1
|
Chen ZS, Ou M, Taylor S, Dafinca R, Peng SI, Talbot K, Chan HYE. Mutant GGGGCC RNA prevents YY1 from binding to Fuzzy promoter which stimulates Wnt/β-catenin pathway in C9ALS/FTD. Nat Commun 2023; 14:8420. [PMID: 38110419 PMCID: PMC10728118 DOI: 10.1038/s41467-023-44215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
The GGGGCC hexanucleotide repeat expansion mutation in the chromosome 9 open reading frame 72 (C9orf72) gene is a major genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). In this study, we demonstrate that the zinc finger (ZF) transcriptional regulator Yin Yang 1 (YY1) binds to the promoter region of the planar cell polarity gene Fuzzy to regulate its transcription. We show that YY1 interacts with GGGGCC repeat RNA via its ZF and that this interaction compromises the binding of YY1 to the FuzzyYY1 promoter sites, resulting in the downregulation of Fuzzy transcription. The decrease in Fuzzy protein expression in turn activates the canonical Wnt/β-catenin pathway and induces synaptic deficits in C9ALS/FTD neurons. Our findings demonstrate a C9orf72 GGGGCC RNA-initiated perturbation of YY1-Fuzzy transcriptional control that implicates aberrant Wnt/β-catenin signalling in C9ALS/FTD-associated neurodegeneration. This pathogenic cascade provides a potential new target for disease-modifying therapy.
Collapse
Affiliation(s)
- Zhefan Stephen Chen
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Mingxi Ou
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Stephanie Taylor
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Ruxandra Dafinca
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK
| | - Shaohong Isaac Peng
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Kevin Talbot
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.
| | - Ho Yin Edwin Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| |
Collapse
|
2
|
Eskandari S, Rezayof A, Asghari SM, Hashemizadeh S. Neurobiochemical characteristics of arginine-rich peptides explain their potential therapeutic efficacy in neurodegenerative diseases. Neuropeptides 2023; 101:102356. [PMID: 37390744 DOI: 10.1016/j.npep.2023.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Neurodegenerative diseases, including Alzheimer̕ s disease (AD), Parkinson̕ s disease (PD), Huntington̕ s disease (HD), and Amyotrophic Lateral Sclerosis (ALS) require special attention to find new potential treatment methods. This review aims to summarize the current knowledge of the relationship between the biochemical properties of arginine-rich peptides (ARPs) and their neuroprotective effects to deal with the harmful effects of risk factors. It seems that ARPs have portrayed a promising and fantastic landscape for treating neurodegeneration-associated disorders. With multimodal mechanisms of action, ARPs play various unprecedented roles, including as the novel delivery platforms for entering the central nervous system (CNS), the potent antagonists for calcium influx, the invader molecules for targeting mitochondria, and the protein stabilizers. Interestingly, these peptides inhibit the proteolytic enzymes and block protein aggregation to induce pro-survival signaling pathways. ARPs also serve as the scavengers of toxic molecules and the reducers of oxidative stress agents. They also have anti-inflammatory, antimicrobial, and anti-cancer properties. Moreover, by providing an efficient nucleic acid delivery system, ARPs can play an essential role in developing various fields, including gene vaccines, gene therapy, gene editing, and imaging. ARP agents and ARP/cargo therapeutics can be raised as an emergent class of neurotherapeutics for neurodegeneration. Part of the aim of this review is to present recent advances in treating neurodegenerative diseases using ARPs as an emerging and powerful therapeutic tool. The applications and progress of ARPs-based nucleic acid delivery systems have also been discussed to highlight their usefulness as a broad-acting class of drugs.
Collapse
Affiliation(s)
- Sedigheh Eskandari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - S Mohsen Asghari
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| | - Shiva Hashemizadeh
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, IPM, Tehran, Iran
| |
Collapse
|
3
|
Corman A, Sirozh O, Lafarga V, Fernandez-Capetillo O. Targeting the nucleolus as a therapeutic strategy in human disease. Trends Biochem Sci 2023; 48:274-287. [PMID: 36229381 DOI: 10.1016/j.tibs.2022.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/07/2022]
Abstract
The nucleolus is the site of ribosome biogenesis, one of the most resource-intensive processes in eukaryotic cells. Accordingly, nucleolar morphology and activity are highly responsive to growth signaling and nucleolar insults which are collectively included in the actively evolving concept of nucleolar stress. Importantly, nucleolar alterations are a prominent feature of multiple human pathologies, including cancer and neurodegeneration, as well as being associated with aging. The past decades have seen numerous attempts to isolate compounds targeting different facets of nucleolar activity. We provide an overview of therapeutic opportunities for targeting nucleoli in different pathologies and currently available therapies.
Collapse
Affiliation(s)
- Alba Corman
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Oleksandra Sirozh
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Vanesa Lafarga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.
| | - Oscar Fernandez-Capetillo
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.
| |
Collapse
|
4
|
Castelli LM, Lin YH, Sanchez-Martinez A, Gül A, Mohd Imran K, Higginbottom A, Upadhyay SK, Márkus NM, Rua Martins R, Cooper-Knock J, Montmasson C, Cohen R, Walton A, Bauer CS, De Vos KJ, Mead RJ, Azzouz M, Dominguez C, Ferraiuolo L, Shaw PJ, Whitworth AJ, Hautbergue GM. A cell-penetrant peptide blocking C9ORF72-repeat RNA nuclear export reduces the neurotoxic effects of dipeptide repeat proteins. Sci Transl Med 2023; 15:eabo3823. [PMID: 36857431 DOI: 10.1126/scitranslmed.abo3823] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Hexanucleotide repeat expansions in C9ORF72 are the most common genetic cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Studies have shown that the hexanucleotide expansions cause the noncanonical translation of C9ORF72 transcripts into neurotoxic dipeptide repeat proteins (DPRs) that contribute to neurodegeneration. We show that a cell-penetrant peptide blocked the nuclear export of C9ORF72-repeat transcripts in HEK293T cells by competing with the interaction between SR-rich splicing factor 1 (SRSF1) and nuclear export factor 1 (NXF1). The cell-penetrant peptide also blocked the translation of toxic DPRs in neurons differentiated from induced neural progenitor cells (iNPCs), which were derived from individuals carrying C9ORF72-linked ALS mutations. This peptide also increased survival of iNPC-differentiated C9ORF72-ALS motor neurons cocultured with astrocytes. Oral administration of the cell-penetrant peptide reduced DPR translation and rescued locomotor deficits in a Drosophila model of mutant C9ORF72-mediated ALS/FTD. Intrathecal injection of this peptide into the brains of ALS/FTD mice carrying a C9ORF72 mutation resulted in reduced expression of DPRs in mouse brains. These findings demonstrate that disrupting the production of DPRs in cellular and animal models of ALS/FTD might be a strategy to ameliorate neurodegeneration in these diseases.
Collapse
Affiliation(s)
- Lydia M Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Alvaro Sanchez-Martinez
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Aytaç Gül
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Kamallia Mohd Imran
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Santosh Kumar Upadhyay
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Nóra M Márkus
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Raquel Rua Martins
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Claire Montmasson
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Rebecca Cohen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Amy Walton
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Claudia S Bauer
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Richard J Mead
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Cyril Dominguez
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Alexander J Whitworth
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| |
Collapse
|
5
|
Cheng A, Liu C, Ye W, Huang D, She W, Liu X, Fung CP, Xu N, Suen MC, Ye W, Sung HHY, Williams ID, Zhu G, Qian PY. Selective C9orf72 G-Quadruplex-Binding Small Molecules Ameliorate Pathological Signatures of ALS/FTD Models. J Med Chem 2022; 65:12825-12837. [PMID: 36226410 PMCID: PMC9574859 DOI: 10.1021/acs.jmedchem.2c00654] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The G-quadruplex (G4) forming C9orf72 GGGGCC (G4C2) expanded hexanucleotide repeat (EHR)
is the predominant genetic cause of amyotrophic lateral sclerosis
(ALS) and frontotemporal dementia (FTD). Developing selective G4-binding
ligands is challenging due to the conformational polymorphism and
similarity of G4 structures. We identified three first-in-class marine
natural products, chrexanthomycin A (cA), chrexanthomycin
B (cB), and chrexanthomycin C (cC), with
remarkable bioactivities. Thereinto, cA shows the highest
permeability and lowest cytotoxicity to live cells. NMR titration
experiments and in silico analysis demonstrate that cA, cB, and cC selectively bind
to DNA and RNA G4C2 G4s. Notably, cA and cC dramatically reduce G4C2 EHR-caused cell death, diminish G4C2 RNA
foci in (G4C2)29-expressing Neuro2a cells, and significantly
eliminate ROS in HT22 cells. In (G4C2)29-expressing Drosophila, cA and cC significantly
rescue eye degeneration and improve locomotor deficits. Overall, our
findings reveal that cA and cC are potential
therapeutic agents deserving further clinical study.
Collapse
Affiliation(s)
- Aifang Cheng
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Changdong Liu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| | - Wenkang Ye
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen 518060, China
| | - Duli Huang
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Weiyi She
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen 518060, China
| | - Xin Liu
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Chun Po Fung
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Naining Xu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Monica Ching Suen
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Wei Ye
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Herman Ho Yung Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Ian Duncan Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Guang Zhu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
6
|
Peng SI, Leong LI, Sun JKL, Chen ZS, Chow HM, Chan HYE. A peptide inhibitor that rescues polyglutamine-induced synaptic defects and cell death through suppressing RNA and protein toxicities. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:102-115. [PMID: 35795484 PMCID: PMC9240964 DOI: 10.1016/j.omtn.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Polyglutamine (polyQ) diseases, including spinocerebellar ataxias and Huntington's disease, are progressive neurodegenerative disorders caused by CAG triplet-repeat expansion in the coding regions of disease-associated genes. In this study, we found that neurotoxic small CAG (sCAG) RNA species, microscopic Ataxin-2 CAG RNA foci, and protein aggregates exist as independent entities in cells. Synaptic defects and neurite outgrowth abnormalities were observed in mutant Ataxin-2-expressing mouse primary cortical neurons. We examined the suppression effects of the CAG RNA-binding peptide beta-structured inhibitor for neurodegenerative diseases (BIND) in mutant Ataxin-2-expressing mouse primary cortical neurons and found that both impaired synaptic phenotypes and neurite outgrowth defects were rescued. We further demonstrated that BIND rescued cell death through inhibiting sCAG RNA production, Ataxin-2 CAG RNA foci formation, and mutant Ataxin-2 protein translation. Interestingly, when the expanded CAG repeats in the mutant Ataxin-2 transcript was interrupted with the alternative glutamine codon CAA, BIND's inhibitory effect on mutant protein aggregation was lost. We previously demonstrated that BIND interacts physically and directly with expanded CAG RNA sequences. Our data provide evidence that the BIND peptide associates with transcribed mutant CAG RNA to inhibit the formation of toxic species, including sCAG RNA, RNA foci, and polyQ protein translation and aggregation.
Collapse
Affiliation(s)
- Shaohong Isaac Peng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Lok I. Leong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Jacquelyne Ka-Li Sun
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Zhefan Stephen Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Ho Yin Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| |
Collapse
|
7
|
An Y, Chen ZS, Chan H, Ngo J. Molecular insights into the interaction of CAG trinucleotide RNA repeats with nucleolin and its implication in polyglutamine diseases. Nucleic Acids Res 2022; 50:7655-7668. [PMID: 35776134 PMCID: PMC9303306 DOI: 10.1093/nar/gkac532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/08/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Polyglutamine (polyQ) diseases are a type of inherited neurodegenerative disorders caused by cytosine-adenine-guanine (CAG) trinucleotide expansion within the coding region of the disease-associated genes. We previously demonstrated that a pathogenic interaction between expanded CAG RNA and the nucleolin (NCL) protein triggers the nucleolar stress and neuronal cell death in polyQ diseases. However, mechanisms behind the molecular interaction remain unknown. Here, we report a 1.45 Å crystal structure of the r(CAG)5 oligo that comprises a full A'-form helical turn with widened grooves. Based on this structure, we simulated a model of r(CAG)5 RNA complexed with the RNA recognition motif 2 (RRM2) of NCL and identified NCL residues that are critical for its binding to CAG RNA. Combined with in vitro and in vivo site-directed mutagenesis studies, our model reveals that CAG RNA binds to NCL sites that are not important for other cellular functions like gene expression and rRNA synthesis regulation, indicating that toxic CAG RNA interferes with NCL functions by sequestering it. Accordingly, an NCL mutant that is aberrant in CAG RNA-binding could rescue RNA-induced cytotoxicity effectively. Taken together, our study provides new molecular insights into the pathogenic mechanism of polyQ diseases mediated by NCL-CAG RNA interaction.
Collapse
Affiliation(s)
- Ying An
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Zhefan S Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Ho Yin Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Center for Novel Biomaterials, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| |
Collapse
|
8
|
Bose K, Maity A, Ngo KH, Vandana JJ, Shneider NA, Phan AT. Formation of RNA G-wires by G4C2 repeats associated with ALS and FTD. Biochem Biophys Res Commun 2022; 610:113-118. [DOI: 10.1016/j.bbrc.2022.03.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
|
9
|
Ursu A, Baisden JT, Bush JA, Taghavi A, Choudhary S, Zhang YJ, Gendron TF, Petrucelli L, Yildirim I, Disney MD. A Small Molecule Exploits Hidden Structural Features within the RNA Repeat Expansion That Causes c9ALS/FTD and Rescues Pathological Hallmarks. ACS Chem Neurosci 2021; 12:4076-4089. [PMID: 34677935 DOI: 10.1021/acschemneuro.1c00470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The hexanucleotide repeat expansion GGGGCC [r(G4C2)exp] within intron 1 of C9orf72 causes genetically defined amyotrophic lateral sclerosis and frontotemporal dementia, collectively named c9ALS/FTD. , the repeat expansion causes neurodegeneration via deleterious phenotypes stemming from r(G4C2)exp RNA gain- and loss-of-function mechanisms. The r(G4C2)exp RNA folds into both a hairpin structure with repeating 1 × 1 nucleotide GG internal loops and a G-quadruplex structure. Here, we report the identification of a small molecule (CB253) that selectively binds the hairpin form of r(G4C2)exp. Interestingly, the small molecule binds to a previously unobserved conformation in which the RNA forms 2 × 2 nucleotide GG internal loops, as revealed by a series of binding and structural studies. NMR and molecular dynamics simulations suggest that the r(G4C2)exp hairpin interconverts between 1 × 1 and 2 × 2 internal loops through the process of strand slippage. We provide experimental evidence that CB253 binding indeed shifts the equilibrium toward the 2 × 2 GG internal loop conformation, inhibiting mechanisms that drive c9ALS/FTD pathobiology, such as repeat-associated non-ATG translation formation of stress granules and defective nucleocytoplasmic transport in various cellular models of c9ALS/FTD.
Collapse
Affiliation(s)
- Andrei Ursu
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jared T. Baisden
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica A. Bush
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Amirhossein Taghavi
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Shruti Choudhary
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, Florida 32224, United States
| | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, Florida 32224, United States
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, Florida 32224, United States
| | - Ilyas Yildirim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
10
|
Cao X, Zhang Y, Abdulkadir M, Deng L, Fernandez TV, Garcia-Delgar B, Hagstrøm J, Hoekstra PJ, King RA, Koesterich J, Kuperman S, Morer A, Nasello C, Plessen KJ, Thackray JK, Zhou L, Dietrich A, Tischfield JA, Heiman GA, Xing J. Whole-exome sequencing identifies genes associated with Tourette's disorder in multiplex families. Mol Psychiatry 2021; 26:6937-6951. [PMID: 33837273 PMCID: PMC8501157 DOI: 10.1038/s41380-021-01094-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 02/02/2023]
Abstract
Tourette's Disorder (TD) is a neurodevelopmental disorder (NDD) that affects about 0.7% of the population and is one of the most heritable NDDs. Nevertheless, because of its polygenic nature and genetic heterogeneity, the genetic etiology of TD is not well understood. In this study, we combined the segregation information in 13 TD multiplex families with high-throughput sequencing and genotyping to identify genes associated with TD. Using whole-exome sequencing and genotyping array data, we identified both small and large genetic variants within the individuals. We then combined multiple types of evidence to prioritize candidate genes for TD, including variant segregation pattern, variant function prediction, candidate gene expression, protein-protein interaction network, candidate genes from previous studies, etc. From the 13 families, 71 strong candidate genes were identified, including both known genes for NDDs and novel genes, such as HtrA Serine Peptidase 3 (HTRA3), Cadherin-Related Family Member 1 (CDHR1), and Zinc Finger DHHC-Type Palmitoyltransferase 17 (ZDHHC17). The candidate genes are enriched in several Gene Ontology categories, such as dynein complex and synaptic membrane. Candidate genes and pathways identified in this study provide biological insight into TD etiology and potential targets for future studies.
Collapse
Affiliation(s)
- Xiaolong Cao
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetic Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yeting Zhang
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetic Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Mohamed Abdulkadir
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetic Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Li Deng
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetic Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Thomas V Fernandez
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Blanca Garcia-Delgar
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic Universitari, Barcelona, Spain
| | - Julie Hagstrøm
- Child and Adolescent Mental Health Center, Mental Health Services, Capital Region of Denmark, Denmark
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robert A King
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Justin Koesterich
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetic Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Samuel Kuperman
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Astrid Morer
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic Universitari, Barcelona, Spain
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIPABS), Barcelona, Spain
- Centro de Investigacion en Red de Salud Mental (CIBERSAM), Instituto Carlos III, Madrid, Spain
| | - Cara Nasello
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetic Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Kerstin J Plessen
- Child and Adolescent Mental Health Center, Mental Health Services, Capital Region of Denmark, Denmark
- Division of Child and Adolescent Psychiatry, University Hospital Lausanne, Lausanne, Switzerland
| | - Joshua K Thackray
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetic Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Lisheng Zhou
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Andrea Dietrich
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jay A Tischfield
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetic Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Gary A Heiman
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetic Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- Human Genetic Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
11
|
Bush JA, Aikawa H, Fuerst R, Li Y, Ursu A, Meyer SM, Benhamou RI, Chen JL, Khan T, Wagner-Griffin S, Van Meter MJ, Tong Y, Olafson H, McKee KK, Childs-Disney JL, Gendron TF, Zhang Y, Coyne AN, Wang ET, Yildirim I, Wang KW, Petrucelli L, Rothstein JD, Disney MD. Ribonuclease recruitment using a small molecule reduced c9ALS/FTD r(G 4C 2) repeat expansion in vitro and in vivo ALS models. Sci Transl Med 2021; 13:eabd5991. [PMID: 34705518 DOI: 10.1126/scitranslmed.abd5991] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jessica A Bush
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Haruo Aikawa
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Rita Fuerst
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Yue Li
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Andrei Ursu
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Samantha M Meyer
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Raphael I Benhamou
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Jonathan L Chen
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Tanya Khan
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Sarah Wagner-Griffin
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Montina J Van Meter
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Yuquan Tong
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Hailey Olafson
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kendra K McKee
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jessica L Childs-Disney
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Yongjie Zhang
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Alyssa N Coyne
- Robert Packard Center for ALS Research, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Eric T Wang
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ilyas Yildirim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Kye Won Wang
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Jeffrey D Rothstein
- Robert Packard Center for ALS Research, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Matthew D Disney
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
12
|
Disease Mechanisms and Therapeutic Approaches in C9orf72 ALS-FTD. Biomedicines 2021; 9:biomedicines9060601. [PMID: 34070550 PMCID: PMC8229688 DOI: 10.3390/biomedicines9060601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/15/2023] Open
Abstract
A hexanucleotide repeat expansion mutation in the first intron of C9orf72 is the most common known genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Since the discovery in 2011, numerous pathogenic mechanisms, including both loss and gain of function, have been proposed. The body of work overall suggests that toxic gain of function arising from bidirectionally transcribed repeat RNA is likely to be the primary driver of disease. In this review, we outline the key pathogenic mechanisms that have been proposed to date and discuss some of the novel therapeutic approaches currently in development.
Collapse
|
13
|
Kim W, Kim DY, Lee KH. RNA-Binding Proteins and the Complex Pathophysiology of ALS. Int J Mol Sci 2021; 22:ijms22052598. [PMID: 33807542 PMCID: PMC7961459 DOI: 10.3390/ijms22052598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Genetic analyses of patients with amyotrophic lateral sclerosis (ALS) have identified disease-causing mutations and accelerated the unveiling of complex molecular pathogenic mechanisms, which may be important for understanding the disease and developing therapeutic strategies. Many disease-related genes encode RNA-binding proteins, and most of the disease-causing RNA or proteins encoded by these genes form aggregates and disrupt cellular function related to RNA metabolism. Disease-related RNA or proteins interact or sequester other RNA-binding proteins. Eventually, many disease-causing mutations lead to the dysregulation of nucleocytoplasmic shuttling, the dysfunction of stress granules, and the altered dynamic function of the nucleolus as well as other membrane-less organelles. As RNA-binding proteins are usually components of several RNA-binding protein complexes that have other roles, the dysregulation of RNA-binding proteins tends to cause diverse forms of cellular dysfunction. Therefore, understanding the role of RNA-binding proteins will help elucidate the complex pathophysiology of ALS. Here, we summarize the current knowledge regarding the function of disease-associated RNA-binding proteins and their role in the dysfunction of membrane-less organelles.
Collapse
Affiliation(s)
- Wanil Kim
- Division of Cosmetic Science and Technology, Daegu Haany University, Hanuidae-ro 1, Gyeongsan, Gyeongbuk 38610, Korea;
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
- Correspondence: (D.-Y.K.); (K.-H.L.); Tel.: +82-53-660-6880 (D.-Y.K.); +82-53-819-7743 (K.-H.L.)
| | - Kyung-Ha Lee
- Division of Cosmetic Science and Technology, Daegu Haany University, Hanuidae-ro 1, Gyeongsan, Gyeongbuk 38610, Korea;
- Correspondence: (D.-Y.K.); (K.-H.L.); Tel.: +82-53-660-6880 (D.-Y.K.); +82-53-819-7743 (K.-H.L.)
| |
Collapse
|
14
|
A fine balance between Prpf19 and Exoc7 in achieving degradation of aggregated protein and suppression of cell death in spinocerebellar ataxia type 3. Cell Death Dis 2021; 12:136. [PMID: 33542212 PMCID: PMC7862454 DOI: 10.1038/s41419-021-03444-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/30/2023]
Abstract
Polyglutamine (polyQ) diseases comprise Huntington's disease and several subtypes of spinocerebellar ataxia, including spinocerebellar ataxia type 3 (SCA3). The genomic expansion of coding CAG trinucleotide sequence in disease genes leads to the production and accumulation of misfolded polyQ domain-containing disease proteins, which cause cellular dysfunction and neuronal death. As one of the principal cellular protein clearance pathways, the activity of the ubiquitin-proteasome system (UPS) is tightly regulated to ensure efficient clearance of damaged and toxic proteins. Emerging evidence demonstrates that UPS plays a crucial role in the pathogenesis of polyQ diseases. Ubiquitin (Ub) E3 ligases catalyze the transfer of a Ub tag to label proteins destined for proteasomal clearance. In this study, we identified an E3 ligase, pre-mRNA processing factor 19 (Prpf19/prp19), that modulates expanded ataxin-3 (ATXN3-polyQ), disease protein of SCA3, induced neurodegeneration in both mammalian and Drosophila disease models. We further showed that Prpf19/prp19 promotes poly-ubiquitination and degradation of mutant ATXN3-polyQ protein. Our data further demonstrated the nuclear localization of Prpf19/prp19 is essential for eliciting its modulatory function towards toxic ATXN3-polyQ protein. Intriguingly, we found that exocyst complex component 7 (Exoc7/exo70), a Prpf19/prp19 interacting partner, modulates expanded ATXN3-polyQ protein levels and toxicity in an opposite manner to Prpf19/prp19. Our data suggest that Exoc7/exo70 exerts its ATXN3-polyQ-modifying effect through regulating the E3 ligase function of Prpf19/prp19. In summary, this study allows us to better define the mechanistic role of Exoc7/exo70-regulated Prpf19/prp19-associated protein ubiquitination pathway in SCA3 pathogenesis.
Collapse
|