1
|
Penna S, Zecchillo A, Di Verniere M, Fontana E, Iannello V, Palagano E, Mantero S, Cappelleri A, Rizzoli E, Santi L, Crisafulli L, Filibian M, Forlino A, Basso-Ricci L, Scala S, Scanziani E, Schinke T, Ficara F, Sobacchi C, Villa A, Capo V. Correction of osteopetrosis in the neonate oc/oc murine model after lentiviral vector gene therapy and non-genotoxic conditioning. Front Endocrinol (Lausanne) 2024; 15:1450349. [PMID: 39314524 PMCID: PMC11416974 DOI: 10.3389/fendo.2024.1450349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Autosomal recessive osteopetrosis (ARO) is a rare genetic disease, characterized by increased bone density due to defective osteoclast function. Most of the cases are due to TCIRG1 gene mutation, leading to severe bone phenotype and death in the first years of life. The standard therapy is the hematopoietic stem cell transplantation (HSCT), but its success is limited by several constraints. Conversely, gene therapy (GT) could minimize the immune-mediated complications of allogeneic HSCT and offer a prompt treatment to these patients. Methods The Tcirg1-defective oc/oc mouse model displays a short lifespan and high bone density, closely mirroring the human condition. In this work, we exploited the oc/oc neonate mice to optimize the critical steps for a successful therapy. Results First, we showed that lentiviral vector GT can revert the osteopetrotic bone phenotype, allowing long-term survival and reducing extramedullary haematopoiesis. Then, we demonstrated that plerixafor-induced mobilization can further increase the high number of HSPCs circulating in peripheral blood, facilitating the collection of adequate numbers of cells for therapeutic purposes. Finally, pre-transplant non-genotoxic conditioning allowed the stable engraftment of HSPCs, albeit at lower level than conventional total body irradiation, and led to long-term survival and correction of bone phenotype, in the absence of acute toxicity. Conclusion These results will pave the way to the implementation of an effective GT protocol, reducing the transplant-related complication risks in the very young and severely affected ARO patients.
Collapse
Affiliation(s)
- Sara Penna
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Zecchillo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Translational and Molecular Medicine (DIMET), University of Milano Bicocca, Milan, Italy
| | - Martina Di Verniere
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Fontana
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano, MI, Italy
| | - Valeria Iannello
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Eleonora Palagano
- Humanitas Research Hospital IRCCS, Rozzano, MI, Italy
- Florence Unit, Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italy
| | - Stefano Mantero
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano, MI, Italy
| | - Andrea Cappelleri
- Mouse and Animal Pathology Laboratory, UniMi Foundation, Milan, Italy
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Elena Rizzoli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Crisafulli
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano, MI, Italy
| | - Marta Filibian
- Biomedical Imaging Laboratory, Centro Grandi Strumenti, University of Pavia, Pavia, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eugenio Scanziani
- Mouse and Animal Pathology Laboratory, UniMi Foundation, Milan, Italy
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Francesca Ficara
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano, MI, Italy
| | - Cristina Sobacchi
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano, MI, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
2
|
Beeraka NM, Basappa B, Nikolenko VN, Mahesh PA. Role of Neurotransmitters in Steady State Hematopoiesis, Aging, and Leukemia. Stem Cell Rev Rep 2024:10.1007/s12015-024-10761-z. [PMID: 38976142 DOI: 10.1007/s12015-024-10761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Haematopoiesis within the bone marrow (BM) represents a complex and dynamic process intricately regulated by neural signaling pathways. This delicate orchestration is susceptible to disruption by factors such as aging, diabetes, and obesity, which can impair the BM niche and consequently affect haematopoiesis. Genetic mutations in Tet2, Dnmt3a, Asxl1, and Jak2 are known to give rise to clonal haematopoiesis of intermediate potential (CHIP), a condition linked to age-related haematological malignancies. Despite these insights, the exact roles of circadian rhythms, sphingosine-1-phosphate (S1P), stromal cell-derived factor-1 (SDF-1), sterile inflammation, and the complement cascade on various BM niche cells remain inadequately understood. Further research is needed to elucidate how BM niche cells contribute to these malignancies through neural regulation and their potential in the development of gene-corrected stem cells. This literature review describes the updated functional aspects of BM niche cells in haematopoiesis within the context of haematological malignancies, with a particular focus on neural signaling and the potential of radiomitigators in acute radiation syndrome. Additionally, it underscores the pressing need for technological advancements in stem cell-based therapies to alleviate the impacts of immunological stressors. Recent studies have illuminated the microheterogeneity and temporal stochasticity of niche cells within the BM during haematopoiesis, emphasizing the updated roles of neural signaling and immunosurveillance. The development of gene-corrected stem cells capable of producing blood, immune cells, and tissue-resident progeny is essential for combating age-related haematological malignancies and overcoming immunological challenges. This review aims to provide a comprehensive overview of these evolving insights and their implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA.
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia.
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India.
| | - Basappa Basappa
- Department of Studies in Organic Chemistry, Laboratory of Chemical Biology, University of Mysore, Mysore, Karnataka, 570006, India
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia
| | - P A Mahesh
- Department of Pulmonary Medicine, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| |
Collapse
|
3
|
Fiumara M, Ferrari S, Omer-Javed A, Beretta S, Albano L, Canarutto D, Varesi A, Gaddoni C, Brombin C, Cugnata F, Zonari E, Naldini MM, Barcella M, Gentner B, Merelli I, Naldini L. Genotoxic effects of base and prime editing in human hematopoietic stem cells. Nat Biotechnol 2024; 42:877-891. [PMID: 37679541 PMCID: PMC11180610 DOI: 10.1038/s41587-023-01915-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/26/2023] [Indexed: 09/09/2023]
Abstract
Base and prime editors (BEs and PEs) may provide more precise genetic engineering than nuclease-based approaches because they bypass the dependence on DNA double-strand breaks. However, little is known about their cellular responses and genotoxicity. Here, we compared state-of-the-art BEs and PEs and Cas9 in human hematopoietic stem and progenitor cells with respect to editing efficiency, cytotoxicity, transcriptomic changes and on-target and genome-wide genotoxicity. BEs and PEs induced detrimental transcriptional responses that reduced editing efficiency and hematopoietic repopulation in xenotransplants and also generated DNA double-strand breaks and genotoxic byproducts, including deletions and translocations, at a lower frequency than Cas9. These effects were strongest for cytidine BEs due to suboptimal inhibition of base excision repair and were mitigated by tailoring delivery timing and editor expression through optimized mRNA design. However, BEs altered the mutational landscape of hematopoietic stem and progenitor cells across the genome by increasing the load and relative proportions of nucleotide variants. These findings raise concerns about the genotoxicity of BEs and PEs and warrant further investigation in view of their clinical application.
Collapse
Affiliation(s)
- Martina Fiumara
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Attya Omer-Javed
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luisa Albano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Canarutto
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelica Varesi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Gaddoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Brombin
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Cugnata
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Erika Zonari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Maria Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Barcella
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- National Research Council, Institute for Biomedical Technologies, Segrate, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
4
|
Chabannon C, Visentin S, Granata A, Thuret I. Mobilization and collection of CD34 + cells in patients with globin disorders: Providing the starting material to manufacturers of autologous gene therapies. Transfus Apher Sci 2024; 63:103926. [PMID: 38670856 DOI: 10.1016/j.transci.2024.103926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Affiliation(s)
- Christian Chabannon
- Centre de Thérapie Cellulaire, Département de Biologie du Cancer, Institut Paoli-Calmettes Comprehensive Cancer, Marseille, France; Module Biothérapies du Centre d'Investigations Cliniques de Marseille, CBT-1409 Inserm - Aix-Marseille Université - Assistance Publique des Hôpitaux de Marseille - Institut Paoli-Calmettes, Marseille, France.
| | - Sandrine Visentin
- Département d'Hématologie et d'Oncologie Pédiatriques, Hôpital de la Timone-Enfants, Assistance Publique des Hôpitaux de Marseille / Hôpitaux Universitaires de Marseille, Marseille, France
| | - Angéla Granata
- Centre de Thérapie Cellulaire, Département de Biologie du Cancer, Institut Paoli-Calmettes Comprehensive Cancer, Marseille, France
| | - Isabelle Thuret
- Département d'Hématologie et d'Oncologie Pédiatriques, Hôpital de la Timone-Enfants, Assistance Publique des Hôpitaux de Marseille / Hôpitaux Universitaires de Marseille, Marseille, France
| |
Collapse
|
5
|
Kitawi R, Ledger S, Kelleher AD, Ahlenstiel CL. Advances in HIV Gene Therapy. Int J Mol Sci 2024; 25:2771. [PMID: 38474018 DOI: 10.3390/ijms25052771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Early gene therapy studies held great promise for the cure of heritable diseases, but the occurrence of various genotoxic events led to a pause in clinical trials and a more guarded approach to progress. Recent advances in genetic engineering technologies have reignited interest, leading to the approval of the first gene therapy product targeting genetic mutations in 2017. Gene therapy (GT) can be delivered either in vivo or ex vivo. An ex vivo approach to gene therapy is advantageous, as it allows for the characterization of the gene-modified cells and the selection of desired properties before patient administration. Autologous cells can also be used during this process which eliminates the possibility of immune rejection. This review highlights the various stages of ex vivo gene therapy, current research developments that have increased the efficiency and safety of this process, and a comprehensive summary of Human Immunodeficiency Virus (HIV) gene therapy studies, the majority of which have employed the ex vivo approach.
Collapse
Affiliation(s)
- Rose Kitawi
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
| | - Scott Ledger
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
| | - Anthony D Kelleher
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
- St. Vincent's Hospital, Darlinghurst, NSW 2010, Australia
- UNSW RNA Institute, University of New South Wales, Kensington, NSW 2052, Australia
| | - Chantelle L Ahlenstiel
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
- UNSW RNA Institute, University of New South Wales, Kensington, NSW 2052, Australia
| |
Collapse
|
6
|
Migliavacca M, Barzaghi F, Fossati C, Rancoita PMV, Gabaldo M, Dionisio F, Giannelli S, Salerio FA, Ferrua F, Tucci F, Calbi V, Gallo V, Recupero S, Consiglieri G, Pajno R, Sambuco M, Priolo A, Ferri C, Garella V, Monti I, Silvani P, Darin S, Casiraghi M, Corti A, Zancan S, Levi M, Cesana D, Carlucci F, Pituch-Noworolska A, AbdElaziz D, Baumann U, Finocchi A, Cancrini C, Ladogana S, Meinhardt A, Meyts I, Montin D, Notarangelo LD, Porta F, Pasquet M, Speckmann C, Stepensky P, Tommasini A, Rabusin M, Karakas Z, Galicchio M, Leonardi L, Duse M, Guner SN, Di Serio C, Ciceri F, Bernardo ME, Aiuti A, Cicalese MP. Long-term and real-world safety and efficacy of retroviral gene therapy for adenosine deaminase deficiency. Nat Med 2024; 30:488-497. [PMID: 38355973 PMCID: PMC7615698 DOI: 10.1038/s41591-023-02789-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/21/2023] [Indexed: 02/16/2024]
Abstract
Adenosine deaminase (ADA) deficiency leads to severe combined immunodeficiency (SCID). Previous clinical trials showed that autologous CD34+ cell gene therapy (GT) following busulfan reduced-intensity conditioning is a promising therapeutic approach for ADA-SCID, but long-term data are warranted. Here we report an analysis on long-term safety and efficacy data of 43 patients with ADA-SCID who received retroviral ex vivo bone marrow-derived hematopoietic stem cell GT. Twenty-two individuals (median follow-up 15.4 years) were treated in the context of clinical development or named patient program. Nineteen patients were treated post-marketing authorization (median follow-up 3.2 years), and two additional patients received mobilized peripheral blood CD34+ cell GT. At data cutoff, all 43 patients were alive, with a median follow-up of 5.0 years (interquartile range 2.4-15.4) and 2 years intervention-free survival (no need for long-term enzyme replacement therapy or allogeneic hematopoietic stem cell transplantation) of 88% (95% confidence interval 78.7-98.4%). Most adverse events/reactions were related to disease background, busulfan conditioning or immune reconstitution; the safety profile of the real world experience was in line with premarketing cohort. One patient from the named patient program developed a T cell leukemia related to treatment 4.7 years after GT and is currently in remission. Long-term persistence of multilineage gene-corrected cells, metabolic detoxification, immune reconstitution and decreased infection rates were observed. Estimated mixed-effects models showed that higher dose of CD34+ cells infused and younger age at GT affected positively the plateau of CD3+ transduced cells, lymphocytes and CD4+ CD45RA+ naive T cells, whereas the cell dose positively influenced the final plateau of CD15+ transduced cells. These long-term data suggest that the risk-benefit of GT in ADA remains favorable and warrant for continuing long-term safety monitoring. Clinical trial registration: NCT00598481 , NCT03478670 .
Collapse
Affiliation(s)
- Maddalena Migliavacca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Fossati
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola M V Rancoita
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | | | - Francesca Dionisio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Andrea Salerio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Tucci
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Calbi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vera Gallo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Salvatore Recupero
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Consiglieri
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Pajno
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Sambuco
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessio Priolo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Ferri
- Università Vita-Salute San Raffaele, Milan, Italy
| | | | - Ilaria Monti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Silvani
- Department of Anesthesia and Critical Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Darin
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Miriam Casiraghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ambra Corti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Daniela Cesana
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Filippo Carlucci
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Dalia AbdElaziz
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ulrich Baumann
- Department of Paediatric Pulmonology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Andrea Finocchi
- Research Unit of Primary Immunodeficiencies, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Caterina Cancrini
- Research Unit of Primary Immunodeficiencies, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Saverio Ladogana
- Paediatric Onco-haematology Unit, 'Casa Sollievo della Sofferenza' Hospital, IRCCS, San Giovanni Rotondo, Italy
| | - Andrea Meinhardt
- Department of Pediatric Hematology and Oncology, Medical Center, University Hospital Giessen, Giessen, Germany
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Childhood Immunology, Department of Pediatrics, UZ Leuven, Leuven, Belgium
| | - Davide Montin
- Department of Pediatric and Public Health Sciences, University of Torino, Turin, Italy
- Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | | | - Fulvio Porta
- Pediatric Oncology-Hematology and BMT Unit, Spedali Civili di Brescia, Brescia, Italy
| | - Marlène Pasquet
- Pediatric Hematology and Immunology, Children's Hospital, Toulouse, France
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy and Faculty of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alberto Tommasini
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Marco Rabusin
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Zeynep Karakas
- Department of Pediatrics, Hematology/Oncology Unit, Istanbul School of Medicine, Istanbul University, Istanbul, Turkey
| | - Miguel Galicchio
- Allergy and Immnunology Service, Hospital de Niños VJ Vilela, Rosario, Argentina
| | - Lucia Leonardi
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Marzia Duse
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Sukru Nail Guner
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Clelia Di Serio
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Fabio Ciceri
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Università Vita-Salute San Raffaele, Milan, Italy.
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
7
|
Galy A, Dewannieux M. Recent advances in hematopoietic gene therapy for genetic disorders. Arch Pediatr 2023; 30:8S24-8S31. [PMID: 38043980 DOI: 10.1016/s0929-693x(23)00224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Hematopoietic gene therapy is based on the transplantation of gene-modified autologous hematopoietic stem cells and since the inception of this approach, many technological and medical improvements have been achieved. This review focuses on the clinical studies that have used hematopoietic gene therapy to successfully treat several rare and severe genetic disorders of the blood or immune system as well as some non-hematological diseases. Today, in some cases hematopoietic gene therapy has progressed to the point of being equal to, or better than, allogeneic bone marrow transplant. In others, further improvements are needed to obtain more consistent efficacy or to reduce the risks posed by vectors or protocols. Several hematopoietic gene therapy products showing both long-term efficacy and safety have reached the market, but economic considerations challenge the possibility of patient access to novel disease-modifying therapies. © 2023 Published by Elsevier Masson SAS on behalf of French Society of Pediatrics.
Collapse
Affiliation(s)
- Anne Galy
- ART-TG, Inserm US35, Corbeil-Essonnes, France.
| | | |
Collapse
|
8
|
Canarutto D, Omer Javed A, Pedrazzani G, Ferrari S, Naldini L. Mobilization-based engraftment of haematopoietic stem cells: a new perspective for chemotherapy-free gene therapy and transplantation. Br Med Bull 2023; 147:108-120. [PMID: 37460391 PMCID: PMC10502445 DOI: 10.1093/bmb/ldad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION In haematopoietic stem cell transplantation (HSCT), haematopoietic stem cells (HSCs) from a healthy donor replace the patient's ones. Ex vivo HSC gene therapy (HSC-GT) is a form of HSCT in which HSCs, usually from an autologous source, are genetically modified before infusion, to generate a progeny of gene-modified cells. In HSCT and HSC-GT, chemotherapy is administered before infusion to free space in the bone marrow (BM) niche, which is required for the engraftment of infused cells. Here, we review alternative chemotherapy-free approaches to niche voidance that could replace conventional regimens and alleviate the morbidity of the procedure. SOURCES OF DATA Literature was reviewed from PubMed-listed peer-reviewed articles. No new data are presented in this article. AREAS OF AGREEMENT Chemotherapy exerts short and long-term toxicity to haematopoietic and non-haematopoietic organs. Whenever chemotherapy is solely used to allow engraftment of donor HSCs, rather than eliminating malignant cells, as in the case of HSC-GT for inborn genetic diseases, non-genotoxic approaches sparing off-target tissues are highly desirable. AREAS OF CONTROVERSY In principle, HSCs can be temporarily moved from the BM niches using mobilizing drugs or selectively cleared with targeted antibodies or immunotoxins to make space for the infused cells. However, translation of these principles into clinically relevant settings is only at the beginning, and whether therapeutically meaningful levels of chimerism can be safely established with these approaches remains to be determined. GROWING POINTS In pre-clinical models, mobilization of HSCs from the niche can be tailored to accommodate the exchange and engraftment of infused cells. Infused cells can be further endowed with a transient engraftment advantage. AREAS TIMELY FOR DEVELOPING RESEARCH Inter-individual efficiency and kinetics of HSC mobilization need to be carefully assessed. Investigations in large animal models of emerging non-genotoxic approaches will further strengthen the rationale and encourage application to the treatment of selected diseases.
Collapse
Affiliation(s)
- Daniele Canarutto
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132 Milano, MI, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
| | - Attya Omer Javed
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
| | - Gabriele Pedrazzani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132 Milano, MI, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132 Milano, MI, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132 Milano, MI, Italy
| |
Collapse
|
9
|
Scala S, Ferrua F, Basso-Ricci L, Dionisio F, Omrani M, Quaranta P, Jofra Hernandez R, Del Core L, Benedicenti F, Monti I, Giannelli S, Fraschetta F, Darin S, Albertazzi E, Galimberti S, Montini E, Calabria A, Cicalese MP, Aiuti A. Hematopoietic reconstitution dynamics of mobilized- and bone marrow-derived human hematopoietic stem cells after gene therapy. Nat Commun 2023; 14:3068. [PMID: 37244942 DOI: 10.1038/s41467-023-38448-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/28/2023] [Indexed: 05/29/2023] Open
Abstract
Mobilized peripheral blood is increasingly used instead of bone marrow as a source of autologous hematopoietic stem/progenitor cells for ex vivo gene therapy. Here, we present an unplanned exploratory analysis evaluating the hematopoietic reconstitution kinetics, engraftment and clonality in 13 pediatric Wiskott-Aldrich syndrome patients treated with autologous lentiviral-vector transduced hematopoietic stem/progenitor cells derived from mobilized peripheral blood (n = 7), bone marrow (n = 5) or the combination of the two sources (n = 1). 8 out of 13 gene therapy patients were enrolled in an open-label, non-randomized, phase 1/2 clinical study (NCT01515462) and the remaining 5 patients were treated under expanded access programs. Although mobilized peripheral blood- and bone marrow- hematopoietic stem/progenitor cells display similar capability of being gene-corrected, maintaining the engineered grafts up to 3 years after gene therapy, mobilized peripheral blood-gene therapy group shows faster neutrophil and platelet recovery, higher number of engrafted clones and increased gene correction in the myeloid lineage which correlate with higher amount of primitive and myeloid progenitors contained in hematopoietic stem/progenitor cells derived from mobilized peripheral blood. In vitro differentiation and transplantation studies in mice confirm that primitive hematopoietic stem/progenitor cells from both sources have comparable engraftment and multilineage differentiation potential. Altogether, our analyses reveal that the differential behavior after gene therapy of hematopoietic stem/progenitor cells derived from either bone marrow or mobilized peripheral blood is mainly due to the distinct cell composition rather than functional differences of the infused cell products, providing new frames of references for clinical interpretation of hematopoietic stem/progenitor cell transplantation outcome.
Collapse
Affiliation(s)
- Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Francesca Dionisio
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Maryam Omrani
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Department of Computer Science, Systems and Communication, University of Milano Bicocca, Milan, 20126, Italy
| | - Pamela Quaranta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Università Vita-Salute San Raffaele, Milan, 20132, Italy
| | - Raisa Jofra Hernandez
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Luca Del Core
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- University of Groningen - Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, Groningen, 9747, Netherlands
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Ilaria Monti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Federico Fraschetta
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Silvia Darin
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Elena Albertazzi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Stefania Galimberti
- Center of Biostatistics for Clinical Epidemiology, University of Milano-Bicocca, Monza, 20900, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Università Vita-Salute San Raffaele, Milan, 20132, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy.
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy.
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.
| |
Collapse
|
10
|
Ferrari S, Valeri E, Conti A, Scala S, Aprile A, Di Micco R, Kajaste-Rudnitski A, Montini E, Ferrari G, Aiuti A, Naldini L. Genetic engineering meets hematopoietic stem cell biology for next-generation gene therapy. Cell Stem Cell 2023; 30:549-570. [PMID: 37146580 DOI: 10.1016/j.stem.2023.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
The growing clinical success of hematopoietic stem/progenitor cell (HSPC) gene therapy (GT) relies on the development of viral vectors as portable "Trojan horses" for safe and efficient gene transfer. The recent advent of novel technologies enabling site-specific gene editing is broadening the scope and means of GT, paving the way to more precise genetic engineering and expanding the spectrum of diseases amenable to HSPC-GT. Here, we provide an overview of state-of-the-art and prospective developments of the HSPC-GT field, highlighting how advances in biological characterization and manipulation of HSPCs will enable the design of the next generation of these transforming therapeutics.
Collapse
Affiliation(s)
- Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Erika Valeri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anastasia Conti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Annamaria Aprile
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Giuliana Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy.
| |
Collapse
|
11
|
Omer-Javed A, Pedrazzani G, Albano L, Ghaus S, Latroche C, Manzi M, Ferrari S, Fiumara M, Jacob A, Vavassori V, Nonis A, Canarutto D, Naldini L. Mobilization-based chemotherapy-free engraftment of gene-edited human hematopoietic stem cells. Cell 2022; 185:2248-2264.e21. [PMID: 35617958 PMCID: PMC9240327 DOI: 10.1016/j.cell.2022.04.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/21/2022] [Accepted: 04/28/2022] [Indexed: 12/17/2022]
Abstract
Hematopoietic stem/progenitor cell gene therapy (HSPC-GT) is proving successful to treat several genetic diseases. HSPCs are mobilized, harvested, genetically corrected ex vivo, and infused, after the administration of toxic myeloablative conditioning to deplete the bone marrow (BM) for the modified cells. We show that mobilizers create an opportunity for seamless engraftment of exogenous cells, which effectively outcompete those mobilized, to repopulate the depleted BM. The competitive advantage results from the rescue during ex vivo culture of a detrimental impact of mobilization on HSPCs and can be further enhanced by the transient overexpression of engraftment effectors exploiting optimized mRNA-based delivery. We show the therapeutic efficacy in a mouse model of hyper IgM syndrome and further developed it in human hematochimeric mice, showing its applicability and versatility when coupled with gene transfer and editing strategies. Overall, our findings provide a potentially valuable strategy paving the way to broader and safer use of HSPC-GT. HSPC mobilizers create an opportunity to engraft exogenous cells in depleted niches Ex vivo culture endows HSPCs with migration advantage by rescuing CXCR4 expression Cultured HSPCs outcompete mobilized HSPCs for engraftment in depleted BM niches Transient engraftment enhancers coupled with gene editing confer a competitive advantage
Collapse
Affiliation(s)
- Attya Omer-Javed
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Gabriele Pedrazzani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Luisa Albano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Sherash Ghaus
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Claire Latroche
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Maura Manzi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Martina Fiumara
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Aurelien Jacob
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Valentina Vavassori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Alessandro Nonis
- CUSSB-University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Daniele Canarutto
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy; Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy.
| |
Collapse
|