, but there continue to be concerns about safely using high-dose viral therapies in humans, including immune responses and adverse effects such as genotoxicity, hepatotoxicity, thrombotic microangiopathy, and neurotoxicity. In this review, we explore AAV biology with an emphasis on current vector engineering strategies and manufacturing technologies. We discuss how rAAVs are being employed in ongoing clinical trials for ocular, neurological, metabolic, hematological, neuromuscular, and cardiovascular diseases as well as cancers. We outline immune responses triggered by rAAV, address associated side effects, and discuss strategies to mitigate these reactions. We hope that discussing recent advancements and current challenges in the field will be a helpful guide for researchers and clinicians navigating the ever-evolving landscape of rAAV-based gene therapy.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, 3002, Australia
| | - Dominic J Gessler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Thomas L Gallagher
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
3
|
Pathak S, Singh V, Kumar N, Jayandharan GR. Inducible caspase 9-mediated suicide gene therapy using AAV6 vectors in a murine model of breast cancer. Mol Ther Methods Clin Dev 2023; 31:101166. [PMID: 38149057 PMCID: PMC10750187 DOI: 10.1016/j.omtm.2023.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023]
Abstract
Breast carcinoma has one of the highest incidence rates (11.7%), with significant clinical heterogeneity. Although conventional chemotherapy and surgical resection are the current standard of care, the resistance and recurrence, after these interventions, necessitate alternate therapeutic approaches. Cancer gene therapy for breast cancer with the suicide gene is an attractive option due to their directed delivery into the tumor. In this study, we have developed a novel treatment strategy against breast cancer with recombinant adeno-associated virus (AAV) serotype 6 vectors carrying a suicide gene, inducible Caspase 9 (iCasp9). Upon treatment with AAV6-iCasp9 vectors and the chemical inducer of dimerizer, AP20187, the viability of murine breast cancer cells (4T1) was significantly reduced to ∼40%-60% (mock control 100%). Following intratumoral delivery of AAV6-iCasp9 vectors in an orthotopic breast cancer mouse model, we observed a significant increase in iCasp9 transgene expression and a significant reduction in tumor growth rate. At the molecular level, immunohistochemical analysis demonstrated subsequent activation of the effector caspase 3 and cellular death. These data highlight the potential of AAV6-iCasp9-based suicide gene therapy for aggressive breast cancer in patients.
Collapse
Affiliation(s)
- Subhajit Pathak
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Center for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Vijayata Singh
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Center for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Narendra Kumar
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Center for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Giridhara R. Jayandharan
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Center for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
4
|
Dietz J, Jacobsen F, Zhuge H, Daya N, Bigot A, Zhang W, Ehrhardt A, Vorgerd M, Ehrke-Schulz E. Muscle Specific Promotors for Gene Therapy - A Comparative Study in Proliferating and Differentiated Cells. J Neuromuscul Dis 2023:JND221574. [PMID: 37270809 DOI: 10.3233/jnd-221574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND Depending on the therapy approach and disease background, the heterogeneity of muscular tissues complicates the development of targeted gene therapy, where either expression in all muscle types or restriction to only one muscle type is warranted. Muscle specificity can be achieved using promotors mediating tissue specific and sustained physiological expression in the desired muscle types but limited activity in non-targeted tissue. Several muscle specific promotors have been described, but direct comparisons between them are lacking. OBJECTIVE Here we present a direct comparison of muscle specific Desmin-, MHCK7, microRNA206- and Calpain3 promotor. METHODS To directly compare these muscle specific promotors we utilized transfection of reporter plasmids using an in vitro model based on electrical pulse stimulation (EPS) to provoke sarcomere formation in 2D cell culture for quantification of promotor activities in far differentiated mouse and human myotubes. RESULTS We found that Desmin- and MHCK7 promotors showed stronger reporter gene expression levels in proliferating and differentiated myogenic cell lines than miR206 and CAPN3 promotor. However, Desmin and MHCK7 promotor promoted gene expression also cardiac cells whereas miR206 and CAPN3 promotor expression was restricted to skeletal muscle. CONCLUSIONS Our results provides direct comparison of muscle specific promotors with regard to expression strengths and specificity as this is important feature to avoid undesired transgene expression in non-target muscle cells for a desired therapy approach.
Collapse
Affiliation(s)
- Julienne Dietz
- Department of Human Medicine, Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Witten, Germany
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, Bochum, Germany
| | - Frank Jacobsen
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, Bochum, Germany
| | - Heidi Zhuge
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, Bochum, Germany
| | - Nassam Daya
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, Bochum, Germany
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Wenli Zhang
- Department of Human Medicine, Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Anja Ehrhardt
- Department of Human Medicine, Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Matthias Vorgerd
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, Bochum, Germany
| | - Eric Ehrke-Schulz
- Department of Human Medicine, Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
5
|
Kiriaev L, Baumann CW, Lindsay A. Eccentric contraction-induced strength loss in dystrophin-deficient muscle: Preparations, protocols, and mechanisms. J Gen Physiol 2023; 155:213810. [PMID: 36651896 PMCID: PMC9856740 DOI: 10.1085/jgp.202213208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/01/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
The absence of dystrophin hypersensitizes skeletal muscle of lower and higher vertebrates to eccentric contraction (ECC)-induced strength loss. Loss of strength can be accompanied by transient and reversible alterations to sarcolemmal excitability and disruption, triad dysfunction, and aberrations in calcium kinetics and reactive oxygen species production. The degree of ECC-induced strength loss, however, appears dependent on several extrinsic and intrinsic factors such as vertebrate model, skeletal muscle preparation (in vivo, in situ, or ex vivo), skeletal muscle hierarchy (single fiber versus whole muscle and permeabilized versus intact), strength production, fiber branching, age, and genetic background, among others. Consistent findings across research groups show that dystrophin-deficient fast(er)-twitch muscle is hypersensitive to ECCs relative to wildtype muscle, but because preparations are highly variable and sensitivity to ECCs are used repeatedly to determine efficacy of many preclinical treatments, it is critical to evaluate the impact of skeletal muscle preparations on sensitivity to ECC-induced strength loss in dystrophin-deficient skeletal muscle. Here, we review and discuss variations in skeletal muscle preparations to evaluate the factors responsible for variations and discrepancies between research groups. We further highlight that dystrophin-deficiency, or loss of the dystrophin-glycoprotein complex in skeletal muscle, is not a prerequisite for accelerated strength loss-induced by ECCs.
Collapse
Affiliation(s)
- Leonit Kiriaev
- Muscle Research Group, Murdoch Children’s Research Institute, Parkville, Victoria, Australia,School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Cory W. Baumann
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, USA,Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia,Correspondence to Angus Lindsay:
| |
Collapse
|
6
|
Hakim CH, Pérez-López D, Burke MJ, Teixeira J, Duan D. Molecular and Biochemical Assessment of Gene Therapy in the Canine Model of Duchenne Muscular Dystrophy. Methods Mol Biol 2023; 2587:255-301. [PMID: 36401035 DOI: 10.1007/978-1-0716-2772-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mutations in the dystrophin gene result in Duchenne muscular dystrophy (DMD), a progressive muscle-wasting disease. Adeno-associated virus (AAV) mediated gene replacement, and CRISPR/Cas9-mediated genome editing hold the potential to treat DMD. Molecular and biochemical analyses are essential to determine gene transfer efficiency and therapeutic efficacy. In this chapter, we present a series of methods routinely used in our laboratory to extract and quantify DNA, RNA, and protein in gene therapy studies performed in the canine DMD model.
Collapse
Affiliation(s)
- Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - Dennis Pérez-López
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - Matthew J Burke
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - James Teixeira
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA.
- Department of Biomedical, Biological & Chemical Engineering, College of Engineering, The University of Missouri, Columbia, MO, USA.
- Department of Neurology, School of Medicine, The University of Missouri, Columbia, MO, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO, USA.
| |
Collapse
|
7
|
Wu B, Drains M, Shah SN, Lu PJ, Leroy V, Killilee J, Rawls R, Tucker JD, Blaeser A, Lu QL. Ribitol dose-dependently enhances matriglycan expression and improves muscle function with prolonged life span in limb girdle muscular dystrophy 2I mouse model. PLoS One 2022; 17:e0278482. [PMID: 36454905 PMCID: PMC9714851 DOI: 10.1371/journal.pone.0278482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Limb Girdle Muscular Dystrophy 2I (LGMDR9) is one of the most common LGMD characterized by defects in glycosylation of α-dystroglycan (matriglycan) resulting from mutations of Fukutin-related protein (FKRP). There is no effective therapy currently available. We recently demonstrated that ribitol supplement increases levels of matriglycan in cells in vitro and in FKRP-P448L (P448L) mutant mouse model through drinking water administration. To be clinically relevant, we have now conducted a dose-escalating efficacy study by gavage in P448L mutant mice. Six months of ribitol treatment daily significantly rescued functions of skeletal, respiratory, and cardiac muscles dose-dependently. This was associated with a dose dependent increase in matriglycan and improvement in muscle pathology with reductions in muscle degeneration, inflammatory infiltration and fibrosis. Importantly, ribitol significantly increased life span and muscle functions of the female animals receiving treatment from 10 months of age. The only observed side effect was gastrointestinal tract bloating with loose stool and this effect is also dose dependent. The results validate the mechanism that ribitol as a pre-substrate of glycosyltransferase is able to compensate for the decreased function of mutant FKRP with restoration of matriglycan expression and provide a guidance for future clinical trial design.
Collapse
Affiliation(s)
- Bo Wu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Atrium Health Musculoskeletal Institute, Carolinas Medical Center, Charlotte, North Carolina, United States of America
- * E-mail: (BW); (QLL)
| | - Morgan Drains
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Atrium Health Musculoskeletal Institute, Carolinas Medical Center, Charlotte, North Carolina, United States of America
| | - Sapana N. Shah
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Atrium Health Musculoskeletal Institute, Carolinas Medical Center, Charlotte, North Carolina, United States of America
| | - Pei Juan Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Atrium Health Musculoskeletal Institute, Carolinas Medical Center, Charlotte, North Carolina, United States of America
| | - Victoria Leroy
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Atrium Health Musculoskeletal Institute, Carolinas Medical Center, Charlotte, North Carolina, United States of America
| | - Jessalyn Killilee
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Atrium Health Musculoskeletal Institute, Carolinas Medical Center, Charlotte, North Carolina, United States of America
| | - Raegan Rawls
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Atrium Health Musculoskeletal Institute, Carolinas Medical Center, Charlotte, North Carolina, United States of America
| | - Jason D. Tucker
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Atrium Health Musculoskeletal Institute, Carolinas Medical Center, Charlotte, North Carolina, United States of America
| | - Anthony Blaeser
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Atrium Health Musculoskeletal Institute, Carolinas Medical Center, Charlotte, North Carolina, United States of America
| | - Qi Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Atrium Health Musculoskeletal Institute, Carolinas Medical Center, Charlotte, North Carolina, United States of America
- * E-mail: (BW); (QLL)
| |
Collapse
|
8
|
Trivedi PD, Yu C, Chaudhuri P, Johnson EJ, Caton T, Adamson L, Byrne BJ, Paulk NK, Clément N. Comparison of highly pure rAAV9 vector stocks produced in suspension by PEI transfection or HSV infection reveals striking quantitative and qualitative differences. Mol Ther Methods Clin Dev 2022; 24:154-170. [PMID: 35071688 PMCID: PMC8760416 DOI: 10.1016/j.omtm.2021.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/22/2021] [Indexed: 01/31/2023]
Abstract
Recent clinical successes have propelled recombinant adeno-associated virus vectors (rAAV) to the center stage for human gene therapy applications. However, the exploding demand for high titers of highly pure rAAV vectors for clinical applications and market needs remains hindered by challenges met at the manufacturing stage. The production of rAAV by transfection in suspension cells remains one of the most commonly used production platforms. In this study, we describe our optimized protocol to produce rAAV by polyethyleneimine (PEI)-mediated transfection in suspension HEK293 cells, along with a side-by-side comparison to our high-performing system using the herpes simplex virus (HSV). Further, we detail a new, robust, and highly efficient downstream purification protocol compatible with both transfection and infection-based harvests that generated rAAV9 stocks of high purity. Our in-depth comparison revealed quantitative, qualitative, and biological differences between PEI-mediated transfection and HSV infection. The HSV production system yielded to higher rAAV vector titers, higher specific yields, and a higher percentage of full capsids than transfection. Furthermore, HSV-produced stocks had a significantly lower concentration of residual host cell proteins and helper DNA impurities, but contained detectable levels of HSV DNA. Importantly, the potency of PEI-produced and HSV-produced rAAV stocks were identical. Analyses of AAV Rep and Cap expression levels and replication showed that HSV-mediated production led to a lower expression of Rep and Cap, but increased levels of AAV genome replication. Our methodology enables high-yield, high purity rAAV production and a biological framework to improve transfection quality and yields by mimicking HSV-induced biological outcomes.
Collapse
Affiliation(s)
- Prasad D Trivedi
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Chenghui Yu
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Payel Chaudhuri
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Evan J Johnson
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Tina Caton
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Laura Adamson
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Barry J Byrne
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Nicole K Paulk
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nathalie Clément
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
9
|
Matsuzaka Y, Hirai Y, Hashido K, Okada T. Therapeutic Application of Extracellular Vesicles-Capsulated Adeno-Associated Virus Vector via nSMase2/Smpd3, Satellite, and Immune Cells in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:1551. [PMID: 35163475 PMCID: PMC8836108 DOI: 10.3390/ijms23031551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations in the dystrophin gene on chromosome Xp21. Disruption of the dystrophin-glycoprotein complex (DGC) on the cell membrane causes cytosolic Ca2+ influx, resulting in protease activation, mitochondrial dysfunction, and progressive myofiber degeneration, leading to muscle wasting and fragility. In addition to the function of dystrophin in the structural integrity of myofibers, a novel function of asymmetric cell division in muscular stem cells (satellite cells) has been reported. Therefore, it has been suggested that myofiber instability may not be the only cause of dystrophic degeneration, but rather that the phenotype might be caused by multiple factors, including stem cell and myofiber functions. Furthermore, it has been focused functional regulation of satellite cells by intracellular communication of extracellular vesicles (EVs) in DMD pathology. Recently, a novel molecular mechanism of DMD pathogenesis-circulating RNA molecules-has been revealed through the study of target pathways modulated by the Neutral sphingomyelinase2/Neutral sphingomyelinase3 (nSMase2/Smpd3) protein. In addition, adeno-associated virus (AAV) has been clinically applied for DMD therapy owing to the safety and long-term expression of transduction genes. Furthermore, the EV-capsulated AAV vector (EV-AAV) has been shown to be a useful tool for the intervention of DMD, because of the high efficacy of the transgene and avoidance of neutralizing antibodies. Thus, we review application of AAV and EV-AAV vectors for DMD as novel therapeutic strategy.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Yukihiko Hirai
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| | - Kazuo Hashido
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| |
Collapse
|
10
|
Hakim CH, Kumar SRP, Pérez-López DO, Wasala NB, Zhang D, Yue Y, Teixeira J, Pan X, Zhang K, Million ED, Nelson CE, Metzger S, Han J, Louderman JA, Schmidt F, Feng F, Grimm D, Smith BF, Yao G, Yang NN, Gersbach CA, Chen SJ, Herzog RW, Duan D. Cas9-specific immune responses compromise local and systemic AAV CRISPR therapy in multiple dystrophic canine models. Nat Commun 2021; 12:6769. [PMID: 34819506 PMCID: PMC8613397 DOI: 10.1038/s41467-021-26830-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/21/2021] [Indexed: 11/12/2022] Open
Abstract
Adeno-associated virus (AAV)-mediated CRISPR-Cas9 editing holds promise to treat many diseases. The immune response to bacterial-derived Cas9 has been speculated as a hurdle for AAV-CRISPR therapy. However, immunological consequences of AAV-mediated Cas9 expression have thus far not been thoroughly investigated in large mammals. We evaluate Cas9-specific immune responses in canine models of Duchenne muscular dystrophy (DMD) following intramuscular and intravenous AAV-CRISPR therapy. Treatment results initially in robust dystrophin restoration in affected dogs but also induces muscle inflammation, and Cas9-specific humoral and cytotoxic T-lymphocyte (CTL) responses that are not prevented by the muscle-specific promoter and transient prednisolone immune suppression. In normal dogs, AAV-mediated Cas9 expression induces similar, though milder, immune responses. In contrast, other therapeutic (micro-dystrophin and SERCA2a) and reporter (alkaline phosphatase, AP) vectors result in persistent expression without inducing muscle inflammation. Our results suggest Cas9 immunity may represent a critical barrier for AAV-CRISPR therapy in large mammals.
Collapse
Affiliation(s)
- Chady H Hakim
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, USA
- National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Sandeep R P Kumar
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Dennis O Pérez-López
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, USA
| | - Nalinda B Wasala
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, USA
| | - Dong Zhang
- Department of Physics, The University of Missouri, Columbia, MO, USA
- Department of Biochemistry, The University of Missouri, Columbia, MO, USA
- Institute for Data Science and Informatics, The University of Missouri, Columbia, MO, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, USA
| | - James Teixeira
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, USA
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, USA
| | - Keqing Zhang
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, USA
| | - Emily D Million
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, USA
| | - Christopher E Nelson
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies Biology, Duke University, Durham, NC, USA
| | - Samantha Metzger
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, USA
| | - Jin Han
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, USA
| | - Jacqueline A Louderman
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, USA
| | - Florian Schmidt
- Department of Infectious Diseases/Virology, University of Heidelberg, Heidelberg, Germany
- Cluster of Excellence CellNetworks, University of Heidelberg, Heidelberg, Germany
- BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Feng Feng
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, USA
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, University of Heidelberg, Heidelberg, Germany
- Cluster of Excellence CellNetworks, University of Heidelberg, Heidelberg, Germany
- BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Bruce F Smith
- Department of Pathobiology, Auburn University, Auburn, AL, USA
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, USA
| | - Gang Yao
- Department of Biomedical, Biological & Chemical Engineering, The University of Missouri, Columbia, MO, USA
| | - N Nora Yang
- National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies Biology, Duke University, Durham, NC, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Shi-Jie Chen
- Department of Physics, The University of Missouri, Columbia, MO, USA
- Department of Biochemistry, The University of Missouri, Columbia, MO, USA
- Institute for Data Science and Informatics, The University of Missouri, Columbia, MO, USA
| | - Roland W Herzog
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, USA.
- Department of Biomedical, Biological & Chemical Engineering, The University of Missouri, Columbia, MO, USA.
- Department of Neurology, The University of Missouri, Columbia, MO, USA.
- Department of Biomedical Sciences, The University of Missouri, Columbia, MO, USA.
| |
Collapse
|
11
|
Chiu W, Hsun YH, Chang KJ, Yarmishyn AA, Hsiao YJ, Chien Y, Chien CS, Ma C, Yang YP, Tsai PH, Chiou SH, Lin TY, Cheng HM. Current Genetic Survey and Potential Gene-Targeting Therapeutics for Neuromuscular Diseases. Int J Mol Sci 2020; 21:E9589. [PMID: 33339321 PMCID: PMC7767109 DOI: 10.3390/ijms21249589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Neuromuscular diseases (NMDs) belong to a class of functional impairments that cause dysfunctions of the motor neuron-muscle functional axis components. Inherited monogenic neuromuscular disorders encompass both muscular dystrophies and motor neuron diseases. Understanding of their causative genetic defects and pathological genetic mechanisms has led to the unprecedented clinical translation of genetic therapies. Challenged by a broad range of gene defect types, researchers have developed different approaches to tackle mutations by hijacking the cellular gene expression machinery to minimize the mutational damage and produce the functional target proteins. Such manipulations may be directed to any point of the gene expression axis, such as classical gene augmentation, modulating premature termination codon ribosomal bypass, splicing modification of pre-mRNA, etc. With the soar of the CRISPR-based gene editing systems, researchers now gravitate toward genome surgery in tackling NMDs by directly correcting the mutational defects at the genome level and expanding the scope of targetable NMDs. In this article, we will review the current development of gene therapy and focus on NMDs that are available in published reports, including Duchenne Muscular Dystrophy (DMD), Becker muscular dystrophy (BMD), X-linked myotubular myopathy (XLMTM), Spinal Muscular Atrophy (SMA), and Limb-girdle muscular dystrophy Type 2C (LGMD2C).
Collapse
Affiliation(s)
- Wei Chiu
- Department of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (W.C.); (K.-J.C.); (Y.-J.H.); (Y.C.); (Y.-P.Y.); (S.-H.C.)
| | - Ya-Hsin Hsun
- Department of Psychology, University of Toronto, Toronto, ON M1C 1A4, Canada;
- Department of Biological Science, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Kao-Jung Chang
- Department of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (W.C.); (K.-J.C.); (Y.-J.H.); (Y.C.); (Y.-P.Y.); (S.-H.C.)
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Aliaksandr A. Yarmishyn
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (A.A.Y.); (P.-H.T.)
| | - Yu-Jer Hsiao
- Department of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (W.C.); (K.-J.C.); (Y.-J.H.); (Y.C.); (Y.-P.Y.); (S.-H.C.)
| | - Yueh Chien
- Department of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (W.C.); (K.-J.C.); (Y.-J.H.); (Y.C.); (Y.-P.Y.); (S.-H.C.)
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (A.A.Y.); (P.-H.T.)
| | - Chian-Shiu Chien
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112201, Taiwan;
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chun Ma
- Department of Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Yi-Ping Yang
- Department of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (W.C.); (K.-J.C.); (Y.-J.H.); (Y.C.); (Y.-P.Y.); (S.-H.C.)
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (A.A.Y.); (P.-H.T.)
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 11221, Taiwan
| | - Ping-Hsing Tsai
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (A.A.Y.); (P.-H.T.)
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Shih-Hwa Chiou
- Department of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (W.C.); (K.-J.C.); (Y.-J.H.); (Y.C.); (Y.-P.Y.); (S.-H.C.)
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112201, Taiwan;
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 11221, Taiwan
- Genomic Research Center, Academia Sinica, Taipei 11529, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao-Tung University, Hsinchu 1001, Taiwan
| | - Ting-Yi Lin
- Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hao-Min Cheng
- Department of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (W.C.); (K.-J.C.); (Y.-J.H.); (Y.C.); (Y.-P.Y.); (S.-H.C.)
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112201, Taiwan;
- Center for Evidence-based Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| |
Collapse
|
12
|
Buscara L, Gross DA, Daniele N. Of rAAV and Men: From Genetic Neuromuscular Disorder Efficacy and Toxicity Preclinical Studies to Clinical Trials and Back. J Pers Med 2020; 10:E258. [PMID: 33260623 PMCID: PMC7768510 DOI: 10.3390/jpm10040258] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Neuromuscular disorders are a large group of rare pathologies characterised by skeletal muscle atrophy and weakness, with the common involvement of respiratory and/or cardiac muscles. These diseases lead to life-long motor deficiencies and specific organ failures, and are, in their worst-case scenarios, life threatening. Amongst other causes, they can be genetically inherited through mutations in more than 500 different genes. In the last 20 years, specific pharmacological treatments have been approved for human usage. However, these "à-la-carte" therapies cover only a very small portion of the clinical needs and are often partially efficient in alleviating the symptoms of the disease, even less so in curing it. Recombinant adeno-associated virus vector-mediated gene transfer is a more general strategy that could be adapted for a large majority of these diseases and has proved very efficient in rescuing the symptoms in many neuropathological animal models. On this solid ground, several clinical trials are currently being conducted with the whole-body delivery of the therapeutic vectors. This review recapitulates the state-of-the-art tools for neuron and muscle-targeted gene therapy, and summarises the main findings of the spinal muscular atrophy (SMA), Duchenne muscular dystrophy (DMD) and X-linked myotubular myopathy (XLMTM) trials. Despite promising efficacy results, serious adverse events of various severities were observed in these trials. Possible leads for second-generation products are also discussed.
Collapse
Affiliation(s)
| | - David-Alexandre Gross
- Genethon, 91000 Evry, France; (L.B.); (D.-A.G.)
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | | |
Collapse
|