1
|
Fang Z, Liu C, Yu X, Yang K, Yu T, Ji Y, Liu C. Identification of neutrophil extracellular trap-related biomarkers in non-alcoholic fatty liver disease through machine learning and single-cell analysis. Sci Rep 2024; 14:21085. [PMID: 39256536 PMCID: PMC11387488 DOI: 10.1038/s41598-024-72151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
Non-alcoholic Fatty Liver Disease (NAFLD), noted for its widespread prevalence among adults, has become the leading chronic liver condition globally. Simultaneously, the annual disease burden, particularly liver cirrhosis caused by NAFLD, has increased significantly. Neutrophil Extracellular Traps (NETs) play a crucial role in the progression of this disease and are key to the pathogenesis of NAFLD. However, research into the specific roles of NETs-related genes in NAFLD is still a field requiring thorough investigation. Utilizing techniques like AddModuleScore, ssGSEA, and WGCNA, our team conducted gene screening to identify the genes linked to NETs in both single-cell and bulk transcriptomics. Using algorithms including Random Forest, Support Vector Machine, Least Absolute Shrinkage, and Selection Operator, we identified ZFP36L2 and PHLDA1 as key hub genes. The pivotal role of these genes in NAFLD diagnosis was confirmed using the training dataset GSE164760. This study identified 116 genes linked to NETs across single-cell and bulk transcriptomic analyses. These genes demonstrated enrichment in immune and metabolic pathways. Additionally, two NETs-related hub genes, PHLDA1 and ZFP36L2, were selected through machine learning for integration into a prognostic model. These hub genes play roles in inflammatory and metabolic processes. scRNA-seq results showed variations in cellular communication among cells with different expression patterns of these key genes. In conclusion, this study explored the molecular characteristics of NETs-associated genes in NAFLD. It identified two potential biomarkers and analyzed their roles in the hepatic microenvironment. These discoveries could aid in NAFLD diagnosis and management, with the ultimate goal of enhancing patient outcomes.
Collapse
Affiliation(s)
- Zhihao Fang
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Changxu Liu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xiaoxiao Yu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Kai Yang
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Tianqi Yu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yanchao Ji
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Chang Liu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
2
|
Lin G, Jiang H, Zhang Z, Ning L, Zhang W, Peng L, Xu S, Sun W, Tao S, Zhang T, Tang L. Molecular mechanism of NR4A1/MDM2/P53 signaling pathway regulation inducing ferroptosis in renal tubular epithelial cells involved in the progression of renal ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166968. [PMID: 38008232 DOI: 10.1016/j.bbadis.2023.166968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Revealing the possible molecular mechanism of the NR4A1 (nuclear receptor subfamily 4 group A member 1)-MDM2 (MDM2 proto-oncogene)-P53 (tumor protein p53) signaling pathway that induces ferroptosis in renal tubular epithelial cells. Renal ischemia-reperfusion injury (RIRI) -related datasets were obtained from the GEO database. Differentially expressed genes in RIRI were analyzed using R language, intersected with RIRI-related genes in the GeneCard database, and retrieved from the literature to finally obtain differential ferroptosis-related genes. An in vitro cell model of RIRI was constructed using mouse renal cortical proximal tubule epithelial cells (mRTEC cells) treated with hypoxia-reoxygenation (H/R). Bioinformatic analysis showed that NR4A1 may be involved in RIRI through the induction of ferroptosis; in addition, we predicted through online databases that the downstream target gene of NR4A1, MDM2, could be targeted and regulated by ChIP and dual luciferase assays, and that NR4A1 could prevent MDM2 by inhibiting it, and NR4A1 was able to promote ferroptosis by inhibiting the ubiquitinated degradation of P53. NR4A1 expression was significantly increased in mRTEC cells in the hypoxia/reoxygenation model, and the expression of ferroptosis-related genes was increased in vitro experiments. NR4A1 reduces the ubiquitinated degradation of P53 by targeting the inhibition of MDM2 expression, thereby inducing ferroptosis and ultimately exacerbating RIRI by affecting the oxidative respiration process in mitochondria and producing oxidized lipids. This study presents a novel therapeutic approach for the clinical treatment of renal ischemia-reperfusion injury by developing drugs that inhibit NR4A1 to alleviate kidney damage caused by renal ischemia-reperfusion.
Collapse
Affiliation(s)
- Guangzheng Lin
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Heng Jiang
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Zhihui Zhang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Ling Ning
- Department of Infectious Diseases, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei 230000, PR China
| | - Wenbo Zhang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Longfei Peng
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Shen Xu
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Wei Sun
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Sha Tao
- Second School of Clinical Medicine, Anhui Medical University, Hefei 230601, PR China
| | - Tao Zhang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Liang Tang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| |
Collapse
|
3
|
Yokouchi-Konishi T, Liu Y, Feng L. Progesterone receptor membrane component 2 is critical for human placental extravillous trophoblast invasion. Biol Reprod 2023; 109:759-771. [PMID: 37665239 DOI: 10.1093/biolre/ioad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
Proper extravillous trophoblast invasion is essential for normal placentation and pregnancy. However, the molecular mechanisms by which cytotrophoblasts differentiate into extravillous trophoblast are unclear. We discovered that in the first-trimester placenta, progesterone receptor membrane component 2 was highly expressed in syncytiotrophoblast but significantly lower in extravillous trophoblast and cytotrophoblasts, indicating a divergent role for progesterone receptor membrane component 2 in trophoblast functions. We aim to examine the role of progesterone receptor membrane component 2 in extravillous trophoblasts invasion mediated by both intracellular and extracellular signals. Progesterone receptor membrane component 2 knockdown and overexpression cells were established in HTR8/SVneo cells, a first-trimester extravillous trophoblast-derived cell model, by transfection with small-interfering RNA or progesterone receptor membrane component 2 plasmids, respectively. Progesterone receptor membrane component 2 knockdown led to cellular morphological changes , enhanced trophoblast proliferation,invasion, and promoted tube formation. These effects were mediated by the activation of hypoxia-inducible factor 1alpha and an increased expression of vascular endothelial growth factor A. The culture supernatant collected from progesterone receptor membrane component 2 knockdown cells did not significantly affect extravillous trophoblast invasion compared to the controls, indicating that extracellular signaling did not robustly regulate extravillous trophoblast invasion in this study. In conclusion, attenuation of progesterone receptor membrane component 2 plays a role in placentation by promoting cell proliferation, invasion, and angiogenesis in extravillous trophoblasts via activation of hypoxia-inducible factor 1 alpha signaling. We thus identified a new function of progesterone receptor membrane component 2 and provide insights on understanding the mechanisms of trophoblast invasion.
Collapse
Affiliation(s)
- Tae Yokouchi-Konishi
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
- Department of Obstetrics and Gynecology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yongjie Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
4
|
Peng C, Zhu J, Guo H, Zhao L, Wu F, Liu B. Long non-coding RNA TLR8-AS1 induces preeclampsia through increasing TLR8/STAT1 axis. J Hypertens 2023; 41:1245-1257. [PMID: 37199563 DOI: 10.1097/hjh.0000000000003410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
OBJECTIVE Our current study tried to assay the role of long noncoding RNAs (lncRNAs) TLR8-AS1 in regulating preeclampsia. METHODS TLR8-AS1 expression was examined in the clinical placental tissues of preeclampsia patients and the trophoblast cells induced by lipopolysaccharide (LPS). Then, different lentivirus was infected into trophoblast cells to study the role of TLR8-AS1 in cell functions. Furthermore, interactions among TLR8-AS1, signal transducer and activator of transcription 1 (STAT1) and toll-like receptor 8 (TLR8) were determined. A rat model of preeclampsia induced by N(omega)-nitro-L-arginine methyl ester was developed to validate the in-vitro findings. RESULTS High expression of TLR8-AS1 was detected in placental tissues of preeclampsia patients and LPS-induced trophoblast cells. In addition, overexpression of TLR8-AS1 arrested the proliferation, migration and invasion of trophoblast cells, which was related to the upregulation of TLR8 expression. Mechanistically, TLR8-AS1 recruited STAT1 to bind to the TLR8 promoter region, and thus promoted the transcription of TLR8. Meanwhile, overexpression of TLR8-AS1 was shown to aggravate preeclampsia by elevating TLR8 in vivo . CONCLUSION Our study confirmed that TLR8-AS1 aggravated the progression of preeclampsia through increasing the expression of STAT1 and TLR8.
Collapse
Affiliation(s)
- Chuyu Peng
- Department of Obstetrics, The Haining Maternal and Child Health Hospital, Haining
| | - Jianbin Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Hong Guo
- Department of Obstetrics, Changsha Ning Er Maternity Hospital, Changsha
| | - Ling Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Feifei Wu
- Department of Obstetrics, Changsha Ning Er Maternity Hospital, Changsha
| | - Bo Liu
- Reproductive Medicine Research Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| |
Collapse
|
5
|
Li Q, Li S, Ding J, Pang B, Li R, Cao H, Ling L. MALAT1 modulates trophoblast phenotype via miR-101-3p/VEGFA axis. Arch Biochem Biophys 2023:109692. [PMID: 37437834 DOI: 10.1016/j.abb.2023.109692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/23/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Preeclampsia is a potentially life-threatening condition that can arise due to poor placentation and consequent abnormal uterine spiral artery remodeling. Abnormal placentation, in turn, is associated with aberrant trophoblast cell proliferation and apoptosis. Here, we investigated the lncRNA MALAT1 in trophoblast proliferation during early-onset preeclampsia (ePE). MALAT1 levels were examined in placental tissue samples from ePE patients and control patients. The effects and underlying mechanism of MALAT1 on proliferation, migration, invasion and apoptosis were investigated in the first-trimester extravillous trophoblast HTR-8/SVneo cells and the human choriocarcinoma JAR cells. MALAT1 levels were decreased in the placental tissue samples of ePE patients compared with those of control patients, and the levels of MALAT1 were positively correlated with the neonate birth-weight. Knockdown of MALAT1 attenuated the cell viability, proliferation, migration, invasion and the cell cycle progression of trophoblasts, but promoted the apoptosis of trophoblasts. The MALAT1 knockdown promoted miR-101-3p upregulation and VEGFA downregulation. Inhibitor of miR-101-3p increased vascular endothelial growth factor A (VEGFA) expression, and miR-101-3p mimic inhibited VEGFA expression. Luciferase assays showed that miR-101-3p could bind to both MALAT1 and VEGFA. The MALAT1 knockdown-induced induction in the cell vitality and proliferation were attenuated by miR-101-3p inhibitor. We conclude that endogenous MALAT1 promotes proliferation, migration and invasion of trophoblasts by inhibiting the miR-101-3p expression and the subsequent VEGFA downregulation. The reduced MALAT1 level in placental tissue may be involved in the pathogenesis of the ePE.
Collapse
Affiliation(s)
- Qin Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Shuo Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Jin Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Bo Pang
- Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Ranran Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Hui Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Li Ling
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China.
| |
Collapse
|
6
|
Lai J, Chen G, Wu Z, Yu S, Huang R, Zeng Y, Lin W, Fan C, Chen X. PHLDA1 modulates microglial response and NLRP3 inflammasome signaling following experimental subarachnoid hemorrhage. Front Immunol 2023; 14:1105973. [PMID: 36875102 PMCID: PMC9982097 DOI: 10.3389/fimmu.2023.1105973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/12/2023] [Indexed: 02/19/2023] Open
Abstract
Balancing microglia M1/M2 polarization is an effective therapeutic strategy for neuroinflammation after subarachnoid hemorrhage (SAH). Pleckstrin homology-like domain family A member 1 (PHLDA1) has been demonstrated to play a crucial role in immune response. However, the function roles of PHLDA1 in neuroinflammation and microglial polarization after SAH remain unclear. In this study, SAH mouse models were assigned to treat with scramble or PHLDA1 small interfering RNAs (siRNAs). We observed that PHLDA1 was significantly increased and mainly distributed in microglia after SAH. Concomitant with PHLDA1 activation, nod-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome expression in microglia was also evidently enhanced after SAH. In addition, PHLDA1 siRNA treatment significantly reduced microglia-mediated neuroinflammation by inhibiting M1 microglia and promoting M2 microglia polarization. Meanwhile, PHLDA1 deficiency reduced neuronal apoptosis and improved neurological outcomes after SAH. Further investigation revealed that PHLDA1 blockade suppressed the NLRP3 inflammasome signaling after SAH. In contrast, NLRP3 inflammasome activator nigericin abated the beneficial effects of PHLDA1 deficiency against SAH by promoting microglial polarization to M1 phenotype. In all, we proposed that PHLDA1 blockade might ameliorate SAH-induced brain injury by balancing microglia M1/M2 polarization via suppression of NLRP3 inflammasome signaling. Targeting PHLDA1 might be a feasible strategy for treating SAH.
Collapse
Affiliation(s)
- Jinqing Lai
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Genwang Chen
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhe Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shaoyang Yu
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Rongfu Huang
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yile Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Weibin Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Chunmei Fan
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Xiangrong Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
7
|
Rong W, Shukun W, Xiaoqing W, Wenxin H, Mengyuan D, Chenyang M, Zhang H. Regulatory roles of non-coding RNAs and m6A modification in trophoblast functions and the occurrence of its related adverse pregnancy outcomes. Crit Rev Toxicol 2022; 52:681-713. [PMID: 36794364 DOI: 10.1080/10408444.2022.2144711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Adverse pregnancy outcomes, such as preeclampsia, gestational diabetes mellitus, fetal growth restriction, and recurrent miscarriage, occur frequently in pregnant women and might further induce morbidity and mortality for both mother and fetus. Increasing studies have shown that dysfunctions of human trophoblast are related to these adverse pregnancy outcomes. Recent studies also showed that environmental toxicants could induce trophoblast dysfunctions. Moreover, non-coding RNAs (ncRNAs) have been reported to play important regulatory roles in various cellular processes. However, the roles of ncRNAs in the regulation of trophoblast dysfunctions and the occurrence of adverse pregnancy outcomes still need to be further investigated, especially with exposure to environmental toxicants. In this review, we analyzed the regulatory mechanisms of ncRNAs and m6A methylation modification in the dysfunctions of trophoblast cells and the occurrence of adverse pregnancy outcomes and also summarized the harmful effects of environmental toxicants. In addition to DNA replication, mRNA transcription, and protein translation, ncRNAs and m6A modification might be considered as the fourth and fifth elements that regulate the genetic central dogma, respectively. Environmental toxicants might also affect these processes. In this review, we expect to provide a deeper scientific understanding of the occurrence of adverse pregnancy outcomes and to discover potential biomarkers for the diagnosis and treatment of these outcomes.
Collapse
Affiliation(s)
- Wang Rong
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Wan Shukun
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wang Xiaoqing
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huang Wenxin
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dai Mengyuan
- Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Mi Chenyang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
8
|
Shu L, Wang C, Ding Z, Tang J, Zhu Y, Wu L, Wang Z, Zhang T, Wang T, Xu Y, Sun L. A novel regulated network mediated by downregulation HIF1A-AS2 lncRNA impairs placental angiogenesis by promoting ANGPTL4 expression in preeclampsia. Front Cell Dev Biol 2022; 10:837000. [PMID: 36016656 PMCID: PMC9396278 DOI: 10.3389/fcell.2022.837000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/30/2022] [Indexed: 01/17/2023] Open
Abstract
Preeclampsia (PE) is the predominant medical condition leading to maternal and fetal mortality, and the lack of effective treatment increases its risk to the public health. Among the numerous predisposing factors, the ineffectual remodeling of the uterine spiral arteries, which can induce abnormal placental angiogenesis, has been focused to solve the pathogenesis of PE. According to the preceding research results, abnormal expression of long non-coding RNAs (lncRNA)s could be associated with the pathological changes inducing PE. To be more specific, lncRNA HIF1A-AS2 was proposed for its potential to participate in the molecular mechanisms underlying PE. In vitro, in trophoblast cell lines HTR-8/SVneo and human umbilical vein endothelial cells HUVECs, HIF1A-AS2 knockdown inhibited cell proliferation, migration and tube formation. Mechanistically, transcription factor FOXP1 could regulate the expression of HIF1A-AS2. Moreover, a series of assays, including RNA pull down and mass spectrometry, RNA immunoprecipitation and chromatin immunoprecipitation assay, revealed that HIF1A-AS2 interacted with Lamin A/C (LMNA) to inhibit ANGPTL4 expression in trophoblast cells, thus further participating in the progression of PE. Taken together, these findings suggested that further analysis on HIF1A-AS2 could contribute to the development of prospective therapeutic strategy for PE.
Collapse
Affiliation(s)
- Lijun Shu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, JS, China
| | - Cong Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, JS, China
| | - Zhengzheng Ding
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, JS, China
| | - Jianjiao Tang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, JS, China
| | - Yuanyuan Zhu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, JS, China
| | - Liuxin Wu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, JS, China
| | - Zheyue Wang
- Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, JS, China
| | - Tingting Zhang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, JS, China
| | - Tianjun Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, JS, China
| | - Yetao Xu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, JS, China
- *Correspondence: Lizhou Sun, ; Yetao Xu,
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, JS, China
- *Correspondence: Lizhou Sun, ; Yetao Xu,
| |
Collapse
|
9
|
Hu M, Wang Y, Meng Y, Hu J, Qiao J, Zhen J, Liang D, Fan M. Hypoxia induced-disruption of lncRNA TUG1/PRC2 interaction impairs human trophoblast invasion through epigenetically activating Nodal/ALK7 signalling. J Cell Mol Med 2022; 26:4087-4100. [PMID: 35729773 PMCID: PMC9279603 DOI: 10.1111/jcmm.17450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Inadequate trophoblastic invasion is considered as one of hallmarks of preeclampsia (PE), which is characterized by newly onset of hypertension (>140/90 mmHg) and proteinuria (>300 mg in a 24‐h urine) after 20 weeks of gestation. Accumulating evidence has indicated that long noncoding RNAs are aberrantly expressed in PE, whereas detailed mechanisms are unknown. In the present study, we showed that lncRNA Taurine upregulated 1 (TUG1) were downregulated in preeclamptic placenta and in HTR8/SVneo cells under hypoxic conditions, together with reduced enhancer of zeste homolog2 (EZH2) and embryonic ectoderm development (EED) expression, major components of polycomb repressive complex 2 (PRC2), as well as activation of Nodal/ALK7 signalling pathway. Mechanistically, we found that TUG1 bound to PRC2 (EZH2/EED) in HTR8/SVneo cells and weakened TUG1/PRC2 interplay was correlated with upregulation of Nodal expression via decreasing H3K27me3 mark at the promoter region of Nodal gene under hypoxic conditions. And activation of Nodal signalling prohibited trophoblast invasion via reducing MMP2 levels. Overexpression of TUG1 or EZH2 significantly attenuated hypoxia‐induced reduction of trophoblastic invasiveness via negative modulating Nodal/ALK7 signalling and rescuing expression of its downstream target MMP2. These investigations might provide some evidence for novel mechanisms responsible for inadequate trophoblastic invasion and might shed some light on identifying future therapeutic targets for PE.
Collapse
Affiliation(s)
- Mengsi Hu
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yao Wang
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanping Meng
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinxiu Hu
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiao Qiao
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junhui Zhen
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Decai Liang
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Minghua Fan
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
10
|
Garcés-Lázaro I, Kotzur R, Cerwenka A, Mandelboim O. NK Cells Under Hypoxia: The Two Faces of Vascularization in Tumor and Pregnancy. Front Immunol 2022; 13:924775. [PMID: 35769460 PMCID: PMC9234265 DOI: 10.3389/fimmu.2022.924775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/17/2022] [Indexed: 01/14/2023] Open
Abstract
Environmental conditions greatly shape the phenotype and function of immune cells. Specifically, hypoxic conditions that exist within tissues and organs have been reported to affect both the adaptive and the innate immune system. Natural killer (NK) cells belong to the innate immune system. They are among the first immune cells responding to infections and are involved in tumor surveillance. NK cells produce cytokines that shape other innate and adaptive immune cells, and they produce cytolytic molecules leading to target cell killing. Therefore, they are not only involved in steady state tissue homeostasis, but also in pathogen and tumor clearance. Hence, understanding the role of NK cells in pathological and physiological immune biology is an emerging field. To date, it remains incompletely understood how the tissue microenvironment shapes NK cell phenotype and function. In particular, the impact of low oxygen concentrations in tissues on NK cell reactivity has not been systematically dissected. Here, we present a comprehensive review focusing on two highly compelling hypoxic tissue environments, the tumor microenvironment (pathological) and the decidua (physiological) and compare their impact on NK cell reactivity.
Collapse
Affiliation(s)
- Irene Garcés-Lázaro
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rebecca Kotzur
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Adelheid Cerwenka
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- *Correspondence: Adelheid Cerwenka, ; Ofer Mandelboim,
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
- *Correspondence: Adelheid Cerwenka, ; Ofer Mandelboim,
| |
Collapse
|
11
|
Zhang K, Qi Y, Wang M, Chen Q. Long non-coding RNA HIF1A-AS2 modulates the proliferation, migration, and phenotypic switch of aortic smooth muscle cells in aortic dissection via sponging microRNA-33b. Bioengineered 2022; 13:6383-6395. [PMID: 35212609 PMCID: PMC8974049 DOI: 10.1080/21655979.2022.2041868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aortic dissection (AD), also known as aortic dissecting aneurysm, is one of the most common and dangerous cardiovascular diseases with high morbidity and mortality. This study was aimed to investigate the functional role of long non-coding RNA Hypoxia-inducible factor 1 alpha-antisense RNA 2 (lncRNA HIF1A-AS2) in AD. An in vitro model of AD was established by platelet-derived growth factor-BB (PDGF-BB)-mediated human aortic Smooth Muscle Cells (SMCs). HIF1A-AS2 expression in human AD tissues was determined by quantitative real-time PCR (qRT-PCR) and fluorescence in situ hybridization (FISH) assays, followed by investigation of biological roles of HIF1A-AS2 in AD development by Cell Counting Kit-8 (CCK-8), immunofluorescence, and transwell assays. Additionally, the correlation between HIF1A-AS2, miR-33b, and high mobility group AT-hook2 (HMGA2) were identified by RNA immunoprecipitation (RIP), RNA pull-down and luciferase reporter assays. Results showed that HIF1A-AS2 was obviously increased, while the contractile-phenotype markers of vascular SMCs were significantly decreased in human AD tissues, when compared to normal tissues. Inhibition of HIF1A-AS2 attenuated SMCs proliferation and migration, whereas enhanced the phenotypic switch under the stimulation of PDGF-BB. Results from RIP, RNA pull-down and luciferase reporter assays demonstrated that miR-33b directly bound with HIF1A-AS2, and HIF1A-AS2 silencing suppressed the expression of HMGA2, which was induced by miR-33b inhibitor. In conclusion, knockdown of HIF1A-AS2 suppressed the proliferation and migration, while promoted the phenotypic switching of SMCs through miR-33b/HMGA2 axis, which laid a theoretical foundation for understanding the development of AD and shed light on a potential target for AD treatment.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China.,Department of Cardiac ICU, Tianjin Chest HospitalTianjin, China , Tianjin China
| | - Yujuan Qi
- Department of Cardiac ICU, Tianjin Chest Hospital, Tianjin, China
| | - Meng Wang
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Qingliang Chen
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China.,Department of Cardiac ICU, Tianjin Chest HospitalTianjin, China , Tianjin China
| |
Collapse
|
12
|
Liu Y, Zhang Y, Chen C, Li Y. lncRNA HIF1A-AS2: A potential oncogene in human cancers (Review). Biomed Rep 2021; 15:85. [PMID: 34512973 PMCID: PMC8411487 DOI: 10.3892/br.2021.1461] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/28/2021] [Indexed: 12/25/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts that are >200 nucleotides, but with no open reading frame. An increasing number of lncRNAs have been identified following the development of second-generation sequencing technologies, and they have since become a research hotspot. Functionally, they play a vital role in tumor progression, including in tumor proliferation, migration, invasion, apoptosis and acquisition of drug resistance. They regulate gene expression primarily through interaction with DNA, RNA and proteins at the epigenetic, transcriptional and post-transcriptional levels. Endogenous hypoxia-inducible factor 1α antisense RNA 2 (lncRNA HIF1A-AS2) is aberrantly expressed and involved the development/progression of various types of tumors, such as bladder cancer, glioblastoma, breast cancer and osteosarcoma. It plays a vital role in the proliferation, apoptosis, migration, invasion and epithelial-mesenchymal transformation of various tumor cells. This review summarizes the current body of knowledge on the biological functions and related molecular mechanisms of lncRNA HIF1A-AS2 in the development/progression of human tumors and other diseases.
Collapse
Affiliation(s)
- Yang Liu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yunyan Zhang
- Department of Stomatology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510000, P.R. China
| | - Cha Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Youqiang Li
- Department of Laboratory Medicine, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, Guangdong 511400, P.R. China
| |
Collapse
|
13
|
Ji F, Lu Y, Chen S, Lin X, Yu Y, Zhu Y, Luo X. m 6A methyltransferase METTL3-mediated lncRNA FOXD2-AS1 promotes the tumorigenesis of cervical cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:574-581. [PMID: 34589576 PMCID: PMC8450180 DOI: 10.1016/j.omto.2021.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/14/2021] [Indexed: 01/04/2023]
Abstract
Recent studies have indicated that long noncoding RNA (lncRNA) and N6-methyladenosine (m6A) methylation modification play critical roles in human cancers; however, their regulation on cervical cancer is largely unclear. Here, our study tries to investigate the underlying mechanisms by which lncRNA FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) modulates cervical cancer tumorigenesis. Results illuminated that FOXD2-AS1 expression was significantly upregulated in cervical cancer cells and tissue, which was closely correlated to the unfavorable prognosis. Functionally, gain and loss-of-function assays showed that FOXD2-AS1 promoted the migration and proliferation of cervical cancer cells. Besides, FOXD2-AS1 silencing repressed the tumor growth in vivo. Mechanistically, m6A methyltransferase methyltransferase-like 3 (METTL3) enhanced the stability of FOXD2-AS1 and maintained its expression. Moreover, FOXD2-AS1 recruited lysine-specific demethylase 1 (LSD1) to the promoter region of p21 to silence its transcription abundance. In conclusion, these findings support that METTL3/FOXD2-AS1 accelerates cervical cancer progression via a m6A-dependent modality, which may serve as a potential therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Fei Ji
- Department of Obstetrics and Gynecology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen 518102, China.,The First Clinical Medical College of Jinan University, Guangzhou 510632, China
| | - Yang Lu
- Department of Obstetrics and Gynecology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen 518102, China
| | - Shaoyun Chen
- Maternal-Fetal Medicine Institute, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen 518102, China
| | - Xiaoling Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yan Yu
- Department of Obstetrics and Gynecology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen 518102, China
| | - Yuanfang Zhu
- Department of Obstetrics and Gynecology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen 518102, China
| | - Xin Luo
- The First Clinical Medical College of Jinan University, Guangzhou 510632, China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
14
|
Zhao H, Li Y, Dong N, Zhang L, Chen X, Mao H, Al-Ameri SAAE, Wang X, Wang Q, Du L, Wang C, Mao H. LncRNA LINC01088 inhibits the function of trophoblast cells, activates the MAPK-signaling pathway and associates with recurrent pregnancy loss. Mol Hum Reprod 2021; 27:gaab047. [PMID: 34264302 DOI: 10.1093/molehr/gaab047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/16/2021] [Indexed: 11/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been reported to be involved in various cellular processes and to participate in a variety of human diseases. Recently, increasing studies have reported that lncRNAs are related to many reproductive diseases, such as pathogenesis of recurrent pregnancy loss (RPL), preeclampsia (PE) and gestational diabetes mellitus (GDM). In this study, we aimed to investigate the effect of LINC01088 in trophoblast cells and its potential role in pathogenesis of RPL. LINC01088 was found to be upregulated in first-trimester chorionic villi tissues from RPL patients. Increased LINC01088 repressed proliferation, migration and invasion of trophoblast cells, and promoted apoptosis of trophoblast cells. Further exploration indicated that LINC01088 decreased the production of nitric oxide (NO) by binding and increasing Arginase-1 and decreasing eNOS protein levels. Importantly, JNK and p38 MAPK-signaling pathways were active after overexpression of LINC01088. In conclusion, our studies demonstrated that LINC01088 plays an important role in the pathogenesis of RPL, and is a potential therapeutic target for the treatment of RPL.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yali Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Nana Dong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Lei Zhang
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xi Chen
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Huihui Mao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Samed Ahmed Al-Ezzi Al-Ameri
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiaoling Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Haiting Mao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
15
|
Liu J, Zhang Q, Ma N. LncRNA GASAL1 Interacts with SRSF1 to Regulate Trophoblast Cell Proliferation, Invasion, and Apoptosis Via the mTOR Signaling Pathway. Cell Transplant 2021; 29:963689720965182. [PMID: 33028104 PMCID: PMC7784605 DOI: 10.1177/0963689720965182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are crucial regulatory molecules involved in diverse biological processes and human diseases, including preeclampsia (PE). The lncRNA growth arrest associated lncRNA 1 (GASAL1) has been implicated in multiple malignant solid tumors and other diseases, while it is poorly known as the potential molecular mechanism of GASAL1 in PE. In this study, GASAL1 was significantly downregulated in the placentas' of tissues from primipara with PE and trophoblast cell lines. Then, the upregulation of GASAL1 dramatically decreased proliferation and invasion and enhanced apoptosis in HTR-8/SVneo and JAR cells. Bioinformatics tool predicated that there is a potential interaction between GASAL1 and serine/arginine splicing factor 1 (SRSF1). RNA pull-down assays showed that GASAL1 directly binds with SRSF1 that could promote cell proliferation and invasion and suppress cell apoptosis. Further research showed that promoting effects of trophoblasts proliferation and invasion caused by co-transfecting GASAL1 and SRSF1 into HTR-8/SVneo and JAR cells were impaired by SRSF1 knockdown. Moreover, inhibition of the mammalian target of rapamycin (mTOR) activity by rapamycin influenced the effects of GASAL1 on cell proliferation, invasion, and apoptosis. Taken together, these findings suggest that lncRNA GASAL1 interacts with SRSF1 to regulate the proliferative, invasive, and apoptotic abilities of trophoblast cells via the mTOR signaling pathway.
Collapse
Affiliation(s)
- Jia Liu
- Department of Gynecology and Obstetrics, 569063The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Qing Zhang
- Department of Gynecology and Obstetrics, 569063The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Nan Ma
- Department of Gynecology and Obstetrics, 569063The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
16
|
Abstract
Preeclampsia (PE) is an idiopathic disease that occurs during pregnancy. It comprises multiple organ and system damage, and can seriously threaten the safety of the mother and infant throughout the perinatal period. As the pathogenesis of PE is unclear, there are few specific remedies. Currently, the only way to eliminate the clinical symptoms is to terminate the pregnancy. Although noncoding RNA (ncRNA) was once thought to be the "junk" of gene transcription, it is now known to be widely involved in pathological and physiological processes, including pregnancy-related disorders. Moreover, there is growing evidence that the unbalanced expression of specific ncRNA is involved in the pathogenesis of PE. In the present review, we summarize the expression patterns of ncRNAs, i.e., microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), and the functional mechanisms by which they affect the development of PE, and examine the clinical significance of ncRNAs as biomarkers for the diagnosis of PE. We also discuss the contributions made by genetic polymorphisms and epigenetic ncRNA regulation to PE. In the present review, we wish to explore and reinforce the clinical value of ncRNAs as noninvasive biomarkers of PE.
Collapse
Affiliation(s)
- Ningxia Sun
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
- Department of Gynecology and obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Shiting Qin
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Lu Zhang
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Shiguo Liu
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
17
|
The Role of Long Non-Coding RNAs in Trophoblast Regulation in Preeclampsia and Intrauterine Growth Restriction. Genes (Basel) 2021; 12:genes12070970. [PMID: 34201957 PMCID: PMC8305149 DOI: 10.3390/genes12070970] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/06/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Preeclampsia (PE) and Intrauterine Growth Restriction (IUGR) are two pregnancy-specific placental disorders with high maternal, fetal, and neonatal morbidity and mortality rates worldwide. The identification biomarkers involved in the dysregulation of PE and IUGR are fundamental for developing new strategies for early detection and management of these pregnancy pathologies. Several studies have demonstrated the importance of long non-coding RNAs (lncRNAs) as essential regulators of many biological processes in cells and tissues, and the placenta is not an exception. In this review, we summarize the importance of lncRNAs in the regulation of trophoblasts during the development of PE and IUGR, and other placental disorders.
Collapse
|
18
|
Chen M, Wei X, Shi X, Lu L, Zhang G, Huang Y, Hou J. LncRNA HIF1A-AS2 accelerates malignant phenotypes of renal carcinoma by modulating miR-30a-5p/SOX4 axis as a ceRNA. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0209. [PMID: 33710813 PMCID: PMC8185866 DOI: 10.20892/j.issn.2095-3941.2020.0209] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Several reports have proposed that lncRNAs, as potential biomarkers, participate in the progression and growth of malignant tumors. HIF1A-AS2 is a novel lncRNA and potential biomarker, involved in the genesis and development of carcinomas. However, the molecular mechanism of HIF1A-AS2 in renal carcinoma is unclear. METHODS The relative expression levels of HIF1A-AS2 and miR-30a-5p were detected using RT-qPCR in renal carcinoma tissues and cell lines. Using loss-of-function and overexpression, the biological effects of HIF1A-AS2 and miR-30a-5p in kidney carcinoma progression were characterized. Dual luciferase reporter gene analysis and Western blot were used to detect the potential mechanism of HIF1A-AS2 in renal carcinomas. RESULTS HIF1A-AS2 was upregulated in kidney carcinoma tissues when compared with para-carcinoma tissues (P < 0.05). In addition, tumor size, tumor node mestastasis stage and differentiation were identified as being closely associated with HIF1A-AS2 expression (P < 0.05). Knockdown or overexpression of HIF1A-AS2 either restrained or promoted the malignant phenotype and WNT/β-catenin signaling in renal carcinoma cells (P < 0.05). MiR-30a-5p was downregulated in renal cancers and partially reversed HIF1A-AS2 functions in malignant renal tumor cells. HIF1A-AS2 acted as a microRNA sponge that actively regulated the relative expression of SOX4 in sponging miR-30a-5p and subsequently increased the malignant phenotypes of renal carcinomas. HIF1A-AS2 showed a carcinogenic effect and miR-30a-5p acted as an antagonist of the anti-oncogene effects in the pathogenesis of renal carcinomas. CONCLUSIONS The HIF1A-AS2-miR-30a-5p-SOX4 axis was associated with the malignant progression and development of renal carcinoma. The relative expression of HIF1A-AS2 was negatively correlated with the expression of miR-30a-5p, and was closely correlated with SOX4 mRNA levels in renal cancers.
Collapse
Affiliation(s)
- Mingwei Chen
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiu Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Le Lu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Guangbo Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, Suzhou 215006, China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
19
|
Heidari R, Akbariqomi M, Asgari Y, Ebrahimi D, Alinejad-Rokny H. A systematic review of long non-coding RNAs with a potential role in breast cancer. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 787:108375. [PMID: 34083033 DOI: 10.1016/j.mrrev.2021.108375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
The human transcriptome contains many non-coding RNAs (ncRNAs), which play important roles in gene regulation. Long noncoding RNAs (lncRNAs) are an important class of ncRNAs with lengths between 200 and 200,000 bases. Unlike mRNA, lncRNA lacks protein-coding features, specifically, open-reading frames, and start and stop codons. LncRNAs have been reported to play a role in the pathogenesis and progression of many cancers, including breast cancer (BC), acting as tumor suppressors or oncogenes. In this review, we systematically mined the literature to identify 65 BC-related lncRNAs. We then perform an integrative bioinformatics analysis to identify 14 lncRNAs with a potential regulatory role in BC. The biological function of these 14 lncRNAs, their regulatory mechanisms, and roles in the initiation and progression of BC are discussed in this review. Additionally, we elaborate on the current and future applications of lncRNAs as diagnostic and/or therapeutic biomarkers in BC.
Collapse
Affiliation(s)
- Reza Heidari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Akbariqomi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Diako Ebrahimi
- Biomedical Informatics Lab, Texas Biomedical Research Institute, San Antonio, TX, 78227, United States
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia; Core Member of UNSW Data Science Hub, The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia; Health Data Analytics Program Leader, AI-enabled Processes (AIP) Research Centre, Macquarie University, Sydney, 2109, Australia.
| |
Collapse
|
20
|
Wang W, Li X, Ji D. Molecular mechanism of the effect of angiopoietin-like protein 8 on the proliferation, invasion and migration of placental trophoblasts in preeclampsia. Exp Ther Med 2020; 19:3461-3468. [PMID: 32346407 PMCID: PMC7185091 DOI: 10.3892/etm.2020.8647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/28/2019] [Indexed: 11/17/2022] Open
Abstract
Preeclampsia (PE) is a pregnancy-specific systemic disorder characterized by various manifestations of organ dysfunction. Inadequate trophoblastic invasion of the uterine wall is involved in the pathogenesis of PE. Angiopoietin-like protein 8 (ANGPTL8) serves an important role in cardiovascular disease development and may have a potential effect on cell proliferation. In the present study, downregulation of ANGPTL8 promoted cell proliferation, decreased p21 expression, and increased the expression levels of cyclin-dependent kinase 2 and proliferating cell nuclear antigen in HTR8/SVneo cells. Silencing of ANGPTL8 led to significant acceleration in cell migration and invasion, and markedly enhanced the matrix metalloproteinase (MMP)-2 and MMP-9 expression levels. In addition, the protein expression levels of tissue inhibitor of matrix metalloproteinase (TIMP)-1 and TIMP-2 were decreased in the group transfected with small interfering RNA (si)-ANGPTL8-1 as compared with those in the control and si-negative control groups. Taken together, these results indicated that ANGPTL8 downregulation promoted the proliferation, migration and invasion of trophoblast cells. Thus, ANGPTL8 suppresses the viability, proliferation, migration and invasion of trophoblast cells, and may be a potential therapeutic target for the clinical treatment of PE.
Collapse
Affiliation(s)
- Weiqi Wang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Xiaoqiong Li
- Department of Obstetrics and Gynecology, Huai'an Maternity and Child Health Hospital, Huai'an, Jiangsu 223002, P.R. China
| | - Donglin Ji
- Department of Obstetrics and Gynecology, Huai'an Maternity and Child Health Hospital, Huai'an, Jiangsu 223002, P.R. China
| |
Collapse
|
21
|
Xu Y, Xia X, Jiang Y, Wu D, Wang S, Fu S, Yang N, Zhang Y, Sun L. Down-regulated lncRNA AGAP2-AS1 contributes to pre-eclampsia as a competing endogenous RNA for JDP2 by impairing trophoblastic phenotype. J Cell Mol Med 2020; 24:4557-4568. [PMID: 32150333 PMCID: PMC7176850 DOI: 10.1111/jcmm.15113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/06/2020] [Accepted: 02/15/2020] [Indexed: 01/17/2023] Open
Abstract
Recently, growing evidence has shown that aberrant long non‐coding RNA (lncRNA) expression in conjunction with an impaired trophoblastic phenotype could implicate the pathological process of pre‐eclampsia (PE). However, only a small portion of lncRNAs has been characterized with regard to the function and molecular mechanisms involved in PE. There are still gaps in the available knowledge; as a result, there are currently only a few applicable treatments for PE in the context of lncRNA. Here, we found that lncRNA AGAP2‐AS1 is abnormally down‐regulated in severe PE placenta tissues. Using human trophoblasts, we established that AGAP2‐AS1 knockdown could inhibit trophoblasts proliferation and invasion and promote cell apoptosis. Further, we showed that overexpression of AGAP2‐AS1 substantially stimulated the development of the trophoblastic phenotype. Through high‐throughput sequencing analysis, we demonstrated that silencing of AGAP2‐AS1 favourably regulated various genes which are relevant to trophoblastic growth and invasion. Mechanistically, AGAP2‐AS1 promoted the suppressor protein, Jun dimerization protein 2 (JDP2), by sponging miR‐574‐5p. Resultantly, further impairment of the trophoblastic phenotype was achieved by way of inhibiting cell growth, apoptosis and invasion. We also determined that the expression of AGAP2‐AS1 could be mediated by FOXP1. Our results showed that the down‐regulated expression of lncRNA AGAP2‐AS1 might serve as a key suppressor in PE via inhibition of JDP2 at the post‐transcriptional level by competing for miR‐574; thus, this presents a novel therapeutic strategy for PE.
Collapse
Affiliation(s)
- Yetao Xu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xi Xia
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ying Jiang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Wu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sailan Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shilong Fu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Nana Yang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanyuan Zhang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Wang S, Wu D, Xu Y, Cao Y, Wang J, Zhang Y, Yang N, Sun L. Downregulated placental expression of linc00468 contributes to trophoblast dysfunction by inducing epithelial-mesenchymal transition. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:333. [PMID: 32355777 PMCID: PMC7186696 DOI: 10.21037/atm.2020.02.166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Preeclampsia (PE) is a widespread progressive condition that can occur pregnancy and is related to high maternal morbidity and fetal mortality in the perinatal period. However, the exact mechanism responsible has not been specific. Accumulating evidence has highlighted the prominent role of the epithelial‐mesenchymal transition (EMT) in the biological behaviors of PE. Methods We explored the role of a lincRNA in extravillous trophoblast (EVTs) cell viability, migration, invasion and apoptosis in vitro, along with the use of linc00468 knockdown or overexpression. Clinically, we discovered that the expression of linc00468 was frequently correlated with adverse clinical features and poor prognosis of PE patients. Results We uncovered that linc00468 was downregulated in PE samples compared to in healthy tissues and in trophoblast cells. Functionally, gain and loss-of-function experiments demonstrated that linc00468 inhibited cell proliferation, migration, invasion and linc00468 accelerated apoptosis of the trophoblast phenotype in cell lines. Moreover, we demonstrated that downregulation of linc00468 promoted the expression of E-cadherin and β-catenin but reduced the expression of N-cadherin, Vimentin and Snail, resulting in progression of EMT. Conclusions In conclusion, linc00468 promoted EMT and a consequent increase in invasiveness in HTR-8/Svneo and JAR EVT cell lines. Our study provides the first evidence that linc00468 has a pivotal role in cell invasion and promotes intrinsic and extrinsic EMT ability of PE.
Collapse
Affiliation(s)
- Sailan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Department of Neurobiology, Care Science and Society, Karolinska Institutet, Solna, Sweden
| | - Dan Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yetao Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yueying Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiawei Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuanyuan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Nana Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
23
|
Zhang Y, Chen X. lncRNA FOXD2-AS1 affects trophoblast cell proliferation, invasion and migration through targeting miRNA. ZYGOTE 2020; 28:1-8. [PMID: 31928563 DOI: 10.1017/s0967199419000807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The abnormal expression of lncRNAs and miRNAs has been found in the placentas of patients with preeclampsia (PE). Therefore, we determined the role of lncRNA FOXD2-AS1/miR-3127 in trophoblast cells. The expression of lncRNA FOXD2-AS1 was detected by qRT-PCR. The proliferation, migration and invasion ability of trophoblast cells were evaluated using CCK-8, wound healing and transwell assays. The target gene of lncRNA FOXD2-AS1 was determined by StarBase and luciferase reporter assays. Western blotting was used to analyze the expression of matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9). The results showed that FOXD2-AS1 affected trophoblast cell viability in vitro, while the expression of miR-3127 was decreased. FOXD2-AS1 silencing decreased the promotion effects on trophoblast cell induced by miR-3127 inhibition. In addition, FOXD2-AS1 and miR-3127 presented the same effect on MMP2 and MMP9 levels. lncRNA FOXD2-AS1 modulated trophoblast cell proliferation, invasion and migration through downregulating miR-3127 expression. Therefore, lncRNA FOXD2-AS1 could act as a latent therapeutic marker in preeclampsia.
Collapse
Affiliation(s)
| | - Xiaoqin Chen
- Obstetrics Department, Huai'an First People's Hospital, Huaian, Jiangsu, 223300, China
| |
Collapse
|
24
|
Milano-Foster J, Ray S, Home P, Ganguly A, Bhattacharya B, Bajpai S, Pal A, Mason CW, Paul S. Regulation of human trophoblast syncytialization by histone demethylase LSD1. J Biol Chem 2019; 294:17301-17313. [PMID: 31591264 PMCID: PMC6873176 DOI: 10.1074/jbc.ra119.010518] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
A successful pregnancy is critically dependent upon proper placental development and function. During human placentation, villous cytotrophoblast (CTB) progenitors differentiate to form syncytiotrophoblasts (SynTBs), which provide the exchange surface between the mother and fetus and secrete hormones to ensure proper progression of pregnancy. However, epigenetic mechanisms that regulate SynTB differentiation from CTB progenitors are incompletely understood. Here, we show that lysine-specific demethylase 1 (LSD1; also known as KDM1A), a histone demethylase, is essential to this process. LSD1 is expressed both in CTB progenitors and differentiated SynTBs in first-trimester placental villi; accordingly, expression in SynTBs is maintained throughout gestation. Impairment of LSD1 function in trophoblast progenitors inhibits induction of endogenous retrovirally encoded genes SYNCYTIN1/endogenous retrovirus group W member 1, envelope (ERVW1) and SYNCYTIN2/endogenous retrovirus group FRD member 1, envelope (ERVFRD1), encoding fusogenic proteins critical to human trophoblast syncytialization. Loss of LSD1 also impairs induction of chorionic gonadotropin α (CGA) and chorionic gonadotropin β (CGB) genes, which encode α and β subunits of human chorionic gonadotrophin (hCG), a hormone essential to modulate maternal physiology during pregnancy. Mechanistic analyses at the endogenous ERVW1, CGA, and CGB loci revealed a regulatory axis in which LSD1 induces demethylation of repressive histone H3 lysine 9 dimethylation (H3K9Me2) and interacts with transcription factor GATA2 to promote RNA polymerase II (RNA-POL-II) recruitment and activate gene transcription. Our study reveals a novel LSD1-GATA2 axis, which regulates human trophoblast syncytialization.
Collapse
Affiliation(s)
- Jessica Milano-Foster
- Institute of Reproductive Health and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Soma Ray
- Institute of Reproductive Health and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Pratik Home
- Institute of Reproductive Health and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Avishek Ganguly
- Institute of Reproductive Health and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Bhaswati Bhattacharya
- Institute of Reproductive Health and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Shilpika Bajpai
- Institute of Reproductive Health and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Aratrika Pal
- Institute of Reproductive Health and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Clifford W Mason
- Institute of Reproductive Health and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Soumen Paul
- Institute of Reproductive Health and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
25
|
Wang Q, Lu X, Li C, Zhang W, Lv Y, Wang L, Wu L, Meng L, Fan Y, Ding H, Long W, Lv M. Down-regulated long non-coding RNA PVT1 contributes to gestational diabetes mellitus and preeclampsia via regulation of human trophoblast cells. Biomed Pharmacother 2019; 120:109501. [PMID: 31627090 DOI: 10.1016/j.biopha.2019.109501] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE We aimed to explore the expression level and biological function of lncRNA PVT1 in human trophoblast cells. METHODS The expression levels of PVT1 in cancer cell lines, HTR8/SVneo cell, HUVEC cell, the maternal placenta of GDM patients, PE patients and normal pregnancy were detected by qRT-PCR. The cell culture, cell transfection, CCK-8 assay, flow cytometry, wound scratch assay and transwell were carried out to determine the effects of silencing and overexpression of PVT1 on the HTR8/SVneo trophoblast cell line. Nuclear and chromatin RNA fraction assay, RNA-sequencing, western blot and qRT-PCR were conducted to preliminarily explore possible mechanisms. RESULTS The relative PVT1 expression level in HTR-8/Svneo cells was higher compared to other cancer cells and HUVEC, and was lower in the GDM and PE placentas than in the normal placentas. The results showed that PVT1 knockdown notably inhibited the proliferation, migration and invasiveness abilities of trophoblast cells, and significantly promoted the apoptosis. Furthermore, overexpression of PVT1 showed the opposite results. We identified 105 differentially expressed genes after PVT1 knockdown, 23 were up-regulated and 82 were down-regulated. GO enrichment analysis and pathway enrichment analysis showed that the DEGs were closely related to the functional changes of trophoblast cells. Because of the enrichment of 7 DEGs and less Q value, PI3K/AKT pathway was prominent and attracted our attention. More importantly, we confirmed that knockdown of PVT1 obviously decreased AKT phosphorylation and decreased the expression of DEGs (GDPD3, ITGAV and ITGB8) while overexpression of PVT1 promoted the AKT phosphorylation and increased the expression of DEGs (GDPD3, ITGAV and ITGB8). PVT1 was primarily distributed in the nuclear compartment and also distributed in the cytoplasmic of HTR-8/Svneo cells. CONCLUSIONS This study provided the evidence that PVT1 played a vital role in trophoblast cells, and it is important for maintaining the normal physiological function of trophoblast cells. The PVT1 expression was lower in the GDM and PE placentas than the normal placentas, which might disrupt the function of trophoblast cells through PI3K/AKT pathway.
Collapse
Affiliation(s)
- Qiuhong Wang
- Department of Breast, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China; Department of Clinical Laboratory, Nantong Maternal and Child Health Care Hospital, Affiliated to Nantong University, Nantong, China
| | - Xun Lu
- Milken School of Public Health, George Washington University, Washington DC, USA
| | - Chunyan Li
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Wen Zhang
- Department of Clinical Laboratory, Nantong Maternal and Child Health Care Hospital, Affiliated to Nantong University, Nantong, China
| | - Yan Lv
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Luyao Wang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lan Wu
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Li Meng
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yuru Fan
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Hongjuan Ding
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Wei Long
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Mingming Lv
- Department of Breast, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| |
Collapse
|