1
|
Reynoso-Noverón N, Santibáñez-Andrade M, Torres J, Bautista-Ocampo Y, Sánchez-Pérez Y, García-Cuellar CM. Benzene exposure and pediatric leukemia: From molecular clues to epidemiological insights. Toxicol Lett 2024; 400:113-120. [PMID: 39181343 DOI: 10.1016/j.toxlet.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
According to the International Agency for Research on Cancer, leukemia ranks 14th in incidence and 11th in mortality and has a 5-year prevalence of approximately 1300,000 cases. Acute lymphoblastic leukemia is the most common hematopoietic syndrome in children during the first 5 years of life and represents approximately 75 % of all neoplasms among the pediatric population. The development of leukemia is strongly governed by DNA alterations that accelerate the growth of bone marrow cells. Currently, the most examined factor in pediatric leukemia is exposure to multiple compounds, such as hydrocarbons. Benzene, an aromatic hydrocarbon, can cause health challenges and is categorized as a carcinogen. Benzene toxicity has been widely associated with occupational exposure. Importantly, studies are underway to generate evidence that can provide clues regarding the risk of environmental benzene exposure and hematological problems in children. In this review, we summarize the existing evidence regarding the effects of benzene on pediatric leukemia, the associations between the effect of benzene on carcinogenesis, and the presence of certain molecular signatures in benzene-associated pediatric leukemia. Although there is sufficient evidence regarding the effects of benzene on carcinogenesis and leukemia, epidemiological research has primarily focused on occupational risk. Moreover, most benzene-induced molecular and cytogenetic alterations have been widely described in adults but not in the pediatric population. Thus, epidemiological efforts are crucial in the pediatric population in terms of epidemiological, clinical, and biomedical research.
Collapse
Affiliation(s)
- Nancy Reynoso-Noverón
- Dirección de Investigación, Instituto Nacional de Cancerología, Ciudad de México, Mexico.
| | - Miguel Santibáñez-Andrade
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Ciudad de México 14080, Mexico
| | - Juan Torres
- Dirección de Investigación, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Yanueh Bautista-Ocampo
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Ciudad de México 14080, Mexico
| | - Yesennia Sánchez-Pérez
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Ciudad de México 14080, Mexico
| | - Claudia M García-Cuellar
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Ciudad de México 14080, Mexico.
| |
Collapse
|
2
|
Subbiah V, Kurzrock R. Precision oncology across the ages: Impact on children, adolescents, and young adults. Cancer Cell 2024; 42:1473-1479. [PMID: 39214098 DOI: 10.1016/j.ccell.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/13/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Precision oncology endeavors to tailor therapies based on individual patient and tumor characteristics. This rapidly evolving field has transformed cancer treatment across all age groups. In this commentary, we review the application of precision oncology across different age groups, specifically in children, adolescents, and young adults, and emphasize that precision medicine is age and tissue agnostic.
Collapse
Affiliation(s)
- Vivek Subbiah
- Early-Phase Drug Development, Sarah Cannon Research Institute, Nashville, TN, USA.
| | - Razelle Kurzrock
- Genomic Sciences and Precision Medicine Center, and Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA; Chief Medical Officer, Equal Opportunity and Diversity Office, WIN Consortium, Paris, France; Medical Oncology, University of Nebraska, Omaha, NE, USA
| |
Collapse
|
3
|
Jaing TH, Wang YL, Chiu CC. Immune Checkpoint Inhibitors for Pediatric Cancers: Is It Still a Stalemate? Pharmaceuticals (Basel) 2024; 17:991. [PMID: 39204096 PMCID: PMC11357301 DOI: 10.3390/ph17080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
The knowledge surrounding the application of immune checkpoint inhibitors (ICIs) in the treatment of pediatric cancers is continuously expanding and evolving. These therapies work by enhancing the body's natural immune response against tumors, which may have been suppressed by certain pathways. The effectiveness of ICIs in treating adult cancers has been widely acknowledged. However, the results of early phase I/II clinical trials that exclusively targeted the use of ICIs for treating different pediatric cancers have been underwhelming. The response rates to ICIs have generally been modest, except for cases of pediatric classic Hodgkin lymphoma. There seems to be a notable disparity in the immunogenicity of childhood cancers compared to adult cancers, potentially accounting for this phenomenon. On average, childhood cancers tend to have significantly fewer neoantigens. In recent times, there has been a renewed sense of optimism regarding the potential benefits of ICI therapies for specific groups of children with cancer. In initial research, individuals diagnosed with pediatric hypermutated and SMARCB1-deficient cancers have shown remarkable positive outcomes when treated with ICI therapies. This is likely due to the underlying biological factors that promote the expression of neoantigens and inflammation within the tumor. Ongoing trials are diligently assessing the effectiveness of ICIs for pediatric cancer patients in these specific subsets. This review aimed to analyze the safety and effectiveness of ICIs in pediatric patients with different types of highly advanced malignancies.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| | - Yi-Lun Wang
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| | - Chia-Chi Chiu
- Division of Nursing, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| |
Collapse
|
4
|
Stoltze UK, Foss-Skiftesvik J, Hansen TVO, Rasmussen S, Karczewski KJ, Wadt KAW, Schmiegelow K. The evolutionary impact of childhood cancer on the human gene pool. Nat Commun 2024; 15:1881. [PMID: 38424437 PMCID: PMC10904397 DOI: 10.1038/s41467-024-45975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Germline pathogenic variants associated with increased childhood mortality must be subject to natural selection. Here, we analyze publicly available germline genetic metadata from 4,574 children with cancer [11 studies; 1,083 whole exome sequences (WES), 1,950 whole genome sequences (WGS), and 1,541 gene panel] and 141,456 adults [125,748 WES and 15,708 WGS]. We find that pediatric cancer predisposition syndrome (pCPS) genes [n = 85] are highly constrained, harboring only a quarter of the loss-of-function variants that would be expected. This strong indication of selective pressure on pCPS genes is found across multiple lines of germline genomics data from both pediatric and adult cohorts. For six genes [ELP1, GPR161, VHL and SDHA/B/C], a clear lack of mutational constraint calls the pediatric penetrance and/or severity of associated cancers into question. Conversely, out of 23 known pCPS genes associated with biallelic risk, two [9%, DIS3L2 and MSH2] show significant constraint, indicating that they may monoallelically increase childhood cancer risk. In summary, we show that population genetic data provide empirical evidence that heritable childhood cancer leads to natural selection powerful enough to have significantly impacted the present-day gene pool.
Collapse
Affiliation(s)
- Ulrik Kristoffer Stoltze
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark.
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark.
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Merkin Building, 415 Main St, Cambridge, MA, 02142, USA.
| | - Jon Foss-Skiftesvik
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark
- Department of Neurosurgery, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Konrad J Karczewski
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Merkin Building, 415 Main St, Cambridge, MA, 02142, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Genomic Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
| | - Karin A W Wadt
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark.
| |
Collapse
|
5
|
Chen X, Luo Z, Hu Z, Sun D, He Y, Lu J, Chen L, Liu S. Discovery of potent thiazolidin-4-one sulfone derivatives for inhibition of proliferation of osteosarcoma in vitro and in vivo. Eur J Med Chem 2024; 266:116082. [PMID: 38232462 DOI: 10.1016/j.ejmech.2023.116082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
Chemotherapy combining with surgical treatment has been the main strategy for osteosarcoma treatment in clinical. Due to unclear pathogenesis and unidentified drug targets, significant progress has not been made in the development of targeted drugs for osteosarcoma during the past 50 years. Our previous discovery reported compound R-8i with a high potency for the treatment of osteosarcoma by phenotypic screening. However, both the metabolic stability and bioavailability of R-8i are poor (T1/2 = 5.36 min, mouse liver microsome; and bioavailability in vivo F = 52.1 %, intraperitoneal administration) which limits it use for further drug development. Here, we described an extensive structure-activity relationship study of thiazolidine-4-one sulfone inhibitors from R-8i, which led to the discovery of compound 68. Compound 68 had a potent cellular activity with an IC50 value of 0.217 μM, much higher half-life (T1/2 = 73.8 min, mouse liver microsome) and an excellent pharmacokinetic profile (in vivo bioavailability F = 115 %, intraperitoneal administration). Compound 68 also showed good antitumor effects and low toxicity in a xenograft model (44.6 % inhibition osteosarcoma growth in BALB/c mice). These results suggest that compound 68 is a potential drug candidate for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Xuwen Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhengli Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zongjing Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Donghui Sun
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yingying He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shunying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
6
|
Wallin S, Øra I, Prochazka G, Sandgren J, Björklund C, Ljungman G, Vogt H, Ek T, van Tilburg CM, Nilsson A. Implementing data on targeted therapy from the INFORM registry platform for children with relapsed cancer in Sweden. Front Oncol 2024; 14:1340099. [PMID: 38357207 PMCID: PMC10865092 DOI: 10.3389/fonc.2024.1340099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Background Advances in treatment of childhood malignancies have improved overall cure rates to 80%. Nevertheless, cancer is still the most common cause of childhood mortality in Sweden. The prognosis is particularly poor for relapse of high-risk malignancies. In the international INFORM registry, tumor tissue from patients with relapsed, refractory, or progressive pediatric cancer as well as from very-high risk primary tumors is biologically characterized using next-generation sequencing to identify possible therapeutic targets. We analyzed data from Swedish children included in the INFORM registry concerning patient characteristics, survival, sequencing results and whether targeted treatment was administered to the children based on the molecular findings. Methods A registry-based descriptive analysis of 184 patients included in the INFORM registry in Sweden during 2016-2021. Results The most common diagnoses were soft tissue and bone sarcomas followed by high grade gliomas [including diffuse intrinsic pontine glioma (DIPG)]. Complete molecular analysis was successful for 203/212 samples originating from 184 patients. In 88% of the samples, at least one actionable target was identified. Highly prioritized targets, according to a preset scale, were identified in 48 (24%) samples from 40 patients and 24 of these patients received matched targeted treatment but only six children within a clinical trial. No statistically significant benefit in terms of overall survival or progression free survival was observed between children treated with matched targeted treatment compared to all others. Conclusion This international collaborative study demonstrate feasibility regarding sequencing of pediatric high-risk tumors providing molecular data regarding potential actionable targets to clinicians. For a few individuals the INFORM analysis was of utmost importance and should be regarded as a new standard of care with the potential to guide targeted therapy.
Collapse
Affiliation(s)
- Sofia Wallin
- Division of Pediatric Oncology, Department of Women and Children´s Health, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Øra
- Division of Pediatric Hematology-Oncology, Skåne University Hospital, & Clinical Sciences IKVL, Lund University, Lund, Sweden
| | - Gabriela Prochazka
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Sandgren
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Björklund
- Division of Pediatric Hematology-Oncology, Umeå University Hospital, Umeå, Sweden
| | - Gustaf Ljungman
- Department of Women and Children´s Health, Pediatric Hematology-Oncology Uppsala University, Uppsala, Sweden
| | - Hartmut Vogt
- Division of Pediatric Hematology-Oncology B153, Crown Princess Victoria Children’s Hospital, and Division of Children's and Women's Health, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Torben Ek
- University of Gothenburg and Children´s Cancer Center, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Cornelis M. van Tilburg
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Anna Nilsson
- Division of Pediatric Oncology, Department of Women and Children´s Health, Karolinska Institutet, Stockholm, Sweden
- Division of Pediatric Hematology-Oncology, Tema Barn, Astrid Lindgren Children’s Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
MacKeracher A, Arnoldo A, Siddaway R, Surrey LF, Somers GR. The Incidence of Multiple Fusions in a Series of Pediatric Soft Tissue and Bone Tumors. Pediatr Dev Pathol 2024; 27:3-12. [PMID: 37771132 PMCID: PMC10800079 DOI: 10.1177/10935266231199928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
BACKGROUND Next generation sequencing (NGS) has increased the detection of fusion genes in cancer. NGS has found multiple fusions in single tumor samples; however, the incidence of this in pediatric soft tissue and bone tumors (PSTBTs) is not well documented. The aim of this study is to catalogue the incidence of multiple fusions in a series of PSTBTs, and apply a modified gene fusion classification system to determine clinical relevance. METHODOLOGY RNA from 78 bone and soft tissue tumors and 7 external quality assessment samples were sequenced and analyzed using recently-described Metafusion (MF) software and classified using a modification of previously-published schema for fusion classification into 3 tiers: 1, strong clinical significance; 2, potential clinical significance; and 3, unknown clinical significance. RESULTS One-hundred forty-five fusions were detected in 85 samples. Fifty-five samples (65%) had a single fusion and 30 (35%) had more than 1 fusion. No samples contained more than 1 tier 1 fusion. There were 40 tier 1 (28%), 36 tier 2 (24%), and 69 (48%) tier 3 fusions. CONCLUSIONS A significant percentage of PSTBTs harbor more than 1 fusion, and by applying a modified fusion classification scheme, the potential clinical relevance of such fusions can be determined.
Collapse
Affiliation(s)
- Anastasia MacKeracher
- Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Anthony Arnoldo
- Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Robert Siddaway
- Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Lea F. Surrey
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Gino R. Somers
- Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Marshall M, Ivanovich J, Schmitt M, Helvie A, Langsford L, Casterline J, Ferguson M. Pediatric precision oncology: "better three hours too soon than a minute too late". Front Oncol 2023; 13:1279953. [PMID: 38023209 PMCID: PMC10643134 DOI: 10.3389/fonc.2023.1279953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Precision oncology is defined as the selection of an effective treatment for a cancer patient based upon genomic profiling of the patient's tumor to identify targetable alterations. The application of precision oncology toward pediatric cancer patients has moved forward more slowly than with adults but is gaining momentum. Clinical and pharmaceutical advances developed over the past decade for adult cancer indications have begun to move into pediatric oncology, expanding treatment options for young high-risk and refractory patients. As a result, the FDA has approved 23 targeted drugs for pediatric cancer indications, moving targeted drugs into the standard of care. Our precision oncology program is in a medium sized children's hospital, lacking internal sequencing capabilities and bioinformatics. We have developed methods, medical and business partnerships to provide state-of-the-art tumor characterization and targeted treatment options for our patients. We present here a streamlined and practical protocol designed to enable any oncologist to implement precision oncology options for their patients.
Collapse
Affiliation(s)
- Mark Marshall
- Division of Hematology/Oncology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jennifer Ivanovich
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Morgan Schmitt
- Division of Hematology/Oncology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Amy Helvie
- The Medical Affairs Company, Kennesaw, GA, United States
| | - Lisa Langsford
- Division of Hematology/Oncology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jennifer Casterline
- Division of Hematology/Oncology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Michael Ferguson
- Division of Hematology/Oncology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
9
|
Schieffer KM, Moccia A, Bucknor BA, Stonerock E, Jayaraman V, Jenkins H, McKinney A, Koo SC, Mathew MT, Mardis ER, Lee K, Reshmi SC, Cottrell CE. Expanding the Clinical Utility of Targeted RNA Sequencing Panels beyond Gene Fusions to Complex, Intragenic Structural Rearrangements. Cancers (Basel) 2023; 15:4394. [PMID: 37686670 PMCID: PMC10486946 DOI: 10.3390/cancers15174394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Gene fusions are a form of structural rearrangement well established as driver events in pediatric and adult cancers. The identification of such events holds clinical significance in the refinement, prognostication, and provision of treatment in cancer. Structural rearrangements also extend beyond fusions to include intragenic rearrangements, such as internal tandem duplications (ITDs) or exon-level deletions. These intragenic events have been increasingly implicated as cancer-promoting events. However, the detection of intragenic rearrangements may be challenging to resolve bioinformatically with short-read sequencing technologies and therefore may not be routinely assessed in panel-based testing. Within an academic clinical laboratory, over three years, a total of 608 disease-involved samples (522 hematologic malignancy, 86 solid tumors) underwent clinical testing using Anchored Multiplex PCR (AMP)-based RNA sequencing. Hematologic malignancies were evaluated using a custom Pan-Heme 154 gene panel, while solid tumors were assessed using a custom Pan-Solid 115 gene panel. Gene fusions, ITDs, and intragenic deletions were assessed for diagnostic, prognostic, or therapeutic significance. When considering gene fusions alone, we report an overall diagnostic yield of 36% (37% hematologic malignancy, 41% solid tumors). When including intragenic structural rearrangements, the overall diagnostic yield increased to 48% (48% hematologic malignancy, 45% solid tumor). We demonstrate the clinical utility of reporting structural rearrangements, including gene fusions and intragenic structural rearrangements, using an AMP-based RNA sequencing panel.
Collapse
Affiliation(s)
- Kathleen M. Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Amanda Moccia
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Brianna A. Bucknor
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Eileen Stonerock
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Vijayakumar Jayaraman
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Heather Jenkins
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Aimee McKinney
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Selene C. Koo
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Mariam T. Mathew
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Elaine R. Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Kristy Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Shalini C. Reshmi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Catherine E. Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Miller-Phillips L, Collisson EA. RAS and Other Molecular Targets in Pancreatic Cancer: The Next Wave Is Coming. Curr Treat Options Oncol 2023:10.1007/s11864-023-01096-x. [PMID: 37296367 DOI: 10.1007/s11864-023-01096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 06/12/2023]
Abstract
OPINION STATEMENT Since the discovery of oncogenes in the 1970s, cancer doctors and researchers alike have understood the promise of discovering drugs to block the dominantly acting function of mutated signaling proteins in cancer. This promise was delivered, first slowly, with early signals inhibiting HER2 and BCR-Abl in the 1990s and 2000s, and then quickly, with kinase inhibitors being approved hand over fist in non-small cell lung cancer, melanoma, and many other malignancies. The RAS proteins, however, remained recalcitrant to chemical inhibition for decades, despite being, by far, the most frequently mutated oncogenes in cancers of all types. Nowhere was this deficit more palpable than in pancreatic ductal adenocarcinoma (PDA), where > 90% of cases are driven by single nucleotide substitutions at a single codon of the KRAS gene. The ice began to crack in 2012 when Ostrem and colleagues (Nature 503(7477): 548-551, 2013) synthesized the first KRAS G12C inhibitors, which covalently bind to GDP-bound G12C-mutated KRAS and lock the oncoprotein in its inactive state. In the last decade, the scientific community has established a new foundation on this and other druggable pockets in mutant KRAS. Here we provide an up-to-date overview of drugs targeting KRAS and other molecular targets in pancreatic cancer.
Collapse
Affiliation(s)
- Lisa Miller-Phillips
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, UCSF, 1450 3Rd Street HD-375, San Francisco, CA, 94158-0128, USA
| | - Eric A Collisson
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, UCSF, 1450 3Rd Street HD-375, San Francisco, CA, 94158-0128, USA.
| |
Collapse
|
11
|
Vicente-Garcés C, Maynou J, Fernández G, Esperanza-Cebollada E, Torrebadell M, Català A, Rives S, Camós M, Vega-García N. Fusion InPipe, an integrative pipeline for gene fusion detection from RNA-seq data in acute pediatric leukemia. Front Mol Biosci 2023; 10:1141310. [PMID: 37363396 PMCID: PMC10288994 DOI: 10.3389/fmolb.2023.1141310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
RNA sequencing (RNA-seq) is a reliable tool for detecting gene fusions in acute leukemia. Multiple bioinformatics pipelines have been developed to analyze RNA-seq data, but an agreed gold standard has not been established. This study aimed to compare the applicability of 5 fusion calling pipelines (Arriba, deFuse, CICERO, FusionCatcher, and STAR-Fusion), as well as to define and develop an integrative bioinformatics pipeline (Fusion InPipe) to detect clinically relevant gene fusions in acute pediatric leukemia. We analyzed RNA-seq data by each pipeline individually and by Fusion InPipe. Each algorithm individually called most of the fusions with similar sensitivity and precision. However, not all rearrangements were called, suggesting that choosing a single pipeline might cause missing important fusions. To improve this, we integrated the results of the five algorithms in just one pipeline, Fusion InPipe, comparing the output from the agreement of 5/5, 4/5, and 3/5 algorithms. The maximum sensitivity was achieved with the agreement of 3/5 algorithms, with a global sensitivity of 95%, achieving a 100% in patients' data. Furthermore, we showed the necessity of filtering steps to reduce the false positive detection rate. Here, we demonstrate that Fusion InPipe is an excellent tool for fusion detection in pediatric acute leukemia with the best performance when selecting those fusions called by at least 3/5 pipelines.
Collapse
Affiliation(s)
- Clara Vicente-Garcés
- Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Sant Joan de Déu, Leukemia and Pediatric Hematology Disorders, Developmental Tumors Biology Group, Esplugues de Llobregat, Spain
| | - Joan Maynou
- Hospital Sant Joan de Déu Barcelona, Genetics Medicine Section, Esplugues de Llobregat, Spain
- Institut de Recerca Hospital Sant Joan de Déu, Neurogenetics and Molecular Medicine, Esplugues de Llobregat, Spain
| | - Guerau Fernández
- Hospital Sant Joan de Déu Barcelona, Genetics Medicine Section, Esplugues de Llobregat, Spain
- Institut de Recerca Hospital Sant Joan de Déu, Neurogenetics and Molecular Medicine, Esplugues de Llobregat, Spain
| | - Elena Esperanza-Cebollada
- Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Sant Joan de Déu, Leukemia and Pediatric Hematology Disorders, Developmental Tumors Biology Group, Esplugues de Llobregat, Spain
| | - Montserrat Torrebadell
- Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Sant Joan de Déu, Leukemia and Pediatric Hematology Disorders, Developmental Tumors Biology Group, Esplugues de Llobregat, Spain
- Hospital Sant Joan de Déu Barcelona, Hematology Laboratory, Esplugues de Llobregat, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red De Enfermedades Raras (CIBERER), Madrid, Spain
| | - Albert Català
- Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Sant Joan de Déu, Leukemia and Pediatric Hematology Disorders, Developmental Tumors Biology Group, Esplugues de Llobregat, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red De Enfermedades Raras (CIBERER), Madrid, Spain
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan De Déu Barcelona, Leukemia and Lymphoma Unit, Barcelona, Spain
| | - Susana Rives
- Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Sant Joan de Déu, Leukemia and Pediatric Hematology Disorders, Developmental Tumors Biology Group, Esplugues de Llobregat, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red De Enfermedades Raras (CIBERER), Madrid, Spain
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan De Déu Barcelona, Leukemia and Lymphoma Unit, Barcelona, Spain
| | - Mireia Camós
- Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Sant Joan de Déu, Leukemia and Pediatric Hematology Disorders, Developmental Tumors Biology Group, Esplugues de Llobregat, Spain
- Hospital Sant Joan de Déu Barcelona, Hematology Laboratory, Esplugues de Llobregat, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red De Enfermedades Raras (CIBERER), Madrid, Spain
| | - Nerea Vega-García
- Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Sant Joan de Déu, Leukemia and Pediatric Hematology Disorders, Developmental Tumors Biology Group, Esplugues de Llobregat, Spain
- Hospital Sant Joan de Déu Barcelona, Hematology Laboratory, Esplugues de Llobregat, Spain
| |
Collapse
|
12
|
Ivanov AV, Alecsa MS, Popescu R, Starcea MI, Mocanu AM, Rusu C, Miron IC. Pediatric Acute Lymphoblastic Leukemia Emerging Therapies-From Pathway to Target. Int J Mol Sci 2023; 24:ijms24054661. [PMID: 36902091 PMCID: PMC10003692 DOI: 10.3390/ijms24054661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Over the past 40 years, the 5-years-overall survival rate of pediatric cancer reached 75-80%, and for acute lymphoblastic leukemia (ALL), exceeded 90%. Leukemia continues to be a major cause of mortality and morbidity for specific patient populations, including infants, adolescents, and patients with high-risk genetic abnormalities. The future of leukemia treatment needs to count better on molecular therapies as well as immune and cellular therapy. Advances in the scientific interface have led naturally to advances in the treatment of childhood cancer. These discoveries have involved the recognition of the importance of chromosomal abnormalities, the amplification of the oncogenes, the aberration of tumor suppressor genes, as well as the dysregulation of cellular signaling and cell cycle control. Lately, novel therapies that have already proven efficient on relapsed/refractory ALL in adults are being evaluated in clinical trials for young patients. Tirosine kinase inhibitors are, by now, part of the standardized treatment of Ph+ALL pediatric patients, and Blinatumomab, with promising results in clinical trials, received both FDA and EMA approval for use in children. Moreover, other targeted therapies such as aurora-kinase inhibitors, MEK-inhibitors, and proteasome-inhibitors are involved in clinical trials that include pediatric patients. This is an overview of the novel leukemia therapies that have been developed starting from the molecular discoveries and those that have been applied in pediatric populations.
Collapse
Affiliation(s)
- Anca Viorica Ivanov
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Mirabela Smaranda Alecsa
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Correspondence: (M.S.A.); (R.P.)
| | - Roxana Popescu
- Medical Genetics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Correspondence: (M.S.A.); (R.P.)
| | - Magdalena Iuliana Starcea
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Adriana Maria Mocanu
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Cristina Rusu
- Medical Genetics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Ingrith Crenguta Miron
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
13
|
Neumayer C, Ng D, Jiang CS, Qureshi A, Lalazar G, Vaughan R, Simon SM. Oncogenic Addiction of Fibrolamellar Hepatocellular Carcinoma to the Fusion Kinase DNAJB1-PRKACA. Clin Cancer Res 2023; 29:271-278. [PMID: 36302174 PMCID: PMC9811160 DOI: 10.1158/1078-0432.ccr-22-1851] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/16/2022] [Accepted: 10/24/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Gene fusions are drivers of many pediatric tumors. In fibrolamellar hepatocellular carcinoma (FLC), a fusion of DNAJB1 and PRKACA is the dominant recurrent mutation. Expression of the DNAJB1-PRKACA fusion gene in mice results in a tumor that recapitulates FLC. However, it is not known whether transient expression of DNAJB1-PRKACA is sufficient only to trigger tumor formation or whether ongoing expression is necessary for maintenance and progression. EXPERIMENTAL DESIGN We screened short hairpin RNAs (shRNA) tiled over the fusion junction and identified several potent and specific candidates in vitro and two independent FLC patient-derived xenografts (PDX). RESULTS We show that continued DNAJB1-PRKACA expression is not only required for continued tumor growth, but additionally its inhibition results in cell death. Inhibition of DNAJB1-PRKACA by an inducible shRNA in cells of PDX of FLC resulted in cell death in vitro. Induction of the shRNA inhibits FLC tumors growing in mice with no effect on xenografts from a hepatocellular carcinoma cell line engineered to express DNAJB1-PRKACA. CONCLUSIONS Our results validate DNAJB1-PRKACA as the oncogene in FLC and demonstrate both a continued requirement for the oncogene for tumor growth as well as an oncogenic addiction that can be exploited for targeted therapies. We anticipate our approach will be useful for investigations of other fusion genes in pediatric cancers and spur development of precision therapies.
Collapse
Affiliation(s)
- Christoph Neumayer
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY
| | - Denise Ng
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY
| | | | - Adam Qureshi
- Hospital Biostatistics, The Rockefeller University; New York, NY
| | - Gadi Lalazar
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY,Current address: Digestive Disease Institute, Shaare Zedek Medical Center; Jerusalem, Israel
| | - Roger Vaughan
- Hospital Biostatistics, The Rockefeller University; New York, NY
| | - Sanford M. Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY,Corresponding Author: Sanford M. Simon; The Rockefeller University; 1230 York Avenue; New York, NY 10065; Phone: 212-327-8130;
| |
Collapse
|
14
|
Miller AR, Wijeratne S, McGrath SD, Schieffer KM, Miller KE, Lee K, Mathew M, LaHaye S, Fitch JR, Kelly BJ, White P, Mardis ER, Wilson RK, Cottrell CE, Magrini V. Pacific Biosciences Fusion and Long Isoform Pipeline for Cancer Transcriptome-Based Resolution of Isoform Complexity. J Mol Diagn 2022; 24:1292-1306. [PMID: 36191838 DOI: 10.1016/j.jmoldx.2022.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 08/05/2022] [Accepted: 09/13/2022] [Indexed: 01/13/2023] Open
Abstract
Genomic profiling using short-read sequencing has utility in detecting disease-associated variation in both DNA and RNA. However, given the frequent occurrence of structural variation in cancer, molecular profiling using long-read sequencing improves the resolution of such events. For example, the Pacific Biosciences long-read RNA-sequencing (Iso-Seq) transcriptome protocol provides full-length isoform characterization, discernment of allelic phasing, and isoform discovery, and identifies expressed fusion partners. The Pacific Biosciences Fusion and Long Isoform Pipeline (PB_FLIP) incorporates a suite of RNA-sequencing software analysis tools and scripts to identify expressed fusion partners and isoforms. In addition, sequencing of a commercial reference (Spike-In RNA Variants) with known isoform complexity was performed and demonstrated high recall of the Iso-Seq and PB_FLIP workflow to benchmark our protocol and analysis performance. This study describes the utility of Iso-Seq and PB_FLIP analysis in improving deconvolution of complex structural variants and isoform detection within an institutional pediatric and adolescent/young adult translational cancer research cohort. The exemplar case studies demonstrate that Iso-Seq and PB_FLIP discover novel expressed fusion partners, resolve complex intragenic alterations, and discriminate between allele-specific expression profiles.
Collapse
Affiliation(s)
- Anthony R Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Saranga Wijeratne
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Sean D McGrath
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Kathleen M Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Kristy Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Mariam Mathew
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Stephanie LaHaye
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - James R Fitch
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Benjamin J Kelly
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio.
| | - Vincent Magrini
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
15
|
Aepala MR, Peiris MN, Jiang Z, Yang W, Meyer AN, Donoghue DJ. Nefarious NTRK oncogenic fusions in pediatric sarcomas: Too many to Trk. Cytokine Growth Factor Rev 2022; 68:93-106. [PMID: 36153202 DOI: 10.1016/j.cytogfr.2022.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
Neurotrophic Tyrosine Receptor Kinase (NTRK) genes undergo chromosomal translocations to create novel open reading frames coding for oncogenic fusion proteins; the N-terminal portion, donated by various partner genes, becomes fused to the tyrosine kinase domain of either NTRK1, NTRK2, or NTRK3. NTRK fusion proteins have been identified as driver oncogenes in a wide variety of tumors over the past three decades, including Pediatric Gliomas, Papillary Thyroid Carcinoma, Spitzoid Neoplasms, Glioblastoma, and additional tumors. Importantly, NTRK fusions function as drivers of pediatric sarcomas, accounting for approximately 15% of childhood cancers including Infantile Fibrosarcoma (IFS), a subset of pediatric soft tissue sarcoma (STS). While tyrosine kinase inhibitors (TKIs), such as larotrectinib and entrectinib, have demonstrated profound results against NTRK fusion-positive cancers, acquired resistance to these TKIs has resulted in the formation of gatekeeper, solvent-front, and compound mutations. We present a comprehensive compilation of oncogenic fusions involving NTRKs focusing specifically on pediatric STS, examining their biological signaling pathways and mechanisms of activation. The importance of an obligatory dimerization or multimerization domain, invariably donated by the N-terminal fusion partner, is discussed using characteristic fusions that occur in pediatric sarcomas. In addition, examples are presented of oncogenic fusion proteins in which the N-terminal partners may contribute additional biological activities beyond an oligomerization domain. Lastly, therapeutic approaches to the treatment of pediatric sarcoma will be presented, using first generation and second-generation agents such as selitrectinib and repotrectinib.
Collapse
Affiliation(s)
- Megha R Aepala
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Malalage N Peiris
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Zian Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Wei Yang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA; UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0367, USA.
| |
Collapse
|
16
|
Elmajee M, Osman K, Dermanis A, Duffaydar H, Soon WC, czyz M. A literature Review: The genomic landscape of spinal chondrosarcoma and potential diagnostic, prognostic & therapeutic implications. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2022.101651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
17
|
Desai AV, Robinson GW, Gauvain K, Basu EM, Macy ME, Maese L, Whipple NS, Sabnis AJ, Foster JH, Shusterman S, Yoon J, Weiss BD, Abdelbaki MS, Armstrong AE, Cash T, Pratilas CA, Corradini N, Marshall LV, Farid-Kapadia M, Chohan S, Devlin C, Meneses-Lorente G, Cardenas A, Hutchinson KE, Bergthold G, Caron H, Chow Maneval E, Gajjar A, Fox E. Entrectinib in children and young adults with solid or primary CNS tumors harboring NTRK, ROS1, or ALK aberrations (STARTRK-NG). Neuro Oncol 2022; 24:1776-1789. [PMID: 35395680 PMCID: PMC9527518 DOI: 10.1093/neuonc/noac087] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Entrectinib is a TRKA/B/C, ROS1, ALK tyrosine kinase inhibitor approved for the treatment of adults and children aged ≥12 years with NTRK fusion-positive solid tumors and adults with ROS1 fusion-positive non-small-cell lung cancer. We report an analysis of the STARTRK-NG trial, investigating the recommended phase 2 dose (RP2D) and activity of entrectinib in pediatric patients with solid tumors including primary central nervous system tumors. METHODS STARTRK-NG (NCT02650401) is a phase 1/2 trial. Phase 1, dose-escalation of oral, once-daily entrectinib, enrolled patients aged <22 years with solid tumors with/without target NTRK1/2/3, ROS1, or ALK fusions. Phase 2, basket trial at the RP2D, enrolled patients with intracranial or extracranial solid tumors harboring target fusions or neuroblastoma. Primary endpoints: phase 1, RP2D based on toxicity; phase 2, objective response rate (ORR) in patients harboring target fusions. Safety-evaluable patients: ≥1 dose of entrectinib; response-evaluable patients: measurable/evaluable baseline disease and ≥1 dose at RP2D. RESULTS At data cutoff, 43 patients, median age of 7 years, were response-evaluable. In phase 1, 4 patients experienced dose-limiting toxicities. The most common treatment-related adverse event was weight gain (48.8%). Nine patients experienced bone fractures (20.9%). In patients with fusion-positive tumors, ORR was 57.7% (95% CI 36.9-76.7), median duration of response was not reached, and median (interquartile range) duration of treatment was 10.6 months (4.2-18.4). CONCLUSIONS Entrectinib resulted in rapid and durable responses in pediatric patients with solid tumors harboring NTRK1/2/3 or ROS1 fusions.
Collapse
Affiliation(s)
- Ami V Desai
- Department of Pediatrics, Section of Hematology/Oncology/Stem Cell Transplantation, University of Chicago Medical Center, Chicago, Illinois, USA
| | - Giles W Robinson
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Karen Gauvain
- Pediatric Neuro-Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ellen M Basu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Margaret E Macy
- Pediatric Hematology-Oncology, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Luke Maese
- Department of Pediatrics, Division of Hematology/Oncology, University of Utah/Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Nicholas S Whipple
- Pediatric Hematology-Oncology, University of Utah, Salt Lake City, Utah, USA
| | - Amit J Sabnis
- Division of Pediatric Oncology, Department of Pediatrics, University of California, San Francisco, California, USA
| | - Jennifer H Foster
- Department of Pediatrics, Hematology-Oncology, Texas Children’s Hospital, Houston, Texas, USA
| | - Suzanne Shusterman
- Pediatric Hematology and Oncology, Dana Farber Cancer Institute/Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Janet Yoon
- Department of Pediatrics, University of California San Diego, San Diego, California, USA
| | - Brian D Weiss
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mohamed S Abdelbaki
- Division of Hematology & Oncology, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Amy E Armstrong
- Division of Pediatric Hematology/Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Thomas Cash
- Pediatric Hematology/Oncology, Aflac Cancer & Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christine A Pratilas
- Department of Oncology, Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nadège Corradini
- Department of Pediatric Hematology and Oncology, Institute of Pediatric Hematology and Oncology (IHOPe), Léon Bérard Cancer Centre, Lyon, France
| | - Lynley V Marshall
- Children and Young People’s Unit, The Royal Marsden Hospital and The Institute of Cancer Research, London, UK
| | | | - Saibah Chohan
- PDD Data & Statistical Sciences, F. Hoffmann-La Roche Ltd., Mississauga, Ontario, Canada
| | - Clare Devlin
- Pharma Development Oncology and Hematology, Roche Products Ltd., Welwyn Garden City, UK
| | | | - Alison Cardenas
- Clinical Safety, Genentech, Inc., South San Francisco, California, USA
| | | | | | - Hubert Caron
- Product Development Oncology, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Amar Gajjar
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Elizabeth Fox
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
18
|
Fisch AS, Church AJ. Special Considerations in the Molecular Diagnostics of Pediatric Neoplasms. Clin Lab Med 2022; 42:349-365. [DOI: 10.1016/j.cll.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Zhang L, Wang D, Han X, Guo X, Cao Y, Xia Y, Gao D. Novel read-through fusion transcript Bcl2l2-Pabpn1 in glioblastoma cells. J Cell Mol Med 2022; 26:4686-4697. [PMID: 35894779 PMCID: PMC9443946 DOI: 10.1111/jcmm.17481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/11/2022] [Accepted: 06/19/2022] [Indexed: 11/29/2022] Open
Abstract
Read‐through fusion transcripts have recently been identified as chimeric RNAs and have since been linked to tumour growth in some cases. Many fusion genes generated by chromosomal rearrangements have been described in glioblastoma. However, read‐through fusion transcripts between neighbouring genes in glioblastoma remain unexplored. We performed paired‐end RNA‐seq of rat C6 glioma cells and normal cells and discovered a read‐through fusion transcript Bcl2l2‐Pabpn1 in which exon 3 of Bcl‐2‐like protein 2 (Bcl2l2) fused to exon 2 of Polyadenylate‐binding protein 1 (Pabpn1). This fusion transcript was found in both human glioblastoma and normal cells. Unlike other fusions reported in glioblastoma, Bcl2l2‐Pabpn1 appeared to result from RNA processing rather than genomic rearrangement. Bcl2l2‐Pabpn1 fusion transcript encoded a fusion protein with BH4, BCL and RRM domains. Functionally, Bcl2l2‐Pabpn1 knockdown by targeting its fusion junction decreased its expression, and suppressed cell proliferation, migration and invasion in vitro. Mechanistically, Bcl2l2‐Pabpn1 blocked Bax activity and activated PI3K/AKT pathway to promote glioblastoma progression. Together, our work characterized a glioblastoma‐associated Bcl2l2‐Pabpn1 fusion transcript shared by humans and rats.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China.,School of Nursing, Xuzhou Medical University, Xuzhou, China
| | - Dan Wang
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Xiao Han
- Nanjing Medical University, Nanjing, China
| | - Xiaoxiao Guo
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Yuanyuan Cao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Ying Xia
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Dianshuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
20
|
Severgnini M, D’Angiò M, Bungaro S, Cazzaniga G, Cifola I, Fazio G. Conjoined Genes as Common Events in Childhood Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 14:cancers14143523. [PMID: 35884588 PMCID: PMC9315513 DOI: 10.3390/cancers14143523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Acute lymphoblastic leukemia (ALL) is the most frequent childhood cancer. In recent years, broad application of NGS technologies enabled the discovery of novel genomically defined ALL. In this study, as a proof-of-principle, we applied RNA-seq technology to comprehensively profile the transcriptional landscape of a collection of 10 childhood BCP-ALL cases, and performed a deep bioinformatics analysis including several publicly available datasets, in order to characterize their full spectrum of transcriptional events. The paired-end RNA sequencing of our BCP-ALL pediatric cohort revealed a total of 9001 raw fusion events, which, after filtering, resulted in 245 candidate fusions. Overall, 235 out of 245 events were intra-chromosomal fusions, among which 229 involved two contiguous or overlapping genes, also known as conjoined genes (CGs). Among them, we identified a subset of 14 CGs (6.1%) exclusively expressed in leukemic cases but neither in solid cancers nor in normal samples. These events could be suggestive of a novel mechanism of transcriptional regulation in childhood leukemia and may represent novel potential leukemia-specific biomarkers. Abstract Acute lymphoblastic leukemia (ALL) is the most frequent childhood cancer. For the last three decades, conventional cytogenetic and molecular approaches allowed the identification of genetic abnormalities having prognostic and therapeutic relevance. Although the current cure rate in pediatric B cell acute leukemia is approximately 90%, it remains one of the leading causes of mortality in childhood. Furthermore, in the contemporary protocols, chemotherapy intensity was raised to the maximal levels of tolerability, and further improvements in the outcome will depend on the characterization and reclassification of the disease, as well as on the development of new targeted drugs. The recent technological advances in genome-wide profiling techniques have allowed the exploration of the molecular heterogeneity of this disease, even though some potentially interesting biomarkers such as conjoined genes have not been deeply investigated yet. In the present study, we performed the transcriptome sequencing (RNA-seq) of 10 pediatric B cell precursor (BCP)-ALL cases with different risk (four standard- and six high-risk patients) enrolled in the Italian AIEOP-BFM ALL2000 protocol, in order to characterize the full spectrum of transcriptional events and to identify novel potential genetic mechanisms sustaining their different early response to therapy. Total RNA was extracted from primary leukemic blasts and RNA-seq was performed by Illumina technology. Bioinformatics analysis focused on fusion transcripts, originated from either inter- or intra-chromosomal structural rearrangements. Starting from a raw list of 9001 candidate events, by employing a custom-made bioinformatics pipeline, we obtained a short list of 245 candidate fusions. Among them, 10 events were compatible with chromosomal translocations. Strikingly, 235/245 events were intra-chromosomal fusions, 229 of which involved two contiguous or overlapping genes, resulting in the so-called conjoined genes (CGs). To explore the specificity of these events in leukemia, we performed an extensive bioinformatics meta-analysis and evaluated the presence of the fusions identified in our 10 BCP-ALL cohort in several other publicly available RNA-seq datasets, including leukemic, solid tumor and normal sample collections. Overall, 14/229 (6.1%) CGs were found to be exclusively expressed in leukemic cases, suggesting an association between CGs and leukemia. Moreover, CGs were found to be common events both in standard- and high-risk BCP-ALL patients and it might be suggestive of a novel potential transcriptional regulation mechanism active in leukemic cells.
Collapse
Affiliation(s)
- Marco Severgnini
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, 20054 Milano, Italy; (M.S.); (I.C.)
| | - Mariella D’Angiò
- School of Medicine and Surgery, Università degli Studi di Milano Bicocca, 20126 Milano, Italy;
- Tettamanti Research Center, University of Milan Bicocca, 20900 Monza, Italy;
| | - Silvia Bungaro
- Ospedale San Gerardo, Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), 20900 Monza, Italy;
| | - Giovanni Cazzaniga
- School of Medicine and Surgery, Università degli Studi di Milano Bicocca, 20126 Milano, Italy;
- Tettamanti Research Center, University of Milan Bicocca, 20900 Monza, Italy;
- Correspondence: ; Tel.: +39-039-233-3661
| | - Ingrid Cifola
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, 20054 Milano, Italy; (M.S.); (I.C.)
| | - Grazia Fazio
- Tettamanti Research Center, University of Milan Bicocca, 20900 Monza, Italy;
| |
Collapse
|
21
|
Chang WI, Lin C, Liguori N, Honeyman JN, DeNardo B, El-Deiry W. Molecular Targets for Novel Therapeutics in Pediatric Fusion-Positive Non-CNS Solid Tumors. Front Pharmacol 2022; 12:747895. [PMID: 35126101 PMCID: PMC8811504 DOI: 10.3389/fphar.2021.747895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022] Open
Abstract
Chromosomal fusions encoding novel molecular drivers have been identified in several solid tumors, and in recent years the identification of such pathogenetic events in tumor specimens has become clinically actionable. Pediatric sarcomas and other rare tumors that occur in children as well as adults are a group of heterogeneous tumors often with driver gene fusions for which some therapeutics have already been developed and approved, and others where there is opportunity for progress and innovation to impact on patient outcomes. We review the chromosomal rearrangements that represent oncogenic events in pediatric solid tumors outside of the central nervous system (CNS), such as Ewing Sarcoma, Rhabdomyosarcoma, Fibrolamellar Hepatocellular Carcinoma, and Renal Cell Carcinoma, among others. Various therapeutics such as CDK4/6, FGFR, ALK, VEGF, EGFR, PDGFR, NTRK, PARP, mTOR, BRAF, IGF1R, HDAC inhibitors are being explored among other novel therapeutic strategies such as ONC201/TIC10.
Collapse
Affiliation(s)
- Wen-I Chang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Pediatric Hematology/Oncology, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, United States
- *Correspondence: Wen-I Chang, ; Wafik El-Deiry,
| | - Claire Lin
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Nicholas Liguori
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Joshua N. Honeyman
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, United States
- Pediatric Surgery, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Bradley DeNardo
- Pediatric Hematology/Oncology, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, United States
| | - Wafik El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
- *Correspondence: Wen-I Chang, ; Wafik El-Deiry,
| |
Collapse
|
22
|
Functional characterization of NPM1-TYK2 fusion oncogene. NPJ Precis Oncol 2022; 6:3. [PMID: 35042970 PMCID: PMC8766497 DOI: 10.1038/s41698-021-00246-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/16/2021] [Indexed: 11/08/2022] Open
Abstract
Gene fusions are known to drive many human cancers. Therefore, the functional characterization of newly discovered fusions is critical to understanding the oncobiology of these tumors and to enable therapeutic development. NPM1–TYK2 is a novel fusion identified in CD30 + lymphoproliferative disorders, and here we present the functional evaluation of this fusion gene as an oncogene. The chimeric protein consists of the amino-terminus of nucleophosmin 1 (NPM1) and the carboxyl-terminus of tyrosine kinase 2 (TYK2), including the kinase domain. Using in vitro lymphoid cell transformation assays and in vivo tumorigenic xenograft models we present direct evidence that the fusion gene is an oncogene. NPM1 fusion partner provides the critical homodimerization needed for the fusion kinase constitutive activation and downstream signaling that are responsible for cell transformation. As a result, our studies identify NPM1–TYK2 as a novel fusion oncogene and suggest that inhibition of fusion homodimerization could be a precision therapeutic approach in cutaneous T-cell lymphoma patients expressing this chimera.
Collapse
|
23
|
LaHaye S, Fitch JR, Voytovich KJ, Herman AC, Kelly BJ, Lammi GE, Arbesfeld JA, Wijeratne S, Franklin SJ, Schieffer KM, Bir N, McGrath SD, Miller AR, Wetzel A, Miller KE, Bedrosian TA, Leraas K, Varga EA, Lee K, Gupta A, Setty B, Boué DR, Leonard JR, Finlay JL, Abdelbaki MS, Osorio DS, Koo SC, Koboldt DC, Wagner AH, Eisfeld AK, Mrózek K, Magrini V, Cottrell CE, Mardis ER, Wilson RK, White P. Discovery of clinically relevant fusions in pediatric cancer. BMC Genomics 2021; 22:872. [PMID: 34863095 PMCID: PMC8642973 DOI: 10.1186/s12864-021-08094-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
Background Pediatric cancers typically have a distinct genomic landscape when compared to adult cancers and frequently carry somatic gene fusion events that alter gene expression and drive tumorigenesis. Sensitive and specific detection of gene fusions through the analysis of next-generation-based RNA sequencing (RNA-Seq) data is computationally challenging and may be confounded by low tumor cellularity or underlying genomic complexity. Furthermore, numerous computational tools are available to identify fusions from supporting RNA-Seq reads, yet each algorithm demonstrates unique variability in sensitivity and precision, and no clearly superior approach currently exists. To overcome these challenges, we have developed an ensemble fusion calling approach to increase the accuracy of identifying fusions. Results Our Ensemble Fusion (EnFusion) approach utilizes seven fusion calling algorithms: Arriba, CICERO, FusionMap, FusionCatcher, JAFFA, MapSplice, and STAR-Fusion, which are packaged as a fully automated pipeline using Docker and Amazon Web Services (AWS) serverless technology. This method uses paired end RNA-Seq sequence reads as input, and the output from each algorithm is examined to identify fusions detected by a consensus of at least three algorithms. These consensus fusion results are filtered by comparison to an internal database to remove likely artifactual fusions occurring at high frequencies in our internal cohort, while a “known fusion list” prevents failure to report known pathogenic events. We have employed the EnFusion pipeline on RNA-Seq data from 229 patients with pediatric cancer or blood disorders studied under an IRB-approved protocol. The samples consist of 138 central nervous system tumors, 73 solid tumors, and 18 hematologic malignancies or disorders. The combination of an ensemble fusion-calling pipeline and a knowledge-based filtering strategy identified 67 clinically relevant fusions among our cohort (diagnostic yield of 29.3%), including RBPMS-MET, BCAN-NTRK1, and TRIM22-BRAF fusions. Following clinical confirmation and reporting in the patient’s medical record, both known and novel fusions provided medically meaningful information. Conclusions The EnFusion pipeline offers a streamlined approach to discover fusions in cancer, at higher levels of sensitivity and accuracy than single algorithm methods. Furthermore, this method accurately identifies driver fusions in pediatric cancer, providing clinical impact by contributing evidence to diagnosis and, when appropriate, indicating targeted therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08094-z.
Collapse
Affiliation(s)
- Stephanie LaHaye
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - James R Fitch
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kyle J Voytovich
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Adam C Herman
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Benjamin J Kelly
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Grant E Lammi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jeremy A Arbesfeld
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Saranga Wijeratne
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Samuel J Franklin
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kathleen M Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Natalie Bir
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sean D McGrath
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Anthony R Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Amy Wetzel
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Tracy A Bedrosian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kristen Leraas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Elizabeth A Varga
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kristy Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Ajay Gupta
- Division of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, USA
| | - Bhuvana Setty
- Division of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Daniel R Boué
- Department of Pathology, The Ohio State University, Columbus, OH, USA.,Department of Pathology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jeffrey R Leonard
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA.,Section of Neurosurgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jonathan L Finlay
- Division of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Mohamed S Abdelbaki
- Division of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Diana S Osorio
- Division of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Selene C Koo
- Department of Pathology, The Ohio State University, Columbus, OH, USA.,Department of Pathology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniel C Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Alex H Wagner
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA.,Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Ann-Kathrin Eisfeld
- Division of Hematology, The Ohio State University, Columbus, OH, USA.,Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University, Columbus, OH, USA.,The Ohio State Comprehensive Cancer Center, Columbus, OH, USA
| | - Krzysztof Mrózek
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University, Columbus, OH, USA.,The Ohio State Comprehensive Cancer Center, Columbus, OH, USA
| | - Vincent Magrini
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA.,Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA. .,Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
24
|
Angione SDA, Akalu AY, Gartrell J, Fletcher EP, Burckart GJ, Reaman GH, Leong R, Stewart CF. Fusion Oncoproteins in Childhood Cancers: Potential Role in Targeted Therapy. J Pediatr Pharmacol Ther 2021; 26:541-555. [PMID: 34421403 PMCID: PMC8372856 DOI: 10.5863/1551-6776-26.6.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/03/2021] [Indexed: 11/11/2022]
Abstract
Cancer remains the leading cause of death from disease in children. Historically, in contrast to their adult counterparts, the causes of pediatric malignancies have remained largely unknown, with most pediatric cancers displaying low mutational burdens. Research related to molecular genetics in pediatric cancers is advancing our understanding of potential drivers of tumorigenesis and opening new opportunities for targeted therapies. One such area is fusion oncoproteins, which are a product of chromosomal rearrangements resulting in the fusion of different genes. They have been identified as oncogenic drivers in several sarcomas and leukemias. Continued advancement in the understanding of the biology of fusion oncoproteins will contribute to the discovery and development of new therapies for childhood cancers. Here we review the current scientific knowledge on fusion oncoproteins, focusing on pediatric sarcomas and hematologic cancers, and highlight the challenges and current efforts in developing drugs to target fusion oncoproteins.
Collapse
|
25
|
Genomic context of NTRK1/2/3 fusion-positive tumours from a large real-world population. NPJ Precis Oncol 2021; 5:69. [PMID: 34285332 PMCID: PMC8292342 DOI: 10.1038/s41698-021-00206-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/22/2021] [Indexed: 12/28/2022] Open
Abstract
Neurotrophic tropomyosin receptor kinase (NTRK) gene fusions are rare oncogenic drivers in solid tumours. This study aimed to interrogate a large real-world database of comprehensive genomic profiling data to describe the genomic landscape and prevalence of NTRK gene fusions. NTRK fusion-positive tumours were identified from the FoundationCORE® database of >295,000 cancer patients. We investigated the prevalence and concomitant genomic landscape of NTRK fusions, predicted patient ancestry and compared the FoundationCORE cohort with entrectinib clinical trial cohorts (ALKA-372-001 [EudraCT 2012-000148-88]; STARTRK-1 [NCT02097810]; STARTRK-2 [NCT02568267]). Overall NTRK fusion-positive tumour prevalence was 0.30% among 45 cancers with 88 unique fusion partner pairs, of which 66% were previously unreported. Across all cases, prevalence was 0.28% and 1.34% in patients aged ≥18 and <18 years, respectively; prevalence was highest in patients <5 years (2.28%). The highest prevalence of NTRK fusions was observed in salivary gland tumours (2.62%). Presence of NTRK gene fusions did not correlate with other clinically actionable biomarkers; there was no co-occurrence with known oncogenic drivers in breast, or colorectal cancer (CRC). However, in CRC, NTRK fusion-positivity was associated with spontaneous microsatellite instability (MSI); in this MSI CRC subset, mutual exclusivity with BRAF mutations was observed. NTRK fusion-positive tumour types had similar frequencies in FoundationCORE and entrectinib clinical trials. NTRK gene fusion prevalence varied greatly by age, cancer type and histology. Interrogating large datasets drives better understanding of the characteristics of very rare molecular subgroups of cancer and allows identification of genomic patterns and previously unreported fusion partners not evident in smaller datasets.
Collapse
|
26
|
Chen BR, Deshpande A, Barbosa K, Kleppe M, Lei X, Yeddula N, Vela PS, Campos AR, Wechsler-Reya RJ, Bagchi A, Meshinchi S, Eaves C, Jeremias I, Haferlach T, Frank DA, Ronai Z, Chanda S, Armstrong SA, Adams PD, Levine RL, Deshpande AJ. A JAK/STAT-mediated inflammatory signaling cascade drives oncogenesis in AF10-rearranged AML. Blood 2021; 137:3403-3415. [PMID: 33690798 PMCID: PMC8212510 DOI: 10.1182/blood.2020009023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
Leukemias bearing fusions of the AF10/MLLT10 gene are associated with poor prognosis, and therapies targeting these fusion proteins (FPs) are lacking. To understand mechanisms underlying AF10 fusion-mediated leukemogenesis, we generated inducible mouse models of acute myeloid leukemia (AML) driven by the most common AF10 FPs, PICALM/CALM-AF10 and KMT2A/MLL-AF10, and performed comprehensive characterization of the disease using transcriptomic, epigenomic, proteomic, and functional genomic approaches. Our studies provide a detailed map of gene networks and protein interactors associated with key AF10 fusions involved in leukemia. Specifically, we report that AF10 fusions activate a cascade of JAK/STAT-mediated inflammatory signaling through direct recruitment of JAK1 kinase. Inhibition of the JAK/STAT signaling by genetic Jak1 deletion or through pharmacological JAK/STAT inhibition elicited potent antioncogenic effects in mouse and human models of AF10 fusion AML. Collectively, our study identifies JAK1 as a tractable therapeutic target in AF10-rearranged leukemias.
Collapse
Affiliation(s)
- Bo-Rui Chen
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Anagha Deshpande
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Karina Barbosa
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Maria Kleppe
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xue Lei
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Narayana Yeddula
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center and
| | - Pablo Sánchez Vela
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alexandre Rosa Campos
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Anindya Bagchi
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Connie Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, German Center for Environmental Health, Munich, Germany
| | | | | | - Ze'ev Ronai
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Sumit Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center and
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Peter D Adams
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aniruddha J Deshpande
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| |
Collapse
|
27
|
Blattner-Johnson M, Jones DTW, Pfaff E. Precision medicine in pediatric solid cancers. Semin Cancer Biol 2021; 84:214-227. [PMID: 34116162 DOI: 10.1016/j.semcancer.2021.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022]
Abstract
Despite huge advances in the diagnosis and treatment of pediatric cancers over the past several decades, it remains one of the leading causes of death during childhood in developed countries. The development of new targeted treatments for these diseases has been hampered by two major factors. First, the extremely heterogeneous nature of the types of tumors encountered in this age group, and their fundamental differences from common adult carcinomas, has made it hard to truly get a handle on the complexities of the underlying biology driving tumor growth. Second, a reluctance of the pharmaceutical industry to develop products or trials for this population due to the relatively small size of the 'market', and a too-easy mechanism of obtaining waivers for pediatric development of adult oncology drugs based on disease type rather than mechanism of action, led to significant difficulties in getting access to new drugs. Thankfully, the field has now started to change, both scientifically and from a regulatory perspective, in order to address some of these challenges. In this review, we will examine some of the recent insights into molecular features which make pediatric tumors so unique and how these might represent therapeutic targets; highlight ongoing international initiatives for providing comprehensive, personalized genomic profiling of childhood tumors in a clinically-relevant timeframe, and look briefly at where the field of pediatric precision oncology may be heading in future.
Collapse
Affiliation(s)
- Mirjam Blattner-Johnson
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany; Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany; Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Elke Pfaff
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany; Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
28
|
Henley MJ, Koehler AN. Advances in targeting 'undruggable' transcription factors with small molecules. Nat Rev Drug Discov 2021; 20:669-688. [PMID: 34006959 DOI: 10.1038/s41573-021-00199-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Transcription factors (TFs) represent key biological players in diseases including cancer, autoimmunity, diabetes and cardiovascular disease. However, outside nuclear receptors, TFs have traditionally been considered 'undruggable' by small-molecule ligands due to significant structural disorder and lack of defined small-molecule binding pockets. Renewed interest in the field has been ignited by significant progress in chemical biology approaches to ligand discovery and optimization, especially the advent of targeted protein degradation approaches, along with increasing appreciation of the critical role a limited number of collaborators play in the regulation of key TF effector genes. Here, we review current understanding of TF-mediated gene regulation, discuss successful targeting strategies and highlight ongoing challenges and emerging approaches to address them.
Collapse
Affiliation(s)
- Matthew J Henley
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Angela N Koehler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
29
|
Persaud Y, Bagla S, Shanti CM, Shehata BM, Ravindranath Y, Gorsi HS. A novel finding in pediatric leiomyosarcoma: Expanding spectrum of FGFR rearrangements in childhood cancers. Pediatr Blood Cancer 2021; 68:e28805. [PMID: 33200450 DOI: 10.1002/pbc.28805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 10/28/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Yogindra Persaud
- Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan
| | | | - Christina M Shanti
- Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan
| | - Bahig M Shehata
- Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan.,Wayne State University, Detroit, Michigan
| | | | - Hamza S Gorsi
- Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan.,Central Michigan University, Mt. Pleasant, Michigan
| |
Collapse
|
30
|
A Novel KMT2A-ARHGEF12 Fusion Gene Identified in a High-Grade B-cell Lymphoma. Cancer Genet 2020; 246-247:41-43. [PMID: 32805689 DOI: 10.1016/j.cancergen.2020.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
|
31
|
Showpnil IA, Miller KR, Taslim C, Pishas KI, Lessnick SL, Theisen ER. Mapping the Structure-Function Relationships of Disordered Oncogenic Transcription Factors Using Transcriptomic Analysis. J Vis Exp 2020. [PMID: 32658189 DOI: 10.3791/61564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Many cancers are characterized by chromosomal translocations which result in the expression of oncogenic fusion transcription factors. Typically, these proteins contain an intrinsically disordered domain (IDD) fused with the DNA-binding domain (DBD) of another protein and orchestrate widespread transcriptional changes to promote malignancy. These fusions are often the sole recurring genomic aberration in the cancers they cause, making them attractive therapeutic targets. However, targeting oncogenic transcription factors requires a better understanding of the mechanistic role that low-complexity, IDDs play in their function. The N-terminal domain of EWSR1 is an IDD involved in a variety of oncogenic fusion transcription factors, including EWS/FLI, EWS/ATF, and EWS/WT1. Here, we use RNA-sequencing to investigate the structural features of the EWS domain important for transcriptional function of EWS/FLI in Ewing sarcoma. First shRNA-mediated depletion of the endogenous fusion from Ewing sarcoma cells paired with ectopic expression of a variety of EWS-mutant constructs is performed. Then RNA-sequencing is used to analyze the transcriptomes of cells expressing these constructs to characterize the functional deficits associated with mutations in the EWS domain. By integrating the transcriptomic analyses with previously published information about EWS/FLI DNA binding motifs, and genomic localization, as well as functional assays for transforming ability, we were able to identify structural features of EWS/FLI important for oncogenesis and define a novel set of EWS/FLI target genes critical for Ewing sarcoma. This paper demonstrates the use of RNA-sequencing as a method to map the structure-function relationship of the intrinsically disordered domain of oncogenic transcription factors.
Collapse
Affiliation(s)
- Iftekhar A Showpnil
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital; Molecular, Cellular, and Developmental Biology Program, The Ohio State University
| | - Kyle R Miller
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital
| | - Cenny Taslim
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital
| | - Kathleen I Pishas
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital
| | - Stephen L Lessnick
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital; Division of Pediatric Hematology/Oncology/Blood & Marrow Transplant, The Ohio State University
| | - Emily R Theisen
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital; Department of Pediatrics, The Ohio State University;
| |
Collapse
|
32
|
Choi JY. Immunotherapy in Pediatric Solid Tumors. CLINICAL PEDIATRIC HEMATOLOGY-ONCOLOGY 2020. [DOI: 10.15264/cpho.2020.27.1.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jung Yoon Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul, Korea
| |
Collapse
|
33
|
Dupain C, Gracia C, Harttrampf AC, Rivière J, Geoerger B, Massaad-Massade L. Newly identified LMO3-BORCS5 fusion oncogene in Ewing sarcoma at relapse is a driver of tumor progression. Oncogene 2019; 38:7200-7215. [PMID: 31488873 DOI: 10.1038/s41388-019-0914-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/25/2022]
Abstract
Recently, we detected a new fusion transcript LMO3-BORCS5 in a patient with Ewing sarcoma within a cohort of relapsed pediatric cancers. LMO3-BORCS5 was as highly expressed as the characteristic fusion oncogene EWS/FLI1. However, the expression level of LMO3-BORCS5 at diagnosis was very low. Sanger sequencing depicted two LMO3-BORCS5 variants leading to loss of the functional domain LIM2 in LMO3 gene, and disruption of BORCS5. In vitro studies showed that LMO3-BORCS5 (i) increases proliferation, (ii) decreases expression of apoptosis-related genes and treatment sensitivity, and (iii) downregulates genes involved in differentiation and upregulates proliferative and extracellular matrix-related pathways. Remarkably, in vivo LMO3-BORCS5 demonstrated its high oncogenic potential by inducing tumors in mouse fibroblastic NIH-3T3 cell line. Moreover, BORCS5 probably acts, in vivo, as a tumor-suppressor gene. In conclusion, functional studies of fusion oncogenes at relapse are of great importance to define mechanisms involved in tumor progression and resistance to conventional treatments.
Collapse
Affiliation(s)
- Célia Dupain
- Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, Université Paris-Sud 11, CNRS UMR 8203, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Céline Gracia
- Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, Université Paris-Sud 11, CNRS UMR 8203, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Anne C Harttrampf
- Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, Université Paris-Sud 11, CNRS UMR 8203, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Julie Rivière
- INSERM U1170, Gustave Roussy Cancer Center, Villejuif, France
| | - Birgit Geoerger
- Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, Université Paris-Sud 11, CNRS UMR 8203, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Gustave Roussy, Department of Pediatric and Adolescent Oncology, Villejuif, France
| | - Liliane Massaad-Massade
- Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, Université Paris-Sud 11, CNRS UMR 8203, Gustave Roussy Cancer Center, 94805, Villejuif, France. .,U1195 INSERM, 20 rue du Général Leclerc, 94276, le Kremlin-Bicêtre, France.
| |
Collapse
|
34
|
Hutzen B, Ghonime M, Lee J, Mardis ER, Wang R, Lee DA, Cairo MS, Roberts RD, Cripe TP, Cassady KA. Immunotherapeutic Challenges for Pediatric Cancers. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:38-48. [PMID: 31650024 PMCID: PMC6804520 DOI: 10.1016/j.omto.2019.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Solid tumors contain a mixture of malignant cells and non-malignant infiltrating cells that often create a chronic inflammatory and immunosuppressive microenvironment that restricts immunotherapeutic approaches. Although childhood and adult cancers share some similarities related to microenvironmental changes, pediatric cancers are unique, and adult cancer practices may not be wholly applicable to our pediatric patients. This review highlights the differences in tumorigenesis, viral infection, and immunologic response between children and adults that need to be considered when trying to apply experiences from experimental therapies in adult cancer patients to pediatric cancers.
Collapse
Affiliation(s)
- Brian Hutzen
- The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mohammed Ghonime
- The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joel Lee
- The Ohio State University, Columbus, OH, USA
| | - Elaine R Mardis
- The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, OH, USA.,The Ohio State University, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.,Institute for Genomic Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ruoning Wang
- The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, OH, USA.,The Ohio State University, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Dean A Lee
- The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, OH, USA.,The Ohio State University, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mitchell S Cairo
- Department of Pediatrics, Cancer and Blood Diseases Center, New York Medical College, Valhalla, NY, USA
| | - Ryan D Roberts
- The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, OH, USA.,The Ohio State University, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Timothy P Cripe
- The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, OH, USA.,The Ohio State University, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kevin A Cassady
- The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, OH, USA.,The Ohio State University, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.,Division of Pediatric Infection Diseases, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
35
|
Sisdelli L, Cordioli MICV, Vaisman F, Moraes L, Colozza-Gama GA, Alves PAG, Araújo ML, Alves MTS, Monte O, Longui CA, Cury AN, Carvalheira G, Cerutti JM. AGK-BRAF is associated with distant metastasis and younger age in pediatric papillary thyroid carcinoma. Pediatr Blood Cancer 2019; 66:e27707. [PMID: 30924609 DOI: 10.1002/pbc.27707] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/24/2019] [Accepted: 02/23/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND The incidence of thyroid carcinoma has increased in most populations, including pediatric patients. The increase is almost exclusively due to an increase in the incidence of papillary thyroid carcinoma (PTC). Genetic alterations leading to mitogen-activated protein kinase (MAPK) pathway activation are highly prevalent in PTC, with BRAF V600E mutation being the most common event in adult PTC. Although a lower prevalence of BRAF V600E had been reported among pediatric patients, a higher prevalence of BRAF fusion has been identified in both radiation-exposed and sporadic pediatric PTC. However, little is known about the prognostic implications of BRAF fusions in pediatric PTC. PROCEDURE In this study, we investigated the prevalence of BRAF alterations (AGK-BRAF fusion and BRAF V600E mutation) in a large set of predominantly sporadic pediatric PTC cases and correlate with clinicopathological features. Somatic AGK-BRAF fusion was investigated by RT-PCR and confirmed by FISH break-apart. The BRAF V600E mutation was screened using Sanger sequencing. RESULTS AGK-BRAF fusion, found in 19% of pediatric PTC patients, was associated with distant metastasis and younger age. Conversely, the BRAF V600E, found in 15% of pediatric PTC patients, was correlated with older age and larger tumor size. CONCLUSION Collectively, our results advance knowledge concerning genetic bases of pediatric thyroid carcinoma, with potential implications for diagnosis, prognosis, and therapeutic approaches.
Collapse
Affiliation(s)
- Luiza Sisdelli
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Isabel Cunha Vieira Cordioli
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Lais Moraes
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gabriel Avelar Colozza-Gama
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | - Osmar Monte
- Department of Pediatrics, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
| | - Carlos Alberto Longui
- Department of Pediatrics, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
| | - Adriano Namo Cury
- Departmentof Medicine, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
| | - Gianna Carvalheira
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Janete Maria Cerutti
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Abstract
The complexity of human cancer underlies its devastating clinical consequences. Drugs designed to target the genetic alterations that drive cancer have improved the outcome for many patients, but not the majority of them. Here, we review the genomic landscape of cancer, how genomic data can provide much more than a sum of its parts, and the approaches developed to identify and validate genomic alterations with potential therapeutic value. We highlight notable successes and pitfalls in predicting the value of potential therapeutic targets and discuss the use of multi-omic data to better understand cancer dependencies and drug sensitivity. We discuss how integrated approaches to collecting, curating, and sharing these large data sets might improve the identification and prioritization of cancer vulnerabilities as well as patient stratification within clinical trials. Finally, we outline how future approaches might improve the efficiency and speed of translating genomic data into clinically effective therapies and how the use of unbiased genome-wide information can identify novel predictive biomarkers that can be either simple or complex.
Collapse
Affiliation(s)
- Gary J Doherty
- Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge CB2 0QQ, United Kingdom; ,
| | - Michele Petruzzelli
- Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge CB2 0QQ, United Kingdom; ,
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Emma Beddowes
- Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge CB2 0QQ, United Kingdom; ,
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Saif S Ahmad
- Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge CB2 0QQ, United Kingdom; ,
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, United Kingdom
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Carlos Caldas
- Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge CB2 0QQ, United Kingdom; ,
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Richard J Gilbertson
- Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge CB2 0QQ, United Kingdom; ,
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
37
|
A germline variant of TP53 in paediatric diffuse leptomeningeal glioneuronal tumour. Childs Nerv Syst 2019; 35:1021-1027. [PMID: 30937530 DOI: 10.1007/s00381-019-04128-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/18/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Diffuse leptomeningeal glioneuronal tumour (DLGNT) is an extremely rare tumour involving the neuroaxis. At present, its exact pathogenesis and associated factors remain incompletely characterised. Recent molecular investigations in a small cohort have offered some insights into this disease. However, the role of germline findings has not yet been fully explored in affected patients. The authors present a case of DLGNT, focusing on the clinical and molecular features with reference to current disease knowledge. METHODS A 4-year-old male presented with raised intracranial pressure symptoms secondary to extensive leptomeningeal disease of the brain and spine. Preliminary impression was that of an inflammatory lesion. RESULTS A lumbar biopsy of the lesion confirmed DLGNT on routine diagnostic examination. Further molecular analysis of his tumour and blood demonstrated a previously unreported TP53 exon 5 (c.147V > I) germline variant. Based on the latest DLGNT molecular subtyping classification, his tumour falls into the group with better clinical outcome. However, his germline findings may add an extra layer of uncertainty to his overall prognosis. CONCLUSION Given that much remains unknown in many rare paediatric tumours at this stage, isolated findings found in an individual may be of significance. Supplementary genetic information, together with tumour molecular analysis, add to our current understanding of this uncommon disease. This case highlights the benefit of combined clinical and molecular efforts, including germline testing, especially for children affected by such challenging neoplasms.
Collapse
|
38
|
Dalrymple RA, Joss S. Transcriptome: from laboratory to clinic room. Arch Dis Child Educ Pract Ed 2019; 104:163-165. [PMID: 30709938 DOI: 10.1136/archdischild-2017-313890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/10/2018] [Accepted: 12/30/2018] [Indexed: 11/04/2022]
Affiliation(s)
- Rebecca Amy Dalrymple
- Department of Community Child Health, Acorn Centre, Vale of Leven Hospital, Alexandria, Scotland, UK
| | - Shelagh Joss
- Department of Clinical Genetics, Royal Hospital for Children, Glasgow, UK
| |
Collapse
|
39
|
Ricciuti B, Genova C, Crinò L, Libra M, Leonardi GC. Antitumor activity of larotrectinib in tumors harboring NTRK gene fusions: a short review on the current evidence. Onco Targets Ther 2019; 12:3171-3179. [PMID: 31118670 PMCID: PMC6503327 DOI: 10.2147/ott.s177051] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022] Open
Abstract
The development of deep-sequencing methods is now unveiling a new landscape of previously undetected gene fusion across different tumor types. Chromosomal translocation involving the NTRK gene family occur across a wide range of cancers in both children and adults. Preclinical studies have demonstrated that chimeric proteins encoded by NTRK rearrangements have oncogenic properties and drive constitutive expression and ligand-independent activation. Larotrectinib (ARRY470, LOXO101, Vitrakvi) is a highly and potent inhibitor of TRKA, TRKB, and TRKC, and has demonstrated rema rkable antitumor activity against TRK-fusion-positive cancers with a favorable side-effect profile in phase I/II clinical trials. In November 2018, the US Food and Drug Administration granted accelerated approval to larotrectinib for adult and pediatric patients with solid tumors harboring NTRK gene fusions without known acquired resistance mutation. In this review, we discuss the clinical activity and safety profile of larotrectinib, focusing on the clinical trials that led to its first global approval.
Collapse
Affiliation(s)
- Biagio Ricciuti
- Department of Medical Oncology, Thoracic Oncology Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Carlo Genova
- Lung Cancer Unit, Ospedale Policlinico San Martino, Genova16132, Italy
| | - Lucio Crinò
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Pathology and Oncology Section, University of Catania, Catania, Italy
| | - Giulia Costanza Leonardi
- Department of Biomedical and Biotechnological Sciences, Pathology and Oncology Section, University of Catania, Catania, Italy
- Department of Pathology, Children’s Hospital, Boston, MA, USA
| |
Collapse
|
40
|
Evaluating gene fusions in solid tumors – Clinical experience using an RNA based 53 gene next-generation sequencing panel. Cancer Genet 2019; 233-234:32-42. [DOI: 10.1016/j.cancergen.2019.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 01/20/2023]
|
41
|
Low SYY, Kuick CH, Seow WY, Bte Syed Sulaiman N, Chen H, Lian DWQ, Chang KTE, Tan EEK, Soh SY, Tan GIL, Ng LP, Seow WT, Low DCY. Primary paediatric epidural sarcomas: molecular exploration of three cases. BMC Cancer 2019; 19:182. [PMID: 30819134 PMCID: PMC6394101 DOI: 10.1186/s12885-019-5368-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/11/2019] [Indexed: 12/02/2022] Open
Abstract
Background Primary paediatric epidural sarcomas are extremely rare. Overall, there remains a paucity of knowledge in paediatric epidural sarcomas owing to the infrequent number of cases. The Archer FusionPlex Sarcoma Kit (ArcherDX, Inc) is a next-generation sequencing assay that has been reported to be a useful technique to detect recurrent fusion in sarcomas. We report the molecular exploration of 3 primary paediatric epidural sarcomas—one in the cranium (mesenchymal chondrosarcoma) and 2 in the spine (mesenchymal chondrosarcoma and Ewing sarcoma respectively). Case presentation This is a study approved by the hospital ethics board. Clinico-pathological information from 3 consenting patients with primary epidural sarcomas was collected. These selected tumours are interrogated via Archer FusionPlex Sarcoma Kit (ArcherDX, Inc) for genomic aberrations. Results were validated with RT-PCR and Sanger sequencing. All findings are corroborated and discussed in concordance with current literature. Our findings show 2 variants of the HEY1-NCOA2 gene fusion: HEY1 (exon 4)-NCOA2 (exon 13) and HEY1 (exon 4)-NCOA2 (exon 14), in both mesenchymal chondrosarcoma patients. Next, the Ewing sarcoma tumour is found to have EWSR1 (exon 10)-FLI1 (exon 8) translocation based on NGS. This result is not detected via conventional fluorescence in situ testing. Conclusions This is a molecularly-centered study based on 3 unique primary paediatric epidural sarcomas. Our findings to add to the growing body of literature for these exceptionally rare and malignant neoplasms. The authors advocate global collaborative efforts and in-depth studies for targeted therapy to benefit affected children.
Collapse
Affiliation(s)
- Sharon Y Y Low
- Neurosurgical Service, KK Women's and Children's Hospital, Singapore, Singapore. .,VIVA-KKH Brain and Solid Tumours Laboratory, 100 Bukit Timah Road, Singapore, 229899, Singapore. .,Department of Neurosurgery, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,SingHealth Duke-NUS Neuroscience Academic Clinical Program, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
| | - Chik Hong Kuick
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Wan Yi Seow
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,VIVA-KKH Brain and Solid Tumours Laboratory, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Nurfahanah Bte Syed Sulaiman
- VIVA-KKH Brain and Solid Tumours Laboratory, 100 Bukit Timah Road, Singapore, 229899, Singapore.,Department of Neurosurgery, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Huiyi Chen
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,VIVA-KKH Brain and Solid Tumours Laboratory, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Derrick W Q Lian
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Kenneth T E Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,VIVA-KKH Brain and Solid Tumours Laboratory, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Enrica E K Tan
- Paediatric Haematology/Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Shui Yen Soh
- Paediatric Haematology/Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Grace I L Tan
- Neurosurgical Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Lee Ping Ng
- Neurosurgical Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Wan Tew Seow
- Neurosurgical Service, KK Women's and Children's Hospital, Singapore, Singapore.,Department of Neurosurgery, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.,SingHealth Duke-NUS Neuroscience Academic Clinical Program, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - David C Y Low
- Neurosurgical Service, KK Women's and Children's Hospital, Singapore, Singapore.,Department of Neurosurgery, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.,SingHealth Duke-NUS Neuroscience Academic Clinical Program, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| |
Collapse
|
42
|
Lowery CD, Dowless M, Renschler M, Blosser W, VanWye AB, Stephens JR, Iversen PW, Lin AB, Beckmann RP, Krytska K, Cole KA, Maris JM, Hawkins DS, Rubin BP, Kurmasheva RT, Houghton PJ, Gorlick R, Kolb EA, Kang MH, Reynolds CP, Erickson SW, Teicher BA, Smith MA, Stancato LF. Broad Spectrum Activity of the Checkpoint Kinase 1 Inhibitor Prexasertib as a Single Agent or Chemopotentiator Across a Range of Preclinical Pediatric Tumor Models. Clin Cancer Res 2018; 25:2278-2289. [PMID: 30563935 DOI: 10.1158/1078-0432.ccr-18-2728] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/13/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Checkpoint kinase 1 (CHK1) inhibitors potentiate the DNA-damaging effects of cytotoxic therapies and/or promote elevated levels of replication stress, leading to tumor cell death. Prexasertib (LY2606368) is a CHK1 small-molecule inhibitor under clinical evaluation in multiple adult and pediatric cancers. In this study, prexasertib was tested in a large panel of preclinical models of pediatric solid malignancies alone or in combination with chemotherapy. EXPERIMENTAL DESIGN DNA damage and changes in cell signaling following in vitro prexasertib treatment in pediatric sarcoma cell lines were analyzed by Western blot and high content imaging. Antitumor activity of prexasertib as a single agent or in combination with different chemotherapies was explored in cell line-derived (CDX) and patient-derived xenograft (PDX) mouse models representing nine different pediatric cancer histologies. RESULTS Pediatric sarcoma cell lines were highly sensitive to prexasertib treatment in vitro, resulting in activation of the DNA damage response. Two PDX models of desmoplastic small round cell tumor and one malignant rhabdoid tumor CDX model responded to prexasertib with complete regression. Prexasertib monotherapy also elicited robust responses in mouse models of rhabdomyosarcoma. Concurrent administration with chemotherapy was sufficient to overcome innate resistance or prevent acquired resistance to prexasertib in preclinical models of neuroblastoma, osteosarcoma, and Ewing sarcoma, or alveolar rhabdomyosarcoma, respectively. CONCLUSIONS Prexasertib has significant antitumor effects as a monotherapy or in combination with chemotherapy in multiple preclinical models of pediatric cancer. These findings support further investigation of prexasertib in pediatric malignancies.
Collapse
Affiliation(s)
- Caitlin D Lowery
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Michele Dowless
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Matthew Renschler
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Wayne Blosser
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Alle B VanWye
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | | | - Philip W Iversen
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Aimee Bence Lin
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | | | - Kateryna Krytska
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kristina A Cole
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - John M Maris
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Douglas S Hawkins
- Division of Hematology/Oncology, Seattle Children's Hospital, Seattle, Washington
| | - Brian P Rubin
- Departments of Pathology and Cancer Biology, Robert J Tomsich Pathology and Laboratory Medicine Institute and Cleveland Clinic, Cleveland, Ohio
| | | | - Peter J Houghton
- Greehey Children's Cancer Research Institute, San Antonio, Texas
| | | | - E Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Wilmington, Delaware
| | - Min H Kang
- Texas Tech University Health Sciences Center, Lubbock, Texas
| | | | | | | | | | - Louis F Stancato
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana.
| |
Collapse
|
43
|
Dupain C, Harttrampf AC, Boursin Y, Lebeurrier M, Rondof W, Robert-Siegwald G, Khoueiry P, Geoerger B, Massaad-Massade L. Discovery of New Fusion Transcripts in a Cohort of Pediatric Solid Cancers at Relapse and Relevance for Personalized Medicine. Mol Ther 2018; 27:200-218. [PMID: 30509566 DOI: 10.1016/j.ymthe.2018.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/18/2018] [Accepted: 10/26/2018] [Indexed: 12/16/2022] Open
Abstract
We hypothetized that pediatric cancers would more likely harbor fusion transcripts. To dissect the complexity of the fusions landscape in recurrent solid pediatric cancers, we conducted a study on 48 patients with different relapsing or resistant malignancies. By analyzing RNA sequencing data with a new in-house pipeline for fusions detection named ChimComp, followed by verification by real-time PCR, we identified and classified the most confident fusion transcripts (FTs) according to their potential biological function and druggability. The majority of FTs were predicted to affect key cancer pathways and described to be involved in oncogenesis. Contrary to previous descriptions, we found no significant correlation between the number of fusions and mutations, emphasizing the particularity to study pre-treated pediatric patients. A considerable proportion of FTs containing tumor suppressor genes was detected, reflecting their importance in pediatric cancers. FTs containing non-receptor tyrosine kinases occurred at low incidence and predominantly in brain tumors. Remarkably, more than 30% of patients presented a potentially druggable high-confidence fusion. In conclusion, we detected new oncogenic FTs in relapsing pediatric cancer patients by establishing a robust pipeline that can be applied to other malignancies, to detect and prioritize experimental validation studies leading to the development of new therapeutic options.
Collapse
Affiliation(s)
- Célia Dupain
- Université Paris-Sud 11, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; CNRS, Villejuif, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; Gustave Roussy, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France
| | - Anne C Harttrampf
- Université Paris-Sud 11, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; CNRS, Villejuif, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; Gustave Roussy, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; Gustave Roussy, Department of Pediatric and Adolescent Oncology, Villejuif 94805, France
| | - Yannick Boursin
- Gustave Roussy, Bioinformatics Platform, AMMICA, INSERM US23/CNRS UMS3655, Villejuif 94805, France
| | - Manuel Lebeurrier
- Gustave Roussy, Bioinformatics Platform, AMMICA, INSERM US23/CNRS UMS3655, Villejuif 94805, France
| | - Windy Rondof
- Université Paris-Sud 11, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; CNRS, Villejuif, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; Gustave Roussy, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; Gustave Roussy, Bioinformatics Platform, AMMICA, INSERM US23/CNRS UMS3655, Villejuif 94805, France
| | | | - Pierre Khoueiry
- American University of Beirut, Faculty of Medicine, Department of Biochemistry and Molecular Genetics, P.O. Box 11-0236 DTS 419-B, Bliss Street, Beirut, Lebanon
| | - Birgit Geoerger
- Université Paris-Sud 11, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; CNRS, Villejuif, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; Gustave Roussy, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; Gustave Roussy, Department of Pediatric and Adolescent Oncology, Villejuif 94805, France
| | - Liliane Massaad-Massade
- Université Paris-Sud 11, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; CNRS, Villejuif, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; Gustave Roussy, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France.
| |
Collapse
|
44
|
Kondo A, Shimizu Y, Adachi S, Ogino I, Suzuki M, Akiyama O, Arai H. A Comprehensive Method for Detecting Fusion Genes in Paediatric Brain Tumours. Cancer Genomics Proteomics 2018; 15:343-348. [PMID: 29976640 DOI: 10.21873/cgp.20093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Fusion genes driving tumourigenesis have drawn the attention of researchers and oncologists. Despite the importance of such molecular alterations, there are no comprehensive reproducible methods for detecting fusion genes. MATERIALS AND METHODS Nineteen paediatric brain tumours of five types, namely pilocytic astrocytoma, oligodendroglioma, anaplastic astrocytoma, glioblastoma and, ganglioglioma, were examined to detect fusion genes using a pyrosequencing-based method following RNA isolation, cDNA synthesis and real-time polymerase chain reaction. RESULTS Our method successfully detected KIAA1549-v-raf murine sarcoma viral oncogene homolog B1 (BRAF) fusion in 14 out of 19 patients suffering from five types of paediatric brain tumours providing information on fusion breakpoints within 2 h. CONCLUSION A comprehensive method for detecting fusion genes in paediatric brain tumours was evaluated. This method identified KIAA1549-BRAF fusion variants quickly. Our results may help researchers interested in the role of fusion genes in tumourigenesis.
Collapse
Affiliation(s)
- Akihide Kondo
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yuzaburo Shimizu
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Satoshi Adachi
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Ikuko Ogino
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Mario Suzuki
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Osamu Akiyama
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Hajime Arai
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|