1
|
Park S, Shin S, Han G, Lee GM. Knockout of Pro-Apoptotic BAX and BAK1 Genes in HEK293T Cells Enhances Adeno-Associated Virus (AAV) Production: AAV2 and AAV9. Biotechnol J 2025; 20:e202400529. [PMID: 39865382 DOI: 10.1002/biot.202400529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
Increasing demand for adeno-associated virus (AAV) used in gene therapy highlights the need to enhance AAV production. When intracellular AAV2 and extracellular AAV9 were produced in HEK293T cells using the triple transfection method, apoptosis occurred during the AAV production. To mitigate apoptosis induced by AAV production, the pro-apoptotic BAX/BAK1 genes were knocked out in HEK293T cells. BAX/BAK1 knockout (BBKO) in HEK293T cells significantly increased the production of both AAV2 and AAV9. For AAV2, BBKO increased the genome titer of AAV2 by 55% without negatively affecting the proportion of unwanted empty capsids generated during AAV production. Empty capsid ratios were determined based on viral genome and capsid titers and confirmed via transmission electron microscopy (TEM). Likewise, for AAV9, BBKO increased the genome titer of AAV9 by 66% without negatively affecting the proportion of empty capsids. Additionally, as assessed using a transduction assay, BBKO increased the functional titers of AAV2 and AAV9 by 30% and 46%, respectively. Therefore, BBKO increased AAV production, while maintaining full capsid ratio and infectivity. Taken together, BBKO proved to be an efficient method for enhancing AAV production in HEK293T cells for both AAV2 and AAV9.
Collapse
Affiliation(s)
- Sungje Park
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Seunghyeon Shin
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Gyucheol Han
- Graduate School of Engineering Biology, KAIST, Daejeon, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
- Graduate School of Engineering Biology, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Gurazada SGR, Kennedy HM, Braatz RD, Mehrman SJ, Polson SW, Rombel IT. HEK-omics: The promise of omics to optimize HEK293 for recombinant adeno-associated virus (rAAV) gene therapy manufacturing. Biotechnol Adv 2024:108506. [PMID: 39708987 DOI: 10.1016/j.biotechadv.2024.108506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/14/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Gene therapy is poised to transition from niche to mainstream medicine, with recombinant adeno-associated virus (rAAV) as the vector of choice. However, robust, scalable, industrialized production is required to meet demand and provide affordable patient access, which has not yet materialized. Closing the chasm between demand and supply requires innovation in biomanufacturing to achieve the essential step change in rAAV product yield and quality. Omics provides a rich source of mechanistic knowledge that can be applied to HEK293, the most commonly used cell line for rAAV production. In this review, the findings from a growing number of diverse studies that apply genomics, epigenomics, transcriptomics, proteomics, and metabolomics to HEK293 bioproduction are explored. Learnings from CHO-Omics, application of omics approaches to improve CHO bioproduction, provide a framework to explore the potential of "HEK-Omics" as a multi-omics-informed approach providing actionable mechanistic insights for improved transient and stable production of rAAV and other recombinant products in HEK293.
Collapse
Affiliation(s)
- Sai Guna Ranjan Gurazada
- Center for Bioinformatics and Computational Biology, Department of Computer and Information Sciences, University of Delaware, Newark, DE, United States
| | | | - Richard D Braatz
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Steven J Mehrman
- Janssen Research & Development, Janssen Pharmaceuticals, Johnson & Johnston, Malvern, PA, United States
| | - Shawn W Polson
- Center for Bioinformatics and Computational Biology, Department of Computer and Information Sciences, University of Delaware, Newark, DE, United States.
| | | |
Collapse
|
3
|
Tworig J, Grafton F, Fisher K, Hörer M, Reid CA, Mandegar MA. Transcriptomics-informed pharmacology identifies epigenetic and cell cycle regulators that enhance AAV production. Mol Ther Methods Clin Dev 2024; 32:101384. [PMID: 39687728 PMCID: PMC11647610 DOI: 10.1016/j.omtm.2024.101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
Recombinant adeno-associated virus (rAAV) is a widely used viral vector for gene therapy. However, these vectors have limited availability due to manufacturing challenges with productivity and quality. These challenges can be addressed by better understanding the mechanisms that influence cellular responses during rAAV production. In this study, we aimed to identify targets that may enhance rAAV production using transcriptomic analyses of five cell lines with variable capacities for rAAV production. Using an intersectional approach, we measured the transcriptional responses of these cells during rAAV production and compared transcriptional profiles between high and base producers to identify possible targets for enhancing production. During rAAV production, we found transcriptional differences in cell cycle and nucleosome components contributed to proliferative capacity and DNA replication. We also saw upregulation of several core functions, including transcription, stress response, and Golgi and endoplasmic reticulum organization. Conversely, we saw consistent downregulation of other factors, including inhibitors of DNA-binding proteins and mitochondrial components. With a drug-connectivity analysis, we identified five classes of drugs that were predicted to enhance rAAV production. We also validated the efficacy of histone deacetylase and microtubule inhibitors. Our data uncover novel and previously identified pathways that may enhance rAAV production and quality to expand availability of rAAV for gene therapies.
Collapse
Affiliation(s)
- Joshua Tworig
- Ascend Advanced Therapies CA, Inc, Alameda, CA 94501, USA
| | | | - Kaylin Fisher
- Ascend Advanced Therapies CA, Inc, Alameda, CA 94501, USA
| | - Markus Hörer
- Ascend Advanced Therapies GmbH, 82152 Planegg, Germany
| | | | | |
Collapse
|
4
|
Pistek M, Andorfer P, Grabherr R, Kraus B, Hernandez Bort JA. Factors affecting rAAV titers during triple-plasmid transient transfection in HEK-293 cells. Biotechnol Lett 2024; 46:945-959. [PMID: 39259435 PMCID: PMC11550245 DOI: 10.1007/s10529-024-03520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/24/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024]
Abstract
The efficiency of triple-plasmid transfection in recombinant Adeno-Associated Virus (rAAV) production was analyzed by examining two distinct HEK-293 cells lines. These were categorized as high producer (HP) and low producer (LP) based on their differing levels of productivity under identical conditions. Analysis of RNA expression levels of viral genes revealed disparities in plasmid derived gene expression between the cell lines. Further assessment of transfection efficiency utilizing labeled plasmids revealed lower plasmid uptake and less efficient nuclear transport in LP cell line. Additionally, we observed inferior translation activity in LP, contributing to its shortcomings in overall productivity. In our attempt to optimize plasmid ratios to enhance fully packaged rAAV particle yield, we discovered cell-line-specific optimization potential. The findings highlight the transfection's complexity, urging tailored strategies for improved rAAV production based on each cell line's characteristics, enhancing understanding and guiding further efficiency optimization in rAAV production.
Collapse
Affiliation(s)
- Martina Pistek
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Uferstraße 15, 2304, Orth an der Donau, Austria
| | - Peter Andorfer
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Uferstraße 15, 2304, Orth an der Donau, Austria
| | - Reingard Grabherr
- Biotechnology Department, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Barbara Kraus
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Uferstraße 15, 2304, Orth an der Donau, Austria
| | - Juan A Hernandez Bort
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Uferstraße 15, 2304, Orth an der Donau, Austria.
- Department of Analytical Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria.
| |
Collapse
|
5
|
Luo S, Jiang H, Li Q, Yang S, Yu X, Xu X, Xie Q, Ke X, Zheng Q. The Intra-Articular Delivery of a Low-Dose Adeno-Associated Virus-IL-1 Receptor Antagonist Vector Alleviates the Progress of Arthritis in an Osteoarthritis Rat Model. Pharmaceutics 2024; 16:1518. [PMID: 39771498 PMCID: PMC11728506 DOI: 10.3390/pharmaceutics16121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Interleukin-1 (IL-1) is a pivotal mediator in the pathological progression of osteoarthritis (OA), playing a central role in disease progression. However, the rapid clearance of IL-1 receptor antagonist (IL-1Ra) from the joints may hinder the efficacy of intra-articular IL-1Ra injections in reducing OA-associated pain or cartilage degradation. Methods: Sustaining sufficient levels of IL-1Ra within the joints via adeno-associated virus (AAV)-mediated gene therapy presents a promising therapeutic strategy for OA. In this study, we constructed an IL-1Ra expression cassette employing intron insertion in the coding sequence (CDS) region to enhance protein expression levels. Furthermore, we incorporated precisely targeted liver-specific microRNA (miRNA) sequences to specifically downregulate transgene expression within hepatic tissues, thereby ensuring more targeted and controlled regulation of gene expression. Results: A rat model of OA was employed to compare the efficacy of AAV5 and AAV9 for IL-1Ra delivery at both high and low doses. It was observed that low-dose, but not high-dose, AAV9-IL-1Ra resulted in a significant reduction in joint swelling, accompanied by a decrease in the diameter of the affected area and the preservation of biomarkers associated with trabecular bone integrity. Conclusions: These results highlight the great potential of AAV9-IL-1Ra in osteoarthritis therapy, with the promise of achieving long-term improvement through a single intra-articular injection.
Collapse
Affiliation(s)
- Shuang Luo
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
- Therapeutic Proteins Key Laboratory of Sichuan Province, Chengdu 610037, China
| | - Hao Jiang
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
- Therapeutic Proteins Key Laboratory of Sichuan Province, Chengdu 610037, China
| | - Qingwei Li
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
- Therapeutic Proteins Key Laboratory of Sichuan Province, Chengdu 610037, China
| | - Shiping Yang
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
| | - Xuemei Yu
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
| | - Xiongliang Xu
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
| | - Qing Xie
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
- Therapeutic Proteins Key Laboratory of Sichuan Province, Chengdu 610037, China
| | - Xiao Ke
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
- Therapeutic Proteins Key Laboratory of Sichuan Province, Chengdu 610037, China
- Chengdu Kanghong Pharmaceuticals Group Co., Ltd., Chengdu 610037, China
| | - Qiang Zheng
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
- Therapeutic Proteins Key Laboratory of Sichuan Province, Chengdu 610037, China
- Chengdu Kanghong Pharmaceuticals Group Co., Ltd., Chengdu 610037, China
| |
Collapse
|
6
|
Destro F, Wu W, Srinivasan P, Joseph J, Bal V, Neufeld C, Wolfrum JM, Manalis SR, Sinskey AJ, Springs SL, Barone PW, Braatz RD. The state of technological advancement to address challenges in the manufacture of rAAV gene therapies. Biotechnol Adv 2024; 76:108433. [PMID: 39168354 DOI: 10.1016/j.biotechadv.2024.108433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/04/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Current processes for the production of recombinant adeno-associated virus (rAAV) are inadequate to meet the surging demand for rAAV-based gene therapies. This article reviews recent advances that hold the potential to address current limitations in rAAV manufacturing. A multidisciplinary perspective on technological progress in rAAV production is presented, underscoring the necessity to move beyond incremental refinements and adopt a holistic strategy to address existing challenges. Since several recent reviews have thoroughly covered advancements in upstream technology, this article provides only a concise overview of these developments before moving to pivotal areas of rAAV manufacturing not well covered in other reviews, including analytical technologies for rapid and high-throughput measurement of rAAV quality attributes, mathematical modeling for platform and process optimization, and downstream approaches to maximize efficiency and rAAV yield. Novel technologies that have the potential to address the current gaps in rAAV manufacturing are highlighted. Implementation challenges and future research directions are critically discussed.
Collapse
Affiliation(s)
- Francesco Destro
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Weida Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Prasanna Srinivasan
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John Joseph
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vivekananda Bal
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caleb Neufeld
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacqueline M Wolfrum
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anthony J Sinskey
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stacy L Springs
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Paul W Barone
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Howe G, Bal M, Wasmuth M, Massaro G, Rahim AA, Ali S, Rivera M, Schofield DM, Omotosho A, Ward J, Keshavarz-Moore E, Mason C, Nesbeth DN. An autonucleolytic suspension HEK293F host cell line for high-titer serum-free AAV5 and AAV9 production with reduced levels of DNA impurity. Mol Ther Methods Clin Dev 2024; 32:101317. [PMID: 39257529 PMCID: PMC11385518 DOI: 10.1016/j.omtm.2024.101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/07/2024] [Indexed: 09/12/2024]
Abstract
We sought to engineer mammalian cells to secrete nuclease activity as a step toward removing the need to purchase commercial nucleases as process additions in bioprocessing of AAV5 and AAV9 as gene therapy vectors. Engineering HeLa cells with a serratial nuclease transgene did not bring about nuclease activity in surrounding media whereas engineering serum-free, suspension-adapted HEK293F cells with a staphylococcal nuclease transgene did result in detectable nuclease activity in surrounding media of the resultant stable transfectant cell line, "NuPro-1S." When cultivated in serum-free media, NuPro-1S cells yielded 3.06 × 1010 AAV5 viral genomes (vg)/mL via transient transfection, compared with 3.85 × 109 vg/mL from the parental HEK293F cell line. AAV9 production, followed by purification by ultracentrifugation, yielded 1.8 × 1013 vg/mL from NuPro-1S cells compared with 7.35 × 1012 vg/mL from HEK293F cells. AAV9 from both HEK293F and NuPro-1S showed almost identical ability to transduce cells embedded in a scaffold tissue mimic or cells of mouse neonate brain tissue in vivo. Comparison of agarose gel data indicated that the DNA content of AAV5 and AAV9 process streams from NuPro-1S cells was reduced by approximately 60% compared with HEK293F cells. A similar reduction in HEK293F cells was only achievable with a 50 U/mL Benzonase treatment.
Collapse
Affiliation(s)
- Geoffrey Howe
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Mehtap Bal
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Matt Wasmuth
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Giulia Massaro
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Sadfer Ali
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Milena Rivera
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Desmond M Schofield
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Aminat Omotosho
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - John Ward
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Eli Keshavarz-Moore
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Chris Mason
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Darren N Nesbeth
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| |
Collapse
|
8
|
Huo S, Nie S, Cong Y, Wang S, Li N. In-Depth Host Cell Protein Analysis and Viral Protein Impurity Monitoring in Adeno-Associated Virus-Based Gene Therapy Products Using Optimized Wide Window Data-Dependent Acquisition Method. Anal Chem 2024. [PMID: 39263887 DOI: 10.1021/acs.analchem.4c02400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Compared to other protein therapeutics, there is currently limited knowledge about the residual host cell proteins (HCPs) in adeno-associated virus (AAV)-based gene therapy products. This is primarily due to the lack of a robust and sensitive mass spectrometry-based method for HCP analysis in AAV samples. Existing liquid chromatography-mass spectrometry methods used for analyzing HCPs in therapeutic monoclonal antibodies (mAbs) often cannot be directly applied to AAVs, due to some unique characteristics of AAV samples encountered during their development such as limited sample availability/protein concentration and the presence of surfactants. In this study, we have developed a novel workflow for robust and in-depth HCP analysis of AAV samples by combining wide-window data-dependent acquisition for improved low-abundance HCP detection with single-pot, solid-phase-enhanced sample preparation (SP3) for low-input sample preparation. Using this newly developed method, we were able to detect more than 650 HCPs in a commercial AAV1 sample with a high quantitative reproducibility. This represents a greater than 5-fold increase in HCP protein identification compared to an in-solution digestion method followed by traditional data-dependent acquisition. Similar benefits can also be achieved for other AAV serotypes that were produced internally and purified through different processes. The detection limit of this method is as low as 0.06 ng/mL, enabling more comprehensive HCP coverage in AAV samples. Moreover, for the first time, we have identified several process-related viral proteins, such as Rep 78 and E4. These proteins need to be closely monitored during AAV process development as they may present a greater risk for immunogenicity compared to HCPs that are derived from human HEK293 cells.
Collapse
Affiliation(s)
- Shihan Huo
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Song Nie
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Yongzheng Cong
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Shunhai Wang
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Ning Li
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| |
Collapse
|
9
|
Patra AT, Tan E, Kok YJ, Ng SK, Bi X. Temporal insights into molecular and cellular responses during rAAV production in HEK293T cells. Mol Ther Methods Clin Dev 2024; 32:101278. [PMID: 39022743 PMCID: PMC11253160 DOI: 10.1016/j.omtm.2024.101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/04/2024] [Indexed: 07/20/2024]
Abstract
The gene therapy field seeks cost-effective, large-scale production of recombinant adeno-associated virus (rAAV) vectors for high-dosage therapeutic applications. Although strategies like suspension cell culture and transfection optimization have shown moderate success, challenges persist for large-scale applications. To unravel molecular and cellular mechanisms influencing rAAV production, we conducted an SWATH-MS proteomic analysis of HEK293T cells transfected using standard, sub-optimal, and optimal conditions. Gene Ontology and pathway analysis revealed significant protein expression variations, particularly in processes related to cellular homeostasis, metabolic regulation, vesicular transport, ribosomal biogenesis, and cellular proliferation under optimal transfection conditions. This resulted in a 50% increase in rAAV titer compared with the standard protocol. Additionally, we identified modifications in host cell proteins crucial for AAV mRNA stability and gene translation, particularly regarding AAV capsid transcripts under optimal transfection conditions. Our study identified 124 host proteins associated with AAV replication and assembly, each exhibiting distinct expression pattern throughout rAAV production stages in optimal transfection condition. This investigation sheds light on the cellular mechanisms involved in rAAV production in HEK293T cells and proposes promising avenues for further enhancing rAAV titer during production.
Collapse
Affiliation(s)
- Alok Tanala Patra
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A∗STAR), Singapore 138668, Singapore
| | - Evan Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A∗STAR), Singapore 138668, Singapore
| | - Yee Jiun Kok
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A∗STAR), Singapore 138668, Singapore
| | - Say Kong Ng
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A∗STAR), Singapore 138668, Singapore
| | - Xuezhi Bi
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A∗STAR), Singapore 138668, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
| |
Collapse
|
10
|
Coll De Peña A, Gutterman-Johns E, Gautam GP, Rutberg J, Frej MB, Mehta DR, Shah S, Tripathi A. Assessment of pDNA isoforms using microfluidic electrophoresis. Electrophoresis 2024; 45:1525-1534. [PMID: 38571381 DOI: 10.1002/elps.202300293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024]
Abstract
The recent rise in nucleic acid-based vaccines and therapies has resulted in an increased demand for plasmid DNA (pDNA). As a result, there is added pressure to streamline the manufacturing of these vectors, particularly their design and construction, which is currently considered a bottleneck. A significant challenge in optimizing pDNA production is the lack of high-throughput and rapid analytical methods to support the numerous samples produced during the iterative plasmid construction step and for batch-to-batch purity monitoring. pDNA is generally present as one of three isoforms: supercoiled, linear, or open circular. Depending on the ultimate use, the desired isoform may be supercoiled in the initial stages for cell transfection or linear in the case of mRNA synthesis. Here, we present a high-throughput microfluidic electrophoresis method capable of detecting the three pDNA isoforms and determining the size and concentration of the predominant supercoiled and linear isoforms from 2 to 7 kb. The limit of detection of the method is 0.1 ng/µL for the supercoiled and linear isoforms and 0.5 ng/µL for the open circular isoform, with a maximum loading capacity of 10-15 ng/µL. The turnaround time is 1 min/sample, and the volume requirement is 10 µL, making the method suitable for process optimization and batch-to-batch analysis. The results presented in this study will enhance the understanding of electrophoretic transport in microscale systems dependent on molecular conformations and potentially aid technological advances in diverse areas relevant to microfluidic devices.
Collapse
Affiliation(s)
- Adriana Coll De Peña
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Everett Gutterman-Johns
- Department of Molecular Biology, Cell Biology, and Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| | | | - Jenna Rutberg
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Menel Ben Frej
- Applied Genomics, Revvity, Hopkinton, Massachusetts, USA
| | - Dipti R Mehta
- Applied Genomics, Revvity, Hopkinton, Massachusetts, USA
| | - Shreyas Shah
- Applied Genomics, Revvity, Hopkinton, Massachusetts, USA
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
11
|
Matsuzaka Y, Yashiro R. Therapeutic Application and Structural Features of Adeno-Associated Virus Vector. Curr Issues Mol Biol 2024; 46:8464-8498. [PMID: 39194716 DOI: 10.3390/cimb46080499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Adeno-associated virus (AAV) is characterized by non-pathogenicity, long-term infection, and broad tropism and is actively developed as a vector virus for gene therapy products. AAV is classified into more than 100 serotypes based on differences in the amino acid sequence of the capsid protein. Endocytosis involves the uptake of viral particles by AAV and accessory receptors during AAV infection. After entry into the cell, they are transported to the nucleus through the nuclear pore complex. AAVs mainly use proteoglycans as receptors to enter cells, but the types of sugar chains in proteoglycans that have binding ability are different. Therefore, it is necessary to properly evaluate the primary structure of receptor proteins, such as amino acid sequences and post-translational modifications, including glycosylation, and the higher-order structure of proteins, such as the folding of the entire capsid structure and the three-dimensional (3D) structure of functional domains, to ensure the efficacy and safety of biopharmaceuticals. To further enhance safety, it is necessary to further improve the efficiency of gene transfer into target cells, reduce the amount of vector administered, and prevent infection of non-target cells.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
12
|
Kurt E, Devlin G, Asokan A, Segura T. Gene Delivery From Granular Scaffolds for Tunable Biologics Manufacturing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309911. [PMID: 38462954 PMCID: PMC11294003 DOI: 10.1002/smll.202309911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/27/2024] [Indexed: 03/12/2024]
Abstract
The understanding of the molecular basis for disease has generated a myriad of therapeutic biologics, including therapeutic proteins, antibodies, and viruses. However, the promise that biologics can resolve currently incurable diseases hinges in their manufacturability. These therapeutics require that their genetic material be introduced to mammalian cells such that the cell machinery can manufacture the biological components. These are then purified, validated, and packaged. Most manufacturing uses batch processes that collect the biologic a few days following genetic modification, due to toxicity or difficulty in separating product from cells in a continuous operation, limiting the amount of biologic that can be produced and resulting in yearlong backlogs. Here, a scaffold-based approach for continuous biologic manufacturing is presented, with sustained production of active antibodies and viruses for 30 days. The use of scaffold-based biologic production enabled perfusion-based bioreactors to be used, which can be incorporated into a fully continuous process.
Collapse
Affiliation(s)
- Evan Kurt
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - Garth Devlin
- Department of Biomedical Engineering, Duke University, Durham, NC
- Departments of Surgery and Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC
| | - Aravind Asokan
- Department of Biomedical Engineering, Duke University, Durham, NC
- Departments of Surgery and Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, NC
- Departments Neurology and Dermatology, Duke University, Durham, NC
| |
Collapse
|
13
|
Suk Lee Y, Lee J, Fang K, Gee GV, Rogers B, McNally D, Yoon S. Separation of full, empty, and partial adeno-associated virus capsids via anion-exchange chromatography with continuous recycling and accumulation. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1242:124206. [PMID: 38908134 DOI: 10.1016/j.jchromb.2024.124206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
The field of recombinant adeno-associated virus (rAAV) gene therapy has attracted increasing attention over decades. Within the ongoing challenges of rAAV manufacturing, the co-production of impurities, such as empty and partial capsids containing no or truncated transgenes, poses a significant challenge. Due to their potential impact on drug efficacy and clinical safety, it is imperative to conduct comprehensive monitoring and characterization of these impurities prior to the release of the final gene therapy product. Nevertheless, existing analytical techniques encounter notable limitations, encompassing low throughput, long turnaround times, high sample consumption, and/or complicated data analysis. Chromatography-based analytical methods are recognized for their current Good Manufacturing Practice (cGMP) alignment, high repeatability, reproducibility, low limit of detection, and rapid turnaround times. Despite these advantages, current anion exchange high pressure liquid chromatography (AEX-HPLC) methods struggle with baseline separation of partial capsids from full and empty capsids, resulting in inaccurate full-to-empty capsid ratio, as partial capsids are obscured within peaks corresponding to empty and full capsids. In this study, we present a unique analytical AEX method designed to characterize not only empty and full capsids but also partial capsids. This method utilizes continuous N-Rich chromatography with recycling between two identical AEX columns for the accumulation and isolation of partial capsids. The development process is comprehensively discussed, covering the preparation of reference materials representing full (rAAV-LacZ), partial (rAAV-GFP), and empty (rAAV-empty) capsids, N-rich method development, fraction analysis, determination of fluorescence response factors between capsid variants, and validation through comparison with other comparative techniques.
Collapse
Affiliation(s)
- Yong Suk Lee
- Department of Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Jaeweon Lee
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Kun Fang
- MassBiologics, University of Massachusetts Chan Medical School, Mattapan, MA 02126, USA
| | - Gretchen V Gee
- MassBiologics, University of Massachusetts Chan Medical School, Mattapan, MA 02126, USA
| | - Benjamin Rogers
- MassBiologics, University of Massachusetts Chan Medical School, Mattapan, MA 02126, USA
| | - David McNally
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA; MassBiologics, University of Massachusetts Chan Medical School, Mattapan, MA 02126, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| |
Collapse
|
14
|
Xue W, Fulco C, Sha S, Alden N, Panteli J, Hossler P, Warren J. Adeno-associated virus perfusion enhanced expression: A commercially scalable, high titer, high quality producer cell line process. Mol Ther Methods Clin Dev 2024; 32:101266. [PMID: 38868441 PMCID: PMC11166877 DOI: 10.1016/j.omtm.2024.101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/10/2024] [Indexed: 06/14/2024]
Abstract
With safety and efficacy demonstrated over hundreds of clinical trials in the last 30 years, along with at least six recent global marketing authorizations achieved since 2017, recombinant adeno-associated viruses (rAAVs) have been established as the leading therapeutic gene transfer vector for rare, monogenic diseases. Significant advances in manufacturing technology have been made in the last few decades to address challenges with GMP production of rAAV products, although yield, cost, scalability, and quality remain a challenge. With transient transfection processes established as a manufacturing platform for multiple commercial AAV products, there remains significant yield, cost, robustness, and scalability constraints that need to be resolved to enable a reliable supply of rAAV products for global patient access. The development of stable producer cell lines for rAAV products has enabled scalability and, in some cases, improvements in productivity. Herein we describe a novel AAV perfusion-enhanced expression (APEX) process, resulting in higher maximum cell densities in the production bioreactor with a 3- to 6-fold increase in volumetric productivity. This process has been successfully demonstrated across multiple serotypes in large scale cell culture with titers approaching 1 × 1012 GC/mL. The APEX production platform marks a significant leap forward in the efficient and effective manufacturing of rAAV vector products.
Collapse
Affiliation(s)
- Wei Xue
- Ultragenyx Pharmaceutical Inc., Global CMC Development, 19 Presidential Way, Woburn, MA 01801, USA
| | - Cameron Fulco
- Ultragenyx Pharmaceutical Inc., Global CMC Development, 19 Presidential Way, Woburn, MA 01801, USA
| | - Sha Sha
- Ultragenyx Pharmaceutical Inc., Global CMC Development, 19 Presidential Way, Woburn, MA 01801, USA
| | - Nick Alden
- Ultragenyx Pharmaceutical Inc., Global CMC Development, 19 Presidential Way, Woburn, MA 01801, USA
| | - Jan Panteli
- Ultragenyx Pharmaceutical Inc., Global CMC Development, 19 Presidential Way, Woburn, MA 01801, USA
| | - Patrick Hossler
- Ultragenyx Pharmaceutical Inc., Global CMC Development, 19 Presidential Way, Woburn, MA 01801, USA
| | - James Warren
- Ultragenyx Pharmaceutical Inc., Global CMC Development, 19 Presidential Way, Woburn, MA 01801, USA
| |
Collapse
|
15
|
Luo S, Jiang H, Li Q, Qin Y, Yang S, Li J, Xu L, Gou Y, Zhang Y, Liu F, Ke X, Zheng Q, Sun X. An adeno-associated virus variant enabling efficient ocular-directed gene delivery across species. Nat Commun 2024; 15:3780. [PMID: 38710714 DOI: 10.1038/s41467-024-48221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) have emerged as promising gene therapy vectors due to their proven efficacy and safety in clinical applications. In non-human primates (NHPs), rAAVs are administered via suprachoroidal injection at a higher dose. However, high doses of rAAVs tend to increase additional safety risks. Here, we present a novel AAV capsid (AAVv128), which exhibits significantly enhanced transduction efficiency for photoreceptors and retinal pigment epithelial (RPE) cells, along with a broader distribution across the layers of retinal tissues in different animal models (mice, rabbits, and NHPs) following intraocular injection. Notably, the suprachoroidal delivery of AAVv128-anti-VEGF vector completely suppresses the Grade IV lesions in a laser-induced choroidal neovascularization (CNV) NHP model for neovascular age-related macular degeneration (nAMD). Furthermore, cryo-EM analysis at 2.1 Å resolution reveals that the critical residues of AAVv128 exhibit a more robust advantage in AAV binding, the nuclear uptake and endosome escaping. Collectively, our findings highlight the potential of AAVv128 as a next generation ocular gene therapy vector, particularly using the suprachoroidal delivery route.
Collapse
Affiliation(s)
- Shuang Luo
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- Sichuan Provincial Key Laboratory of Innovative Biomedicine, Chengdu, 610036, China
| | - Hao Jiang
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
- Sichuan Provincial Key Laboratory of Innovative Biomedicine, Chengdu, 610036, China
| | - Qingwei Li
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
- Sichuan Provincial Key Laboratory of Innovative Biomedicine, Chengdu, 610036, China
| | - Yingfei Qin
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
| | - Shiping Yang
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
| | - Jing Li
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
| | - Lingli Xu
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
| | - Yan Gou
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
| | - Yafei Zhang
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China
| | - Fengjiang Liu
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, 510005, China
| | - Xiao Ke
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China.
- Chengdu Kanghong Pharmaceuticals Group Co Ltd, Chengdu, 610036, China.
| | - Qiang Zheng
- Chengdu Origen Biotechnology Co. Ltd, Chengdu, 610036, China.
- Sichuan Provincial Key Laboratory of Innovative Biomedicine, Chengdu, 610036, China.
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Ramos JRC, Pinto J, Poiares-Oliveira G, Peeters L, Dumas P, Oliveira R. Deep hybrid modeling of a HEK293 process: Combining long short-term memory networks with first principles equations. Biotechnol Bioeng 2024; 121:1554-1568. [PMID: 38343176 DOI: 10.1002/bit.28668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/22/2023] [Accepted: 01/22/2024] [Indexed: 04/14/2024]
Abstract
The combination of physical equations with deep learning is becoming a promising methodology for bioprocess digitalization. In this paper, we investigate for the first time the combination of long short-term memory (LSTM) networks with first principles equations in a hybrid workflow to describe human embryonic kidney 293 (HEK293) culture dynamics. Experimental data of 27 extracellular state variables in 20 fed-batch HEK293 cultures were collected in a parallel high throughput 250 mL cultivation system in an industrial process development setting. The adaptive moment estimation method with stochastic regularization and cross-validation were employed for deep learning. A total of 784 hybrid models with varying deep neural network architectures, depths, layers sizes and node activation functions were compared. In most scenarios, hybrid LSTM models outperformed classical hybrid Feedforward Neural Network (FFNN) models in terms of training and testing error. Hybrid LSTM models revealed to be less sensitive to data resampling than FFNN hybrid models. As disadvantages, Hybrid LSTM models are in general more complex (higher number of parameters) and have a higher computation cost than FFNN hybrid models. The hybrid model with the highest prediction accuracy consisted in a LSTM network with seven internal states connected in series with dynamic material balance equations. This hybrid model correctly predicted the dynamics of the 27 state variables (R2 = 0.93 in the test data set), including biomass, key substrates, amino acids and metabolic by-products for around 10 cultivation days.
Collapse
Affiliation(s)
- João R C Ramos
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - José Pinto
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Gil Poiares-Oliveira
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | | | | | - Rui Oliveira
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| |
Collapse
|
17
|
Claes E, Heck T, Coddens K, Sonnaert M, Schrooten J, Verwaeren J. Bayesian cell therapy process optimization. Biotechnol Bioeng 2024; 121:1569-1582. [PMID: 38372656 DOI: 10.1002/bit.28669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/17/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Optimizing complex bioprocesses poses a significant challenge in several fields, particularly in cell therapy manufacturing. The development of customized, closed, and automated processes is crucial for their industrial translation and for addressing large patient populations at a sustainable price. Limited understanding of the underlying biological mechanisms, coupled with highly resource-intensive experimentation, are two contributing factors that make the development of these next-generation processes challenging. Bayesian optimization (BO) is an iterative experimental design methodology that addresses these challenges, but has not been extensively tested in situations that require parallel experimentation with significant experimental variability. In this study, we present an evaluation of noisy, parallel BO for increasing noise levels and parallel batch sizes on two in silico bioprocesses, and compare it to the industry state-of-the-art. As an in vitro showcase, we apply the method to the optimization of a monocyte purification unit operation. The in silico results show that BO significantly outperforms the state-of-the-art, requiring approximately 50% fewer experiments on average. This study highlights the potential of noisy, parallel BO as valuable tool for cell therapy process development and optimization.
Collapse
Affiliation(s)
- Evan Claes
- Antleron, Leuven, Belgium
- Biovism, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | | | | | | | | | - Jan Verwaeren
- Biovism, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
18
|
Coplan L, Zhang Z, Ragone N, Reeves J, Rodriguez A, Shevade A, Bak H, Tustian AD. High-yield recombinant adeno-associated viral vector production by multivariate optimization of bioprocess and transfection conditions. Biotechnol Prog 2024; 40:e3445. [PMID: 38450973 DOI: 10.1002/btpr.3445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
Recombinant adeno-associated viral vectors (rAAVs) are one of the most used vehicles for gene therapy, with five rAAV therapeutics commercially approved by the FDA. To improve product yield, we optimized the suspension production process of rAAV8 vectors carrying a proprietary transgene using a commercially available transfection reagent, FectoVIR-AAV. Using a miniaturized automated 250 mL scale bioreactor system, we generated models of vector genome (vg) titer, capsid (cp) titer, and Vg:Cp percentage from two multivariate design of experiment studies, one centered around bioreactor operating parameters, and another based on the transfection conditions. Using the optimized process returned from these models, the vector genome titer from the bioreactor was improved to beyond 1 × 1012 vg/mL. Five critical parameters were identified that had large effects on the pre-purification vector quantity-the transfection pH, production pH, complexation time, viable cell density at transfection, and transfection reagent to DNA ratio. The optimized process was further assessed for its performance extending to six AAV serotypes, namely AAV1, AAV2, AAV5, AAV6, AAV8, and AAV9 carrying a transgene encoding for green fluorescent protein (GFP). Five of the six serotypes returned higher vector genome titers than the control condition. These data suggest that the choice of transfection reagent is a major factor in improving vector yield. The multivariate design of experiment approach is a powerful way to optimize production processes, and the optimized process from one AAV vector can to some extent be generalized to other serotypes and transgenes to accelerate development timelines of new programs.
Collapse
Affiliation(s)
- Louis Coplan
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | - Zhe Zhang
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Nicole Ragone
- Research Operations, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - John Reeves
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Audrey Rodriguez
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Aishwarya Shevade
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Hanne Bak
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Andrew D Tustian
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| |
Collapse
|
19
|
Hetzler Z, Marinakos SM, Lott N, Mohammad N, Lass-Napiorkowska A, Kolbe J, Turrentine L, Fields D, Overton L, Marie H, Hucknall A, Rammo O, George H, Wei Q. Adeno-associated virus genome quantification with amplification-free CRISPR-Cas12a. Gene Ther 2024; 31:304-313. [PMID: 38528117 DOI: 10.1038/s41434-024-00449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024]
Abstract
Efficient manufacturing of recombinant Adeno-Associated Viral (rAAV) vectors to meet rising clinical demand remains a major hurdle. One of the most significant challenges is the generation of large amounts of empty capsids without the therapeutic genome. There is no standardized analytical method to accurately quantify the viral genes, and subsequently the empty-to-full ratio, making the manufacturing challenges even more complex. We propose the use of CRISPR diagnostics (CRISPR-Dx) as a robust and rapid approach to determine AAV genome titers. We designed and developed the CRISPR-AAV Evaluation (CRAAVE) assay to maximize sensitivity, minimize time-to-result, and provide a potentially universal design for quantifying multiple transgene constructs encapsidated within different AAV serotypes. We also demonstrate an on-chip CRAAVE assay with lyophilized reagents to minimize end user assay input. The CRAAVE assay was able to detect AAV titers as low as 7e7 vg/mL with high precision (<3% error) in quantifying unknown AAV titers when compared with conventional quantitative PCR (qPCR) method. The assay only requires 30 min of assay time, shortening the analytical workflow drastically. Our results suggest CRISPR-Dx could be a promising tool for efficient rAAV genome titer quantification and has the potential to revolutionize biomanufacturing process analytical technology (PAT).
Collapse
Affiliation(s)
- Zach Hetzler
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | | | - Noah Lott
- Biomanufacturing, Training, and Education Center (BTEC), North Carolina State University, Raleigh, NC, 27606, USA
| | - Noor Mohammad
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | | | - Jenna Kolbe
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Lauren Turrentine
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Delaney Fields
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Laurie Overton
- Biomanufacturing, Training, and Education Center (BTEC), North Carolina State University, Raleigh, NC, 27606, USA
| | | | | | | | | | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27606, USA.
| |
Collapse
|
20
|
Wang JH, Gessler DJ, Zhan W, Gallagher TL, Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther 2024; 9:78. [PMID: 38565561 PMCID: PMC10987683 DOI: 10.1038/s41392-024-01780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a pivotal delivery tool in clinical gene therapy owing to its minimal pathogenicity and ability to establish long-term gene expression in different tissues. Recombinant AAV (rAAV) has been engineered for enhanced specificity and developed as a tool for treating various diseases. However, as rAAV is being more widely used as a therapy, the increased demand has created challenges for the existing manufacturing methods. Seven rAAV-based gene therapy products have received regulatory approval, but there continue to be concerns about safely using high-dose viral therapies in humans, including immune responses and adverse effects such as genotoxicity, hepatotoxicity, thrombotic microangiopathy, and neurotoxicity. In this review, we explore AAV biology with an emphasis on current vector engineering strategies and manufacturing technologies. We discuss how rAAVs are being employed in ongoing clinical trials for ocular, neurological, metabolic, hematological, neuromuscular, and cardiovascular diseases as well as cancers. We outline immune responses triggered by rAAV, address associated side effects, and discuss strategies to mitigate these reactions. We hope that discussing recent advancements and current challenges in the field will be a helpful guide for researchers and clinicians navigating the ever-evolving landscape of rAAV-based gene therapy.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, 3002, Australia
| | - Dominic J Gessler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Thomas L Gallagher
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
21
|
Hu Y, Eder BA, Lin J, Li S, Zhu Y, Wang TH, Guo T, Mao HQ. Liter-scale manufacturing of shelf-stable plasmid DNA/PEI transfection particles for viral vector production. Mol Ther Methods Clin Dev 2024; 32:101194. [PMID: 38352269 PMCID: PMC10863326 DOI: 10.1016/j.omtm.2024.101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
The transfection efficiency and stability of the delivery vehicles of plasmid DNA (pDNA) are critical metrics to ensure high-quality and high-yield production of viral vectors. We previously identified that the optimal size of pDNA/poly(ethylenimine) (PEI) transfection particles is 400-500 nm and developed a bottom-up assembly method to construct stable 400-nm pDNA/PEI particles and benchmarked their transfection efficiency in producing lentiviral vectors (LVVs). Here, we report scale-up production protocols for such transfection particles. Using a two-inlet confined impinging jet (CIJ) mixer with a dual syringe pump set-up, we produced a 1-L batch at a flow rate of 100 mL/min, and further scaled up this process with a larger CIJ mixer and a dual peristaltic pump array, allowing for continuous production at a flow rate of 1 L/min without a lot size limit. We demonstrated the scalability of this process with a 5-L lot and validated the quality of these 400-nm transfection particles against the target product profile, including physical properties, shelf and on-bench stability, transfection efficiency, and LVV production yield in both 15-mL bench culture and 2-L bioreactor runs. These results confirm the potential of this particle assembly process as a scalable manufacturing platform for viral vector production.
Collapse
Affiliation(s)
- Yizong Hu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | - Jinghan Lin
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sixuan Li
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yining Zhu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Tza-Huei Wang
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ting Guo
- 2seventy bio, Inc., Cambridge, MA 02142, USA
| | - Hai-Quan Mao
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
22
|
Park S, Shin S, Lee H, Jang JH, Lee GM. Enhancing the production of adeno-associated virus (AAV)2 and AAV9 with high full capsid ratio in HEK293 cells through design-of-experiment optimization of triple plasmid ratio. Biotechnol J 2024; 19:e2300667. [PMID: 38479987 DOI: 10.1002/biot.202300667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/02/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
The recombinant adeno-associated virus (rAAV) vectors used in gene therapy are usually produced by transfecting three different plasmids (Adenoviral helper plasmid (pHelper), AAV rep/cap plasmids (pRepCap), and Transgene plasmid (pAAV-GOI)) into human embryonic kidney 293 (HEK293) cells. However, the high proportion of unwanted empty capsids generated during rAAV production is problematic. To simultaneously enhance the genome titer and full capsid ratio, the ratio of the three plasmids transfected into HEK293 cells was optimized using design-of-experiment (DoE). AAV2 and AAV9, which have different production kinetics, were selected as cell-associated and secreted model AAVs, respectively. In 125 mL Erlenmeyer flasks, the genome titers of rAAV2 and rAAV9 at DoE-optimized plasmid weight ratios (pHelper:pRep2Cap2:pAAV-GOI = 1:3.52:0.50 for rAAV2 and pHelper:pRep2Cap9:pAAV-GOI = 1:1.44:0.27 for rAAV9) were 2.23-fold and 2.26-fold higher than those in the widely used plasmid weight ratio (1:1:1), respectively. In addition, compared with the plasmid ratio of 1:1:1, the relative VP3 band intensities of rAAV2 and rAAV9, which represent the relative empty capsid ratios, were reduced by 26% and 25%, respectively, at the DoE-optimized plasmid ratio. Reduced empty capsid ratios in the DoE-optimized plasmid ratios were also confirmed using transmission electron microscopy (TEM). Taken together, regardless of the AAV serotype, DoE-aided optimization of the triple plasmid ratio was found to be an efficient means of improving the production of rAAV with a high full capsid ratio.
Collapse
Affiliation(s)
- Sungje Park
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Seunghyeon Shin
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Haeshin Lee
- Department of Chemistry, KAIST, Daejeon, Republic of Korea
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
- R&D Center, GluGene Therapeutics Inc., Seoul, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
23
|
Wang Y, Fu Q, Park SY, Lee YS, Park SY, Lee DY, Yoon S. Decoding cellular mechanism of recombinant adeno-associated virus (rAAV) and engineering host-cell factories toward intensified viral vector manufacturing. Biotechnol Adv 2024; 71:108322. [PMID: 38336188 DOI: 10.1016/j.biotechadv.2024.108322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Recombinant adeno-associated virus (rAAV) is one of the prominent gene delivery vehicles that has opened promising opportunities for novel gene therapeutic approaches. However, the current major viral vector production platform, triple transfection in mammalian cells, may not meet the increasing demand. Thus, it is highly required to understand production bottlenecks from the host cell perspective and engineer the cells to be more favorable and tolerant to viral vector production, thereby effectively enhancing rAAV manufacturing. In this review, we provided a comprehensive exploration of the intricate cellular process involved in rAAV production, encompassing various stages such as plasmid entry to the cytoplasm, plasmid trafficking and nuclear delivery, rAAV structural/non-structural protein expression, viral capsid assembly, genome replication, genome packaging, and rAAV release/secretion. The knowledge in the fundamental biology of host cells supporting viral replication as manufacturing factories or exhibiting defending behaviors against viral production is summarized for each stage. The control strategies from the perspectives of host cell and materials (e.g., AAV plasmids) are proposed as our insights based on the characterization of molecular features and our existing knowledge of the AAV viral life cycle, rAAV and other viral vector production in the Human embryonic kidney (HEK) cells.
Collapse
Affiliation(s)
- Yongdan Wang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Qiang Fu
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - So Young Park
- Department of Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Yong Suk Lee
- Department of Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Seo-Young Park
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States of America.
| |
Collapse
|
24
|
Cao TM, Chen D, Barnard GC, Shen A. Recombinant adeno-associated virus production evaluation in Chinese hamster ovary cells. Biotechnol Bioeng 2024; 121:395-402. [PMID: 37902721 DOI: 10.1002/bit.28578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/29/2023] [Accepted: 10/15/2023] [Indexed: 10/31/2023]
Abstract
The gene therapy field has advanced in recent years with five recombinant adeno-associated virus (rAAV) based products winning Food and Drug Administration (FDA) approval. As the number of therapeutic applications and overall production demands for rAAV increase, it is valuable to evaluate rAAV production in different production cells. Chinese hamster ovary (CHO) cells have been a robust host for biomolecule manufacturing for more than 35 years. However, there is no report to our knowledge describing the use of CHO cells for rAAV production. In this study, we examined the ability of CHO cells to produce rAAV using a transient plasmid transfection approach. Our results demonstrated that CHO is capable of producing rAAV with detectable viral fundamental components including viral RNAs, proteins, and rAAV viral particles. We identified the expression of cap proteins as one of the limiting factors for rAAV production in CHO cells. We therefore added an additional cytomegalovirus (CMV)-Cap plasmid to the CHO transfection. After increasing cap protein expression, we detected rAAV titers as high as 3 × 108 viral genomes for every 2 × 109 capsids in CHO cells using a quintuple transfection method (standard AAV2 Rep/Cap, helper, gene of interest plasmids, plus CMV-E1, and CMV-Cap plasmids) with comparable full particle percent (average 15%) to that of human embryo kidney (HEK)-derived rAAV. Our study provides a foundation for potential rAAV production in CHO cells.
Collapse
Affiliation(s)
- Thu M Cao
- Department of Cell Culture Bioprocess Operations, Genentech, Inc., South San Francisco, California, USA
| | - Dayue Chen
- Department of Cell Therapy and Engineering Development, Genentech, Inc, South San Francisco, California, USA
| | - Gavin C Barnard
- Department of Cell Culture Bioprocess Operations, Genentech, Inc., South San Francisco, California, USA
| | - Amy Shen
- Department of Cell Culture Bioprocess Operations, Genentech, Inc., South San Francisco, California, USA
| |
Collapse
|
25
|
Ou J, Tang Y, Xu J, Tucci J, Borys MC, Khetan A. Recent advances in upstream process development for production of recombinant adeno-associated virus. Biotechnol Bioeng 2024; 121:53-70. [PMID: 37691172 DOI: 10.1002/bit.28545] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Recombinant adeno-associated virus (rAAV) is rapidly emerging as the preferred delivery vehicle for gene therapies, with promising advantages in safety and efficacy. Key challenges in systemic in-vivo rAAV gene therapy applications are the gap in production capabilities versus potential market demand and complex production process. This review summarizes current available information on rAAV upstream manufacturing processes and proposed optimizations for production. The advancements in rAAV production media were reviewed with proposals to speed up the cell culture process development. Furthermore, major methods for genetic element delivery to host cells were summarized with their advantages, limitations, and future directions for optimization. In addition, culture vessel selection criteria were listed based on production cell system, scale, and development stage. Process control at the production step was also outlined with an in-depth understanding of production kinetics and quality control.
Collapse
Affiliation(s)
- Jianfa Ou
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Yawen Tang
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Jianlin Xu
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Julian Tucci
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Michael C Borys
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Anurag Khetan
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| |
Collapse
|
26
|
Fu Q, Lee YS, Green EA, Wang Y, Park SY, Polanco A, Lee KH, Betenbaugh M, McNally D, Yoon S. Design space determination to optimize DNA complexation and full capsid formation in transient rAAV manufacturing. Biotechnol Bioeng 2023; 120:3148-3162. [PMID: 37475681 PMCID: PMC11585969 DOI: 10.1002/bit.28508] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Recombinant adeno-associated virus (rAAV) vectors are a promising platform for in vivo gene therapies. However, cost-effective, well-characterized processes necessary to manufacture rAAV therapeutics are challenging to develop without an understanding of how process parameters (PPs) affect rAAV product quality attributes (PQAs). In this work, a central composite orthogonal experimental design was employed to examine the influence of four PPs for transient transfection complex formation (polyethylenimine:DNA [PEI:DNA] ratio, total DNA/cell, cocktail volume, and incubation time) on three rAAV PQAs related to capsid content (vector genome titer, vector genome:capsid particle ratio, and two-dimensional vector genome titer ratio). A regression model was established for each PQA using partial least squares, and a design space (DS) was defined in which Monte Carlo simulations predicted < 1% probability of failure (POF) to meet predetermined PQA specifications. Of the three PQAs, viral genome titer was most strongly correlated with changes in complexation PPs. The DS and acceptable PP ranges were largest when incubation time and cocktail volume were kept at mid-high setpoints, and PEI:DNA ratio and total DNA/cell were at low-mid setpoints. Verification experiments confirmed model predictive capability, and this work establishes a framework for studying other rAAV PPs and their relationship to PQAs.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Yong Suk Lee
- Department of Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Erica A. Green
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Yongdan Wang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - So Young Park
- Department of Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Ashli Polanco
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Kelvin H. Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - David McNally
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
- MassBiologics, University of Massachusetts Chan Medical School, Mattapan, Massachusetts, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
27
|
Reddy JV, Raudenbush K, Papoutsakis ET, Ierapetritou M. Cell-culture process optimization via model-based predictions of metabolism and protein glycosylation. Biotechnol Adv 2023; 67:108179. [PMID: 37257729 DOI: 10.1016/j.biotechadv.2023.108179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
In order to meet the rising demand for biologics and become competitive on the developing biosimilar market, there is a need for process intensification of biomanufacturing processes. Process development of biologics has historically relied on extensive experimentation to develop and optimize biopharmaceutical manufacturing. Experimentation to optimize media formulations, feeding schedules, bioreactor operations and bioreactor scale up is expensive, labor intensive and time consuming. Mathematical modeling frameworks have the potential to enable process intensification while reducing the experimental burden. This review focuses on mathematical modeling of cellular metabolism and N-linked glycosylation as applied to upstream manufacturing of biologics. We review developments in the field of modeling cellular metabolism of mammalian cells using kinetic and stoichiometric modeling frameworks along with their applications to simulate, optimize and improve mechanistic understanding of the process. Interest in modeling N-linked glycosylation has led to the creation of various types of parametric and non-parametric models. Most published studies on mammalian cell metabolism have performed experiments in shake flasks where the pH and dissolved oxygen cannot be controlled. Efforts to understand and model the effect of bioreactor-specific parameters such as pH, dissolved oxygen, temperature, and bioreactor heterogeneity are critically reviewed. Most modeling efforts have focused on the Chinese Hamster Ovary (CHO) cells, which are most commonly used to produce monoclonal antibodies (mAbs). However, these modeling approaches can be generalized and applied to any mammalian cell-based manufacturing platform. Current and potential future applications of these models for Vero cell-based vaccine manufacturing, CAR-T cell therapies, and viral vector manufacturing are also discussed. We offer specific recommendations for improving the applicability of these models to industrially relevant processes.
Collapse
Affiliation(s)
- Jayanth Venkatarama Reddy
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716-3196, USA
| | - Katherine Raudenbush
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716-3196, USA
| | - Eleftherios Terry Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716-3196, USA; Delaware Biotechnology Institute, Department of Biological Sciences, University of Delaware, USA.
| | - Marianthi Ierapetritou
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716-3196, USA.
| |
Collapse
|
28
|
Moreno Velasquez SD, Gerstmann E, Grimm D. Goody two plasmids: An optimized transient transfection system for AAV vector production. Mol Ther Methods Clin Dev 2023; 30:191-193. [PMID: 37519408 PMCID: PMC10371777 DOI: 10.1016/j.omtm.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Affiliation(s)
- Sergio David Moreno Velasquez
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, University of Heidelberg, BioQuant, Center for Integrative Infectious Diseases (CIID), 69120 Heidelberg, Germany
| | - Emma Gerstmann
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, University of Heidelberg, BioQuant, Center for Integrative Infectious Diseases (CIID), 69120 Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, University of Heidelberg, BioQuant, Center for Integrative Infectious Diseases (CIID), 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
29
|
Destro F, Joseph J, Srinivasan P, Kanter JM, Neufeld C, Wolfrum JM, Barone PW, Springs SL, Sinskey AJ, Cecchini S, Kotin RM, Braatz RD. Mechanistic modeling explains the production dynamics of recombinant adeno-associated virus with the baculovirus expression vector system. Mol Ther Methods Clin Dev 2023; 30:122-146. [PMID: 37746245 PMCID: PMC10512016 DOI: 10.1016/j.omtm.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/30/2023] [Indexed: 09/26/2023]
Abstract
Current manufacturing processes for recombinant adeno-associated viruses (rAAVs) have less-than-desired yields and produce significant amounts of empty capsids. The increasing demand and the high cost of goods for rAAV-based gene therapies motivate development of more efficient manufacturing processes. Recently, the US Food and Drug Administration (FDA) approved the first rAAV-based gene therapy product manufactured in the baculovirus expression vector system (BEVS), a technology that demonstrated production of high titers of full capsids. This work presents a first mechanistic model describing the key extracellular and intracellular phenomena occurring during baculovirus infection and rAAV maturation in the BEVS. The model predictions are successfully validated for in-house and literature experimental measurements of the vector genome and of structural and non-structural proteins collected during rAAV manufacturing in the BEVS with the TwoBac and ThreeBac constructs. A model-based analysis of the process is carried out to identify the bottlenecks that limit full capsid formation. Vector genome amplification is found to be the limiting step for rAAV production in Sf9 cells using either the TwoBac or ThreeBac system. In turn, vector genome amplification is hindered by limiting Rep78 levels. Transgene and non-essential baculovirus protein expression in the insect cell during rAAV manufacturing also negatively influences the rAAV production yields.
Collapse
Affiliation(s)
- Francesco Destro
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John Joseph
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Prasanna Srinivasan
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua M. Kanter
- Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Caleb Neufeld
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jacqueline M. Wolfrum
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Paul W. Barone
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stacy L. Springs
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anthony J. Sinskey
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sylvain Cecchini
- Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Robert M. Kotin
- Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Carbon Biosciences, Waltham, MA 02451, USA
| | - Richard D. Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
30
|
Fu Q, Polanco A, Lee YS, Yoon S. Critical challenges and advances in recombinant adeno-associated virus (rAAV) biomanufacturing. Biotechnol Bioeng 2023; 120:2601-2621. [PMID: 37126355 DOI: 10.1002/bit.28412] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Gene therapy is a promising therapeutic approach for genetic and acquired diseases nowadays. Among DNA delivery vectors, recombinant adeno-associated virus (rAAV) is one of the most effective and safest vectors used in commercial drugs and clinical trials. However, the current yield of rAAV biomanufacturing lags behind the necessary dosages for clinical and commercial use, which embodies a concentrated reflection of low productivity of rAAV from host cells, difficult scalability of the rAAV-producing bioprocess, and high levels of impurities materialized during production. Those issues directly impact the price of gene therapy medicine in the market, limiting most patients' access to gene therapy. In this context, the current practices and several critical challenges associated with rAAV gene therapy bioprocesses are reviewed, followed by a discussion of recent advances in rAAV-mediated gene therapy and other therapeutic biological fields that could improve biomanufacturing if these advances are integrated effectively into the current systems. This review aims to provide the current state-of-the-art technology and perspectives to enhance the productivity of rAAV while reducing impurities during production of rAAV.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Biomedical Engineering and Biotechnology, The University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Ashli Polanco
- Department of Chemical Engineering, The University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Yong Suk Lee
- Department of Pharmaceutical Sciences, The University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, The University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
31
|
Kieu Doan TN, Croyle MA. Physical characteristics and stability profile of recombinant plasmid DNA within a film matrix. Eur J Pharm Biopharm 2023; 190:270-283. [PMID: 37567395 DOI: 10.1016/j.ejpb.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Plasmids are essential source material for production of biological drugs, vaccines and vectors for gene therapy. They are commonly formulated as frozen solutions. Considering the cost associated with maintenance of cold chain conditions during storage and transport, there is a significant need for alternative methods for stabilization of plasmids at ambient temperature. The objective of these studies was to identify a film-based formulation that preserved transfection efficiency of plasmids at 25 °C. A model plasmid, pAAVlacZ, was used for these studies. Transfection efficiency and agarose gel electrophoresis were utilized to assess bioactivity and changes in physical conformation of plasmid during storage. An amino acid, capable of sustaining a positive charge while supporting an alkaline environment within the film matrix, preserved transfection efficiency for 9 months at 25 °C. Addition of sugar and a plasticizer to the formulation preserved the plasmid in an amorphous state and improved handling properties of the film. The manner in which excipients were incorporated into bulk formulations and environmental humidity in which films were stored significantly impacted transfection efficiency of plasmid in the rehydrated solution. Taken together, these results suggest that plasmids can be stored for extended periods of time without refrigeration within a film matrix.
Collapse
Affiliation(s)
- Trang Nguyen Kieu Doan
- The University of Texas at Austin College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX 78712, United States
| | - Maria A Croyle
- The University of Texas at Austin College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX 78712, United States; John R. LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
32
|
Wang Y, Fu Q, Lee YS, Sha S, Yoon S. Transcriptomic features reveal molecular signatures associated with recombinant adeno-associated virus production in HEK293 cells. Biotechnol Prog 2023; 39:e3346. [PMID: 37130170 DOI: 10.1002/btpr.3346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/21/2023] [Accepted: 04/09/2023] [Indexed: 05/04/2023]
Abstract
The development of gene therapies based on recombinant adeno-associated viruses (rAAVs) has grown exponentially, so the current rAAV manufacturing platform needs to be more efficient to satisfy rising demands. Viral production exerts great demand on cellular substrates, energy, and machinery; therefore, viral production relies heavily on the physiology of the host cell. Transcriptomics, as a mechanism-driven tool, was applied to identify significantly regulated pathways and to study cellular features of the host cell for supporting rAAV production. This study investigated the transcriptomic features of two cell lines cultured in their respective media by comparing viral-producing cultures with non-producing cultures over time in parental human embryonic kidney cells (HEK293). The results demonstrate that the innate immune response signaling pathways of host cells (e.g., RIG-I-like receptor signaling pathway, Toll-like receptor signaling pathway, cytosolic DNA sensing pathway, JAK-STAT signaling pathway) were significantly enriched and upregulated. This was accompanied by the host cellular stress responses, including endoplasmic reticulum stress, autophagy, and apoptosis in viral production. In contrast, fatty acid metabolism and neutral amino acid transport were downregulated in the late phase of viral production. Our transcriptomics analysis reveals the cell-line independent signatures for rAAV production and serves as a significant reference for further studies targeting the productivity improvement in the future.
Collapse
Affiliation(s)
- Yongdan Wang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Qiang Fu
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Yong Suk Lee
- Department of Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Sha Sha
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
33
|
Whiteley Z, Massaro G, Gkogkos G, Gavriilidis A, Waddington SN, Rahim AA, Craig DQM. Microfluidic production of nanogels as alternative triple transfection reagents for the manufacture of adeno-associated virus vectors. NANOSCALE 2023; 15:5865-5876. [PMID: 36866741 DOI: 10.1039/d2nr06401d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Adeno-associated viral vectors (AAVs) have proved a mainstay in gene therapy, owing to their remarkable transduction efficiency and safety profile. Their production, however, remains challenging in terms of yield, the cost-effectiveness of manufacturing procedures and large-scale production. In this work, we present nanogels produced by microfluidics as a novel alternative to standard transfection reagents such as polyethylenimine-MAX (PEI-MAX) for the production of AAV vectors with comparable yields. Nanogels were formed at pDNA weight ratios of 1 : 1 : 2 and 1 : 1 : 3, of pAAV cis-plasmid, pDG9 capsid trans-plasmid and pHGTI helper plasmid respectively, where vector yields at a small scale showed no significant difference to those of PEI-MAX. Weight ratios of 1 : 1 : 2 showed overall higher titers than 1 : 1 : 3, where nanogels with nitrogen/phosphate ratios of 5 and 10 produced yields of ≈8.8 × 108 vg mL-1 and ≈8.1 × 108 vg mL-1 respectively compared to ≈1.1 × 109 vg mL-1 for PEI-MAX. In larger scale production, optimised nanogels produced AAV at a titer of ≈7.4 × 1011 vg mL-1, showing no statistical difference from that of PEI-MAX at ≈1.2 × 1012 vg mL-1, indicating that equivalent titers can be achieved with easy-to-implement microfluidic technology at comparably lower costs than traditional reagents.
Collapse
Affiliation(s)
- Zoe Whiteley
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Giulia Massaro
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Georgios Gkogkos
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Simon N Waddington
- Institute for Women's Health, University College London, 84-84 Chenies Mews, London, WC1E 6HU, UK
- MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Ahad A Rahim
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Duncan Q M Craig
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
34
|
Scarrott JM, Johari YB, Pohle TH, Liu P, Mayer A, James DC. Increased recombinant adeno-associated virus production by HEK293 cells using small molecule chemical additives. Biotechnol J 2023; 18:e2200450. [PMID: 36495042 DOI: 10.1002/biot.202200450] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Recombinant adeno-associated virus (rAAV) has established itself as a highly efficacious gene delivery vector with a well characterised safety profile allowing broad clinical application. Recent successes in rAAV-mediated gene therapy clinical trials will continue to drive demand for improved rAAV production processes to reduce costs. Here, we demonstrate that small molecule bioactive chemical additives can significantly increase recombinant AAV vector production by human embryonic kidney (HEK) cells up to three-fold. Nocodazole (an anti-mitotic agent) and M344 (a selective histone deacetylase inhibitor) were identified as positive regulators of rAAV8 genome titre in a microplate screening assay. Addition of nocodazole to triple-transfected HEK293 suspension cells producing rAAV arrested cells in G2/M phase, increased average cell volume and reduced viable cell density relative to untreated rAAV producing cells at harvest. Final crude genome vector titre from nocodazole treated cultures was >2-fold higher compared to non-treated cultures. Further investigation showed nocodazole addition to cultures to be time critical. Genome titre improvement was found to be scalable and serotype independent across two distinct rAAV serotypes, rAAV8 and rAAV9. Furthermore, a combination of M344 and nocodazole produced a positive additive effect on rAAV8 genome titre, resulting in a three-fold increase in genome titre compared to untreated cells.
Collapse
Affiliation(s)
- Joseph M Scarrott
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Yusuf B Johari
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Thilo H Pohle
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Ping Liu
- Cell Line Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Ayda Mayer
- Cell Line Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
35
|
Canova CT, Inguva PK, Braatz RD. Mechanistic modeling of viral particle production. Biotechnol Bioeng 2023; 120:629-641. [PMID: 36461898 DOI: 10.1002/bit.28296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Viral systems such as wild-type viruses, viral vectors, and virus-like particles are essential components of modern biotechnology and medicine. Despite their importance, the commercial-scale production of viral systems remains highly inefficient for multiple reasons. Computational strategies are a promising avenue for improving process development, optimization, and control, but require a mathematical description of the system. This article reviews mechanistic modeling strategies for the production of viral particles, both at the cellular and bioreactor scales. In many cases, techniques and models from adjacent fields such as epidemiology and wild-type viral infection kinetics can be adapted to construct a suitable process model. These process models can then be employed for various purposes such as in-silico testing of novel process operating strategies and/or advanced process control.
Collapse
Affiliation(s)
- Christopher T Canova
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Pavan K Inguva
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
36
|
Iglesias CF, Ristovski M, Bolic M, Cuperlovic-Culf M. rAAV Manufacturing: The Challenges of Soft Sensing during Upstream Processing. Bioengineering (Basel) 2023; 10:bioengineering10020229. [PMID: 36829723 PMCID: PMC9951952 DOI: 10.3390/bioengineering10020229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) is the most effective viral vector technology for directly translating the genomic revolution into medicinal therapies. However, the manufacturing of rAAV viral vectors remains challenging in the upstream processing with low rAAV yield in large-scale production and high cost, limiting the generalization of rAAV-based treatments. This situation can be improved by real-time monitoring of critical process parameters (CPP) that affect critical quality attributes (CQA). To achieve this aim, soft sensing combined with predictive modeling is an important strategy that can be used for optimizing the upstream process of rAAV production by monitoring critical process variables in real time. However, the development of soft sensors for rAAV production as a fast and low-cost monitoring approach is not an easy task. This review article describes four challenges and critically discusses the possible solutions that can enable the application of soft sensors for rAAV production monitoring. The challenges from a data scientist's perspective are (i) a predictor variable (soft-sensor inputs) set without AAV viral titer, (ii) multi-step forecasting, (iii) multiple process phases, and (iv) soft-sensor development composed of the mechanistic model.
Collapse
Affiliation(s)
| | - Milica Ristovski
- Faculty of Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Miodrag Bolic
- Faculty of Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Miroslava Cuperlovic-Culf
- Digital Technologies Research Center, National Research Council, Ottawa, ON K1A 0R6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence:
| |
Collapse
|
37
|
Cuperlovic-Culf M, Nguyen-Tran T, Bennett SAL. Machine Learning and Hybrid Methods for Metabolic Pathway Modeling. Methods Mol Biol 2023; 2553:417-439. [PMID: 36227553 DOI: 10.1007/978-1-0716-2617-7_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Computational cell metabolism models seek to provide metabolic explanations of cell behavior under different conditions or following genetic alterations, help in the optimization of in vitro cell growth environments, or predict cellular behavior in vivo and in vitro. In the extremes, mechanistic models can include highly detailed descriptions of a small number of metabolic reactions or an approximate representation of an entire metabolic network. To date, all mechanistic models have required details of individual metabolic reactions, either kinetic parameters or metabolic flux, as well as information about extracellular and intracellular metabolite concentrations. Despite the extensive efforts and the increasing availability of high-quality data, required in vivo data are not available for the majority of known metabolic reactions; thus, mechanistic models are based primarily on ex vivo kinetic measurements and limited flux information. Machine learning approaches provide an alternative for derivation of functional dependencies from existing data. The increasing availability of metabolomic and lipidomic data, with growing feature coverage as well as sample set size, is expected to provide new data options needed for derivation of machine learning models of cell metabolic processes. Moreover, machine learning analysis of longitudinal data can lead to predictive models of cell behaviors over time. Conversely, machine learning models trained on steady-state data can provide descriptive models for the comparison of metabolic states in different environments or disease conditions. Additionally, inclusion of metabolic network knowledge in these analyses can further help in the development of models with limited data.This chapter will explore the application of machine learning to the modeling of cell metabolism. We first provide a theoretical explanation of several machine learning and hybrid mechanistic machine learning methods currently being explored to model metabolism. Next, we introduce several avenues for improving these models with machine learning. Finally, we provide protocols for specific examples of the utilization of machine learning in the development of predictive cell metabolism models using metabolomic data. We describe data preprocessing, approaches for training of machine learning models for both descriptive and predictive models, and the utilization of these models in synthetic and systems biology. Detailed protocols provide a list of software tools and libraries used for these applications, step-by-step modeling protocols, troubleshooting, as well as an overview of existing limitations to these approaches.
Collapse
Affiliation(s)
- Miroslava Cuperlovic-Culf
- Digital Technologies Research Centre, National Research Council of Canada, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada.
| | - Thao Nguyen-Tran
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, Canada
| | - Steffany A L Bennett
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
38
|
Celebi Torabfam G, Yetisgin AA, Erdem C, Cayli A, Kutlu O, Cetinel S. A feasibility study of different commercially available serum-free mediums to enhance lentivirus and adeno-associated virus production in HEK 293 suspension cells. Cytotechnology 2022; 74:635-655. [PMID: 36389283 PMCID: PMC9652196 DOI: 10.1007/s10616-022-00551-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/30/2022] [Indexed: 02/02/2023] Open
Abstract
Lentivirus and adeno-associated viruses are invaluable tools for biotechnology applications due to their genetic material delivery abilities both in vitro and in vivo. However, their large-scale productions with Good Manufacturing Practices yield low efficiency when adherent and serum dependent HEK293 (Human Embryonic Kidney) cells are used as the host. To increase production efficiency, HEK293 cells are adapted to grow in suspension using commercially available and chemically defined serum-free mediums. Suspended cells can be transiently transfected for viral vector production; however, significant improvements are still needed to increase yield and thereby cost effectiveness. Here, we evaluated four most preferred commercially available mediums that are IVY, FreeStyle293, LV-MAX, and BalanCD HEK293 for the transient transfection feasibility of lentiviral (LV) and adeno-associated virus serotype 2 (AAV2) production in FlorabioHEK293 suspension cells. The highest transfection efficiency was over 90% and obtained by using polyethyleneimine (PEI) 25 K and by media adaptation in IVY without using any transfection enhancer. For the first time the feasibility of HEK293 cells, which were adapted to grow in suspension culture by Florabio and IVY media, were tested for virus production. This study demonstrates the best transfection medium for scalable and optimized production of Lentivirus and Adeno-Associated Virus in suspended HEK293 cell culture. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-022-00551-1.
Collapse
Affiliation(s)
- Gizem Celebi Torabfam
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, 34956 Turkey
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul, 34956 Turkey
| | - Abuzer Alp Yetisgin
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, 34956 Turkey
- Faculty of Engineering and Natural Sciences, Materials Science and Nano Engineering, Sabanci University, Istanbul, 34956 Turkey
| | - Cem Erdem
- FloraBio Technology, Urla, 35430 İzmir Turkey
| | - Aziz Cayli
- FloraBio Technology, Urla, 35430 İzmir Turkey
| | - Ozlem Kutlu
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, 34956 Turkey
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul, 34956 Turkey
| | - Sibel Cetinel
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, 34956 Turkey
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul, 34956 Turkey
| |
Collapse
|
39
|
Coll De Peña A, Masto L, Atwood J, Tripathi A. Electrophoresis-Mediated Characterization of Full and Empty Adeno-Associated Virus Capsids. ACS OMEGA 2022; 7:23457-23466. [PMID: 35847322 PMCID: PMC9280930 DOI: 10.1021/acsomega.2c01813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Adeno-associated virus (AAV) has shown great potential in gene therapy due to its low immunogenicity, lack of pathogenicity to humans, and ability to provide long-term gene expression in vivo. However, there is currently a need for fast, high-throughput characterization systems that require low volumes for the determination of its sample composition in terms of full and empty capsids since empty capsids are a natural byproduct of AAV synthesis. To address this need, the following study proposes a high-throughput electrophoresis-mediated microfluidics approach that is independent of sample input concentration to estimate the composition of a given sample by combining its protein and ssDNA information relative to a standard. Using this novel approach, we were able to estimate the percentage of full capsids of six AAV8 samples with an average deviation from the actual percentage of 4%. The experiments used for these estimations were conducted with samples of varying percentages of full capsids (21-75%) and varying concentrations (5 × 1011-1 × 1012 VP/mL) with a total volume requirement of 3-10 μL for triplicate analysis of the sample. This method offers a rapid way to evaluate the quality and purity of AAV products. We believe that our method addresses the critical need as recognized by the gene and molecular therapy community.
Collapse
Affiliation(s)
- Adriana Coll De Peña
- Center
for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Lucy Masto
- Division
of Biology and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - James Atwood
- Applied
Genomics, PerkinElmer, Hopkinton, Massachusetts 01748, United States
| | - Anubhav Tripathi
- Center
for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
40
|
Joiner J, Huang Z, McHugh K, Stebbins M, Aron K, Borys M, Khetan A. Process modeling of recombinant adeno-associated virus production in HEK293 cells. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
41
|
Lothert K, Eilts F, Wolff MW. Quantification methods for viruses and virus-like particles applied in biopharmaceutical production processes. Expert Rev Vaccines 2022; 21:1029-1044. [PMID: 35483057 DOI: 10.1080/14760584.2022.2072302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Effective cell-based production processes of virus particles are the foundation for the global availability of classical vaccines, gene therapeutic vectors, and viral oncolytic treatments. Their production is subject to regulatory standards ensuring the safety and efficacy of the pharmaceutical product. Process analytics must be fast and reliable to provide an efficient process development and a robust process control during production. Additionally, for the product release, the drug compound and the contaminants must be quantified by assays specified by regulatory authorities. AREAS COVERED This review summarizes analytical methods suitable for the quantification of viruses or virus-like particles. The different techniques are grouped by the analytical question that may be addressed. Accordingly, methods focus on the infectivity of the drug component on the one hand, and on particle counting and the quantification of viral elements on the other hand. The different techniques are compared regarding their advantages, drawbacks, required assay time, and sample throughput. EXPERT OPINION Among the technologies summarized, a tendency toward fast methods, allowing a high throughput and a wide applicability, can be foreseen. Driving forces for this progress are miniaturization and automation, and the continuous enhancement of process-relevant databases for a successful future process control.
Collapse
Affiliation(s)
- Keven Lothert
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Friederike Eilts
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Michael W Wolff
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany.,Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| |
Collapse
|
42
|
Katsikis G, Hwang IE, Wang W, Bhat VS, McIntosh NL, Karim OA, Blus BJ, Sha S, Agache V, Wolfrum JM, Springs SL, Sinskey AJ, Barone PW, Braatz RD, Manalis SR. Weighing the DNA Content of Adeno-Associated Virus Vectors with Zeptogram Precision Using Nanomechanical Resonators. NANO LETTERS 2022; 22:1511-1517. [PMID: 35148107 DOI: 10.1021/acs.nanolett.1c04092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quantifying the composition of viral vectors used in vaccine development and gene therapy is critical for assessing their functionality. Adeno-associated virus (AAV) vectors, which are the most widely used viral vectors for in vivo gene therapy, are typically characterized using PCR, ELISA, and analytical ultracentrifugation which require laborious protocols or hours of turnaround time. Emerging methods such as charge-detection mass spectroscopy, static light scattering, and mass photometry offer turnaround times of minutes for measuring AAV mass using optical or charge properties of AAV. Here, we demonstrate an orthogonal method where suspended nanomechanical resonators (SNR) are used to directly measure both AAV mass and aggregation from a few microliters of sample within minutes. We achieve a precision near 10 zeptograms which corresponds to 1% of the genome holding capacity of the AAV capsid. Our results show the potential of our method for providing real-time quality control of viral vectors during biomanufacturing.
Collapse
Affiliation(s)
- Georgios Katsikis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Iris E Hwang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wade Wang
- BioMarin Pharmaceutical, Inc., Novato, California 94949, United States
| | - Vikas S Bhat
- BioMarin Pharmaceutical, Inc., Novato, California 94949, United States
| | - Nicole L McIntosh
- BioMarin Pharmaceutical, Inc., Novato, California 94949, United States
| | - Omair A Karim
- BioMarin Pharmaceutical, Inc., Novato, California 94949, United States
| | - Bartlomiej J Blus
- BioMarin Pharmaceutical, Inc., San Rafael, California 94901, United States
| | - Sha Sha
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vincent Agache
- Université Grenoble Alpes, CEA, LETI, 38000, Grenoble, France
| | - Jacqueline M Wolfrum
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stacy L Springs
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Anthony J Sinskey
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Paul W Barone
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Richard D Braatz
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
43
|
Dash S, Sharon DM, Mullick A, Kamen AA. ONLY A SMALL FRACTION OF CELLS PRODUCE ASSEMBLED CAPSIDS DURING TRANSFECTION-BASED MANUFACTURING OF ADENO-ASSOCIATED VIRUS VECTORS. Biotechnol Bioeng 2022; 119:1685-1690. [PMID: 35182435 PMCID: PMC9314941 DOI: 10.1002/bit.28068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/14/2022] [Accepted: 02/13/2022] [Indexed: 11/14/2022]
Abstract
Plasmid transfection of mammalian cells is the dominant platform used to produce adeno‐associated virus (AAV) vectors for clinical and research applications. Low yields from this platform currently make it difficult to supply these activities with adequate material. In an effort to better understand the current limitations of transfection‐based manufacturing, this study examines what proportion of cells in a model transfection produce appreciable amounts of assembled AAV capsid. Using conformation‐specific antibody staining and flow cytometry, we report the surprising result that despite obtaining high transfection efficiencies and nominal vector yields in our model system, only 5%–10% of cells appear to produce measurable levels of assembled AAV capsids. This finding implies that considerable increases in vector titer could be realized through increasing the proportion of productive cells. Furthermore, we suggest that the flow cytometry assay used here to quantify productive cells may be a useful metric for future optimization of transfection‐based AAV vector manufacturing platforms.
Collapse
Affiliation(s)
- S Dash
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - D M Sharon
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - A Mullick
- Human Health Therapeutics, National Research Council of Canada, Montreal, QC, Canada
| | - A A Kamen
- Department of Bioengineering, McGill University, Montreal, QC, Canada.,Human Health Therapeutics, National Research Council of Canada, Montreal, QC, Canada
| |
Collapse
|
44
|
Guan JS, Chen K, Si Y, Kim T, Zhou Z, Kim S, Zhou L, Liu X“M. Process improvement of adeno-associated virus (AAV) production. FRONTIERS IN CHEMICAL ENGINEERING 2022; 4:830421. [PMID: 35685827 PMCID: PMC9176270 DOI: 10.3389/fceng.2022.830421] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Adeno-associated viruses (AAVs) have been well characterized and used to deliver therapeutic genes for diseases treatment in clinics and basic research. This study used the triple transient transfection of AAV-DJ/8 as a model expression system to develop and optimize the laboratory production of AAV for research and pre-clinical applications. Specifically, various production parameters, including host cell, transfection reagent, cell density, ratio of plasmid DNA and cells, gene size, and production mode, were tested to determine the optimal process. Our results showed that the adherent production using HEK 293AAV with calcium transfection generated the highest volumetric productivity of 7.86x109 gc/mL. The optimal suspensive production using HEK 293F had best AAV productivity of 5.78x109 gc/mL in serum-free medium under transfection conditions of transfection density of 0.4x106 cells/mL, plasmid DNA:cells ratio of 1.6 μg:106 cells and synthesized cationic liposomes as transfection reagent. The similar AAV productivity was confirmed at scales of 30 mL - 450 mL in shaker and/or spinner flasks. The in vitro transfection and in vivo infection efficiency of the harvested AAV-DJ/8 carrying luciferase reporter gene was confirmed using cell line and xenograft mouse model, respectively. The minimal or low purification recovery rate of AAV-DJ/8 in ion-exchange chromatography column and affinity column was observed in this study. In summary, we developed and optimized a scalable suspensive production of AAV to support the large-scale preclinical animal studies in research laboratories.
Collapse
Affiliation(s)
- Jia-Shiung Guan
- Department of Medicine, UAB, 703 19 Street South, Birmingham, AL 35294, USA
| | - Kai Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA
| | - Yingnan Si
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA
| | - Taehyun Kim
- Department of Medicine, UAB, 703 19 Street South, Birmingham, AL 35294, USA
| | - Zhuoxin Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA
| | - Seulhee Kim
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA
| | - Lufang Zhou
- Department of Medicine, UAB, 703 19 Street South, Birmingham, AL 35294, USA
| | - Xiaoguang “Margaret” Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA
| |
Collapse
|
45
|
Bilal AS, Thuerauf DJ, Blackwood EA, Glembotski CC. Design and Production of Heart Chamber-Specific AAV9 Vectors. Methods Mol Biol 2022; 2573:89-113. [PMID: 36040589 DOI: 10.1007/978-1-0716-2707-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Adeno-associated virus serotype 9 (AAV9) is often used in heart research involving gene delivery due to its cardiotropism, high transduction efficiency, and little to no pathogenicity, making it highly applicable for gene manipulation, in vivo. However, current AAV9 technology is limited by the lack of strains that can selectively express and elucidate gene function in an atrial- and ventricular-specific manner. In fact, study of gene function in cardiac atria has been limited due to the lack of an appropriate tool to study atrial gene expression in vivo, hindering progress in the study of atrial-specific diseases such as atrial fibrillation, the most common cardiac arrhythmia in the USA.This chapter describes the method for the design and production of such chamber-specific AAV9 vectors, with the use of Nppa and Myl2 promoters to enhance atrial- and ventricular-specific expression. While several gene promoter candidates were considered and tested, Nppa and Myl2 were selected for use here because of their clearly defined regulatory elements that confer cardiac chamber-specific expression. Accordingly, Nppa (-425/+25) and Myl2 (-226/+36) promoter fragments are inserted into AAV9 vectors. The atrial- and ventricular-specific expression conferred by these new recombinant AAV9 was confirmed in a double-fluorescent Cre-dependent reporter mouse model. At only 450 and 262 base pairs of Nppa and Myl2 promoters, respectively, these AAV9 that drive chamber-specific AAV9 transgene expression address two major limitations of AAV9 technology, i.e., achieving chamber-specificity while maximizing space in the AAV genome for insertion of larger transgenes.
Collapse
Affiliation(s)
- Alina S Bilal
- Translational Cardiovascular Research Center and Department of Internal Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Donna J Thuerauf
- Department of Cellular and Molecular Biology, San Diego State University, San Diego, CA, USA
| | - Erik A Blackwood
- Translational Cardiovascular Research Center and Department of Internal Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Christopher C Glembotski
- Translational Cardiovascular Research Center and Department of Internal Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA.
| |
Collapse
|
46
|
Chakrabarty K, Shetty R, Argulwar S, Das D, Ghosh A. Induced pluripotent stem cell-based disease modeling and prospective immune therapy for coronavirus disease 2019. Cytotherapy 2021; 24:235-248. [PMID: 34656419 PMCID: PMC8437760 DOI: 10.1016/j.jcyt.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/14/2021] [Accepted: 08/14/2021] [Indexed: 11/30/2022]
Abstract
The emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses a never before seen challenge to human health and the economy. Considering its clinical impact, with no streamlined therapeutic strategies in sight, it is crucial to understand the infection process of SARS-CoV-2. Our limited knowledge of the mechanisms underlying SARS-CoV-2 infection impedes the development of alternative therapeutics to address the pandemic. This aspect can be addressed by modeling SARS-CoV-2 infection in the human context to facilitate drug screening and discovery. Human induced pluripotent stem cell (iPSC)-derived lung epithelial cells and organoids recapitulating the features and functionality of the alveolar cell types can serve as an in vitro human model and screening platform for SARS-CoV-2. Recent studies suggest an immune system asynchrony leading to compromised function and a decreased proportion of specific immune cell types in coronavirus disease 2019 (COVID-19) patients. Replenishing these specific immune cells may serve as useful treatment modality against SARS-CoV-2 infection. Here the authors review protocols for deriving lung epithelial cells, alveolar organoids and specific immune cell types, such as T lymphocytes and natural killer cells, from iPSCs with the aim to aid investigators in making relevant in vitro models of SARS-CoV-2 along with the possibility derive immune cell types to treat COVID-19.
Collapse
Affiliation(s)
| | - Rohit Shetty
- Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Shubham Argulwar
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Debashish Das
- Stem Cell Research Laboratory, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| |
Collapse
|
47
|
Cellular pathways of recombinant adeno-associated virus production for gene therapy. Biotechnol Adv 2021; 49:107764. [PMID: 33957276 DOI: 10.1016/j.biotechadv.2021.107764] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/10/2021] [Accepted: 05/01/2021] [Indexed: 12/11/2022]
Abstract
Recombinant adeno-associated viruses (rAAVs) are among the most important vectors for in vivo gene therapies. With the rapid development of gene therapy, current rAAV manufacturing capacity faces a challenge to meet the emerging demand for these therapies in the future. To examine the bottlenecks in rAAV production during cell culture, we focus here on an analysis of cellular pathways of rAAV production, based on an overview of assembly mechanisms first in the wild-type (wt) AAV replication and then in the common methods of rAAV production. The differences analyzed between the wild-type and recombinant systems provide insights into the mechanistic differences that may correlate with viral productivity. Based on these analyses, we identify potential barriers to high productivity of rAAV and discuss future directions for improvement to meet the emerging needs set by the growth of rAAV-based therapy and the needs of patients.
Collapse
|