1
|
Aswathy R, Chalos VA, Suganya K, Sumathi S. Advancing miRNA cancer research through artificial intelligence: from biomarker discovery to therapeutic targeting. Med Oncol 2024; 42:30. [PMID: 39688780 DOI: 10.1007/s12032-024-02579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
MicroRNAs (miRNAs), a class of small non-coding RNAs, play a vital role in regulating gene expression at the post-transcriptional level. Their discovery has profoundly impacted therapeutic strategies, particularly in cancer treatment, where RNA therapeutics, including miRNA-based targeted therapies, have gained prominence. Advances in RNA sequencing technologies have facilitated a comprehensive exploration of miRNAs-from fundamental research to their diagnostic and prognostic potential in various diseases, notably cancers. However, the manual handling and interpretation of vast RNA datasets pose significant challenges. The advent of artificial intelligence (AI) has revolutionized biological research by efficiently extracting insights from complex data. Machine learning algorithms, particularly deep learning techniques are effective for identifying critical miRNAs across different cancers and developing prognostic models. Moreover, the integration of AI has led to the creation of comprehensive miRNA databases for identifying mRNA and gene targets, thus facilitating deeper understanding and application in cancer research. This review comprehensively examines current developments in the application of machine learning techniques in miRNA research across diverse cancers. We discuss their roles in identifying biomarkers, elucidating miRNA targets, establishing disease associations, predicting prognostic outcomes, and exploring broader AI applications in cancer research. This review aims to guide researchers in leveraging AI techniques effectively within the miRNA field, thereby accelerating advancements in cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Raghu Aswathy
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Varghese Angel Chalos
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Kanagaraj Suganya
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Sundaravadivelu Sumathi
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India.
| |
Collapse
|
2
|
Li G, Li Y, Liang C, Luo J. DeepWalk-aware graph attention networks with CNN for circRNA-drug sensitivity association identification. Brief Funct Genomics 2024; 23:418-428. [PMID: 38061910 DOI: 10.1093/bfgp/elad053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 07/22/2024] Open
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNA molecules that are widely found in cells. Recent studies have revealed the significant role played by circRNAs in human health and disease treatment. Several restrictions are encountered because forecasting prospective circRNAs and medication sensitivity connections through biological research is not only time-consuming and expensive but also incredibly ineffective. Consequently, the development of a novel computational method that enhances both the efficiency and accuracy of predicting the associations between circRNAs and drug sensitivities is urgently needed. Here, we present DGATCCDA, a computational method based on deep learning, for circRNA-drug sensitivity association identification. In DGATCCDA, we first construct multimodal networks from the original feature information of circRNAs and drugs. After that, we adopt DeepWalk-aware graph attention networks to sufficiently extract feature information from the multimodal networks to obtain the embedding representation of nodes. Specifically, we combine DeepWalk and graph attention network to form DeepWalk-aware graph attention networks, which can effectively capture the global and local information of graph structures. The features extracted from the multimodal networks are fused by layer attention, and eventually, the inner product approach is used to construct the association matrix of circRNAs and drugs for prediction. The ultimate experimental results obtained under 5-fold cross-validation settings show that the average area under the receiver operating characteristic curve value of DGATCCDA reaches 91.18%, which is better than those of the five current state-of-the-art calculation methods. We further guide a case study, and the excellent obtained results also show that DGATCCDA is an effective computational method for exploring latent circRNA-drug sensitivity associations.
Collapse
Affiliation(s)
- Guanghui Li
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| | - Youjun Li
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| | - Cheng Liang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| |
Collapse
|
3
|
Zhang Y, Li X. Empowering Graph Neural Networks with Block-Based Dual Adaptive Deep Adjustment for Drug Resistance-Related NcRNA Discovery. J Chem Inf Model 2024; 64:3537-3547. [PMID: 38523272 PMCID: PMC11040722 DOI: 10.1021/acs.jcim.3c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
Drug resistance to chemotherapeutic agents remains a formidable challenge in cancer treatment, significantly impacting treatment efficacy. Extensive research has exposed the intimate involvement of noncoding RNAs (ncRNAs) in conferring resistance to cancer drugs. Understanding the intricate associations between ncRNAs and drug resistance is of pivotal importance in advancing clinical interventions and expediting drug development. However, traditional biological experimental methods are hampered by limitations, such as labor intensiveness, time consumption, and constraints in scalability. Addressing these challenges necessitates the development of efficient computational methods for the accurate prediction of potential ncRNA-drug resistance associations (NDRA). However, most existing predictive models primarily focus on known ncRNA-drug resistance associations, often neglecting the critical aspect of similarity information between ncRNAs and drug resistance. This oversight may hinder the accuracy of characterizing these associations. To overcome the limitations of existing computational models, we proposed B-NDRA, a computational framework designed for the discovery of drug resistance-related ncRNA. Initially, we constructed a heterogeneous graph that integrates ncRNA-drug resistance pairs, leveraging both known associations and similarity fusion information between ncRNAs and drug resistance. Subsequently, we employed an attention mechanism to aggregate local features of graph nodes following a dimensionality reduction of node features. Further, a graph neural network (GNN) facilitated the learning of global node embeddings. Notably, the integration of dual adaptive deep adjustment architectures, encompassing intrablock and interblock methodologies, enabled efficient extraction of global features while balancing local and global features. Finally, B-NDRA employed a multilayer perceptron to predict associations between ncRNAs and drug resistance. Through rigorous 5-fold cross-validation, B-NDRA achieved average AUC, AUPR, Accuracy, Precision, Recall, and F1-score values of 92.2%, 91.9%, 84.88%, 86.9%, 82.37%, and 84.44%, respectively. Furthermore, comparative evaluations were conducted on established models, namely, GAEMDA, GRPAMDA, and LRGCPND. The results, obtained through three distinct 5-fold cross-validation strategies, demonstrated a notable performance improvement across almost all metrics for our B-NDRA. Specific case studies targeting Doxorubicin and Imatinib further validated the practicality of our B-NDRA in discovering potential NDRA. These results confirm the potential of our B-NDRA as a valuable tool in advancing cancer research and therapeutic development. The source code and data set of B-NDRA can be found at https://github.com/XuanLi1145/B-NDRA.
Collapse
Affiliation(s)
- Yi Zhang
- Guilin
University of Technology, Guilin 541004, China
- Guangxi
Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology, Guilin 541004, China
| | - Xuanzhao Li
- Guilin
University of Technology, Guilin 541004, China
- Guangxi
Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
4
|
Song Z, Yang X, Xu Z, King I. Graph-Based Semi-Supervised Learning: A Comprehensive Review. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:8174-8194. [PMID: 35302941 DOI: 10.1109/tnnls.2022.3155478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Semi-supervised learning (SSL) has tremendous value in practice due to the utilization of both labeled and unlabelled data. An essential class of SSL methods, referred to as graph-based semi-supervised learning (GSSL) methods in the literature, is to first represent each sample as a node in an affinity graph, and then, the label information of unlabeled samples can be inferred based on the structure of the constructed graph. GSSL methods have demonstrated their advantages in various domains due to their uniqueness of structure, the universality of applications, and their scalability to large-scale data. Focusing on GSSL methods only, this work aims to provide both researchers and practitioners with a solid and systematic understanding of relevant advances as well as the underlying connections among them. The concentration on one class of SSL makes this article distinct from recent surveys that cover a more general and broader picture of SSL methods yet often neglect the fundamental understanding of GSSL methods. In particular, a significant contribution of this article lies in a newly generalized taxonomy for GSSL under the unified framework, with the most up-to-date references and valuable resources such as codes, datasets, and applications. Furthermore, we present several potential research directions as future work with our insights into this rapidly growing field.
Collapse
|
5
|
Momanyi BM, Zulfiqar H, Grace-Mercure BK, Ahmed Z, Ding H, Gao H, Liu F. CFNCM: Collaborative filtering neighborhood-based model for predicting miRNA-disease associations. Comput Biol Med 2023; 163:107165. [PMID: 37315383 DOI: 10.1016/j.compbiomed.2023.107165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
MicroRNAs have a significant role in the emergence of various human disorders. Consequently, it is essential to understand the existing interactions between miRNAs and diseases, as this will help scientists better study and comprehend the diseases' biological mechanisms. Findings can be employed as biomarkers or drug targets to advance the detection, diagnosis, and treatment of complex human disorders by foretelling possible disease-related miRNAs. This study proposed a computational model for predicting potential miRNA-disease associations called the Collaborative Filtering Neighborhood-based Classification Model (CFNCM), in light of the shortcomings of conventional and biological experiments, which are expensive and time-consuming. The model generated integrated miRNA and disease similarity matrices using the validated associations and miRNA and disease similarity information and used them as the input features for CFNCM. To produce class labels, we first determined the association scores for brand-new pairs using user-based collaborative filtering. With zero as the threshold, the associations with scores >0 were labelled 1, indicating a potential positive association, otherwise, it is marked as 0. Then, we developed classification models using various machine-learning algorithms. By comparison, we discovered that the support vector machine (SVM) produced the best AUC of 0.96 with 10-fold cross-validation through the GridSearchCV technique for identifying optimal parameter values. In addition, the models were evaluated and verified by analyzing the top 50 breast and lung neoplasms-related miRNAs, of which 46 and 47 associations were verified in two authoritative databases, dbDEMC and miR2Disease.
Collapse
Affiliation(s)
- Biffon Manyura Momanyi
- School of Computer Science and Engineering, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hasan Zulfiqar
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, China
| | - Bakanina Kissanga Grace-Mercure
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zahoor Ahmed
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, China
| | - Hui Ding
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Hui Gao
- School of Computer Science and Engineering, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Fen Liu
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus), Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Cancer Hospital, Hohhot, China.
| |
Collapse
|
6
|
Meng X, Shang J, Ge D, Yang Y, Zhang T, Liu JX. ETGPDA: identification of piRNA-disease associations based on embedding transformation graph convolutional network. BMC Genomics 2023; 24:279. [PMID: 37226081 PMCID: PMC10210294 DOI: 10.1186/s12864-023-09380-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Piwi-interacting RNAs (piRNAs) have been proven to be closely associated with human diseases. The identification of the potential associations between piRNA and disease is of great significance for complex diseases. Traditional "wet experiment" is time-consuming and high-priced, predicting the piRNA-disease associations by computational methods is of great significance. METHODS In this paper, a method based on the embedding transformation graph convolution network is proposed to predict the piRNA-disease associations, named ETGPDA. Specifically, a heterogeneous network is constructed based on the similarity information of piRNA and disease, as well as the known piRNA-disease associations, which is applied to extract low-dimensional embeddings of piRNA and disease based on graph convolutional network with an attention mechanism. Furthermore, the embedding transformation module is developed for the problem of embedding space inconsistency, which is lightweighter, stronger learning ability and higher accuracy. Finally, the piRNA-disease association score is calculated by the similarity of the piRNA and disease embedding. RESULTS Evaluated by fivefold cross-validation, the AUC of ETGPDA achieves 0.9603, which is better than the other five selected computational models. The case studies based on Head and neck squamous cell carcinoma and Alzheimer's disease further prove the superior performance of ETGPDA. CONCLUSIONS Hence, the ETGPDA is an effective method for predicting the hidden piRNA-disease associations.
Collapse
Affiliation(s)
- Xianghan Meng
- School of Computer Science, Qufu Normal University, Rizhao, 276826 China
| | - Junliang Shang
- School of Computer Science, Qufu Normal University, Rizhao, 276826 China
| | - Daohui Ge
- School of Computer Science, Qufu Normal University, Rizhao, 276826 China
| | - Yi Yang
- School of Computer Science, Qufu Normal University, Rizhao, 276826 China
| | - Tongdui Zhang
- Science and Technology Innovation Service Institution of Rizhao, Rizhao, 276826 China
| | - Jin-Xing Liu
- School of Computer Science, Qufu Normal University, Rizhao, 276826 China
| |
Collapse
|
7
|
Fu F, Chen C, Du K, Li LS, Li R, Lei TY, Deng Q, Wang D, Yu QX, Yang X, Han J, Pan M, Zhen L, Zhang LN, Li J, Li FT, Zhang YL, Jing XY, Li FC, Li DZ, Liao C. Ndufa4 Regulates the Proliferation and Apoptosis of Neurons via miR-145a-5p/Homer1/Ccnd2. Mol Neurobiol 2023; 60:2986-3003. [PMID: 36763283 PMCID: PMC10122635 DOI: 10.1007/s12035-023-03239-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/09/2023] [Indexed: 02/11/2023]
Abstract
The Dandy-Walker malformation (DWM) is characterized by neuron dysregulation in embryonic development; however, the regulatory mechanisms associated with it are unclear. This study aimed to investigate the role of NADH dehydrogenase 1 alpha subcomplex 4 (NDUFA4) in regulating downstream signaling cascades and neuronal proliferation and apoptosis. Ndufa4 overexpression promoted the proliferation of neurons and inhibited their apoptosis in vitro, which underwent reverse regulation by the Ndufa4 short hairpin RNAs. Ndufa4-knockout (KO) mice showed abnormal histological alterations in the brain tissue, in addition to impaired spatial learning capacity and exploratory activity. Ndufa4 depletion altered the microRNA expressional profiles of the cerebellum: Ndufa4 inhibited miR-145a-5p expression both in the cerebellum and neurons. miR-145a-5p inhibited the proliferation of neurons and promoted their apoptosis. Ndufa4 promoted and miR-145a-5p inhibited the expression of human homer protein homolog 1 and cyclin D2 in neurons. Thus, Ndufa4 promotes the proliferation of neurons and inhibits their apoptosis by inhibiting miR-145a-5p, which directly targets and inhibits the untranslated regions of Homer1 and Ccnd2 expression.
Collapse
Affiliation(s)
- Fang Fu
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Chen Chen
- Department of Respirator, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Kun Du
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Lu-Shan Li
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Ru Li
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Ting-Ying Lei
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Qiong Deng
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Dan Wang
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Qiu-Xia Yu
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Xin Yang
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Jin Han
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Min Pan
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Li Zhen
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Li-Na Zhang
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Jian Li
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Fa-Tao Li
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Yong-Ling Zhang
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Xiang-Yi Jing
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Fu-Cheng Li
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Dong-Zhi Li
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China
| | - Can Liao
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 of Jinsui Road of Guangzhou, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
8
|
Wang W, Chen H. Predicting miRNA-disease associations based on lncRNA-miRNA interactions and graph convolution networks. Brief Bioinform 2023; 24:6918743. [PMID: 36526276 DOI: 10.1093/bib/bbac495] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 12/23/2022] Open
Abstract
Increasing studies have proved that microRNAs (miRNAs) are critical biomarkers in the development of human complex diseases. Identifying disease-related miRNAs is beneficial to disease prevention, diagnosis and remedy. Based on the assumption that similar miRNAs tend to associate with similar diseases, various computational methods have been developed to predict novel miRNA-disease associations (MDAs). However, selecting proper features for similarity calculation is a challenging task because of data deficiencies in biomedical science. In this study, we propose a deep learning-based computational method named MAGCN to predict potential MDAs without using any similarity measurements. Our method predicts novel MDAs based on known lncRNA-miRNA interactions via graph convolution networks with multichannel attention mechanism and convolutional neural network combiner. Extensive experiments show that the average area under the receiver operating characteristic values obtained by our method under 2-fold, 5-fold and 10-fold cross-validations are 0.8994, 0.9032 and 0.9044, respectively. When compared with five state-of-the-art methods, MAGCN shows improvement in terms of prediction accuracy. In addition, we conduct case studies on three diseases to discover their related miRNAs, and find that all the top 50 predictions for all the three diseases have been supported by established databases. The comprehensive results demonstrate that our method is a reliable tool in detecting new disease-related miRNAs.
Collapse
|
9
|
Lin W, Hu S, Wu Z, Xu Z, Zhong Y, Lv Z, Qiu W, Xiao X. iCancer-Pred: A tool for identifying cancer and its type using DNA methylation. Genomics 2022; 114:110486. [PMID: 36126833 DOI: 10.1016/j.ygeno.2022.110486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 01/14/2023]
Abstract
DNA methylation is an important epigenetics, which occurs in the early stages of tumor formation. And it also is of great significance to find the relationship between DNA methylation and cancer. This paper proposes a novel model, iCancer-Pred, to identify cancer and classify its types further. The datasets of DNA methylation information of 7 cancer types have been collected from The Cancer Genome Atlas (TCGA). The coefficient of variation firstly is used to reduce the number of features, and then the elastic network is applied to select important features. Finally, a fully connected neural network is constructed with these selected features. In predicting seven types of cancers, iCancer-Pred has achieved an overall accuracy of over 97% accuracy with 5-fold cross-validation. For the convenience of the application, a user-friendly web server: http://bioinfo.jcu.edu.cn/cancer or http://121.36.221.79/cancer/ is available. And the source codes are freely available for download at https://github.com/Huerhu/iCancer-Pred.
Collapse
Affiliation(s)
- Weizhong Lin
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China.
| | - Siqin Hu
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Zhicheng Wu
- Wuhan Ammunition Life Science & Technology Co., Ltd., Wuhan 430000, China
| | - Zhaochun Xu
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Yu Zhong
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Zhe Lv
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Wangren Qiu
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Xuan Xiao
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| |
Collapse
|
10
|
Lu X, Li J, Zhu Z, Yuan Y, Chen G, He K. Predicting miRNA-Disease Associations via Combining Probability Matrix Feature Decomposition With Neighbor Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3160-3170. [PMID: 34260356 DOI: 10.1109/tcbb.2021.3097037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Predicting the associations of miRNAs and diseases may uncover the causation of various diseases. Many methods are emerging to tackle the sparse and unbalanced disease related miRNA prediction. Here, we propose a Probabilistic matrix decomposition combined with neighbor learning to identify MiRNA-Disease Associations utilizing heterogeneous data(PMDA). First, we build similarity networks for diseases and miRNAs, respectively, by integrating semantic information and functional interactions. Second, we construct a neighbor learning model in which the neighbor information of individual miRNA or disease is utilized to enhance the association relationship to tackle the spare problem. Third, we predict the potential association between miRNAs and diseases via probability matrix decomposition. The experimental results show that PMDA is superior to other five methods in sparse and unbalanced data. The case study shows that the new miRNA-disease interactions predicted by the PMDA are effective and the performance of the PMDA is superior to other methods.
Collapse
|
11
|
Li L, Gao Z, Zheng CH, Qi R, Wang YT, Ni JC. Predicting miRNA-Disease Association Based on Improved Graph Regression. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3604-3613. [PMID: 34757912 DOI: 10.1109/tcbb.2021.3127017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, as a growing number of associations between microRNAs (miRNAs) and diseases are discovered, researchers gradually realize that miRNAs are closely related to several complicated biological processes and human diseases. Hence, it is especially important to construct availably models to infer associations between miRNAs and diseases. In this study, we presented Improved Graph Regression for miRNA-Disease Association Prediction (IGRMDA) to observe potential relationship between miRNAs and diseases. In order to reduce the inherent noise existing in the acquired biological datasets, we utilized matrix decomposition algorithm to process miRNA functional similarity and disease semantic similarity and then combining them with existing similarity information to obtain final miRNA similarity data and disease similarity data. Then, we applied miRNA-disease association data, miRNA similarity data and disease similarity data to form corresponding latent spaces. Furthermore, we performed improved graph regression algorithm in latent spaces, which included miRNA-disease association space, miRNA similarity space and disease similarity space. Non-negative matrix factorization and partial least squares were used in the graph regression process to obtain important related attributes. The cross validation experiments and case studies were also implemented to prove the effectiveness of IGRMDA, which showed that IGRMDA could predict potential associations between miRNAs and diseases.
Collapse
|
12
|
Dong N, Mucke S, Khosla M. MuCoMiD: A Multitask Graph Convolutional Learning Framework for miRNA-Disease Association Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3081-3092. [PMID: 35594217 DOI: 10.1109/tcbb.2022.3176456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Growing evidence from recent studies implies that microRNAs or miRNAs could serve as biomarkers in various complex human diseases. Since wet-lab experiments for detecting miRNAs associated with a disease are expensive and time-consuming, machine learning techniques for miRNA-disease association prediction have attracted much attention in recent years. A big challenge in building reliable machine learning models is that of data scarcity. In particular, existing approaches trained on the available small datasets, even when combined with precalculated handcrafted input features, often suffer from bad generalization and data leakage problems. We overcome the limitations of existing works by proposing a novel multitask graph convolution-based approach, which we refer to as MuCoMiD. MuCoMiD allows automatic feature extraction while incorporating knowledge from five heterogeneous biological information sources (associations between miRNAs/diseases and protein-coding genes (PCGs), interactions between protein-coding genes, miRNA family information, and disease ontology) in a multitask setting which is a novel perspective and has not been studied before. To effectively test the generalization capability of our model, we conduct large-scale experiments on the standard benchmark datasets as well as on our proposed large independent testing sets and case studies. MuCoMiD obtains significantly higher Average Precision (AP) scores than all benchmarked models on three large independent testing sets, especially those with many new miRNAs, as well as in the detection of false positives. Thanks to its capability of learning directly from raw input information, MuCoMiD is easier to maintain and update than handcrafted feature-based methods, which would require recomputation of features every time there is a change in the original information sources (e.g., disease ontology, miRNA/disease-PCG associations, etc.). We share our code for reproducibility and future research at https://git.l3s.uni-hannover.de/dong/cmtt.
Collapse
|
13
|
Sun X, Zhang Y, Li H, Zhou Y, Shi S, Chen Z, He X, Zhang H, Li F, Yin J, Mou M, Wang Y, Qiu Y, Zhu F. DRESIS: the first comprehensive landscape of drug resistance information. Nucleic Acids Res 2022; 51:D1263-D1275. [PMID: 36243960 PMCID: PMC9825618 DOI: 10.1093/nar/gkac812] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/22/2022] [Accepted: 10/11/2022] [Indexed: 01/30/2023] Open
Abstract
Widespread drug resistance has become the key issue in global healthcare. Extensive efforts have been made to reveal not only diverse diseases experiencing drug resistance, but also the six distinct types of molecular mechanisms underlying this resistance. A database that describes a comprehensive list of diseases with drug resistance (not just cancers/infections) and all types of resistance mechanisms is now urgently needed. However, no such database has been available to date. In this study, a comprehensive database describing drug resistance information named 'DRESIS' was therefore developed. It was introduced to (i) systematically provide, for the first time, all existing types of molecular mechanisms underlying drug resistance, (ii) extensively cover the widest range of diseases among all existing databases and (iii) explicitly describe the clinically/experimentally verified resistance data for the largest number of drugs. Since drug resistance has become an ever-increasing clinical issue, DRESIS is expected to have great implications for future new drug discovery and clinical treatment optimization. It is now publicly accessible without any login requirement at: https://idrblab.org/dresis/.
Collapse
Affiliation(s)
| | | | | | | | - Shuiyang Shi
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhen Chen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xin He
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang University–University of Edinburgh Institute, Zhejiang University, Haining 314499, China
| | - Hanyu Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiayi Yin
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunzhu Wang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunqing Qiu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- To whom correspondence should be addressed.
| |
Collapse
|
14
|
Shang J, Yang Y, Li F, Guan B, Liu JX, Sun Y. BLNIMDA: identifying miRNA-disease associations based on weighted bi-level network. BMC Genomics 2022; 23:686. [PMID: 36199016 PMCID: PMC9533620 DOI: 10.1186/s12864-022-08908-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022] Open
Abstract
Background MicroRNAs (miRNAs) have been confirmed to be inextricably linked to the emergence of human complex diseases. The identification of the disease-related miRNAs has gradually become a routine way to unveil the genetic mechanisms of examined disorders. Methods In this study, a method BLNIMDA based on a weighted bi-level network was proposed for predicting hidden associations between miRNAs and diseases. For this purpose, the known associations between miRNAs and diseases as well as integrated similarities between miRNAs and diseases are mapped into a bi-level network. Based on the developed bi-level network, the miRNA-disease associations (MDAs) are defined as strong associations, potential associations and no associations. Then, each miRNA-disease pair (MDP) is assigned two information properties according to the bidirectional information distribution strategy, i.e., associations of miRNA towards disease and vice-versa. Finally, two affinity weights for each MDP obtained from the information properties and the association type are then averaged as the final association score of the MDP. Highlights of the BLNIMDA lie in the definition of MDA types, and the introduction of affinity weights evaluation from the bidirectional information distribution strategy and defined association types, which ensure the comprehensiveness and accuracy of the final prediction score of MDAs. Results Five-fold cross-validation and leave-one-out cross-validation are used to evaluate the performance of the BLNIMDA. The results of the Area Under Curve show that the BLNIMDA has many advantages over the other seven selected computational methods. Furthermore, the case studies based on four common diseases and miRNAs prove that the BLNIMDA has good predictive performance. Conclusions Therefore, the BLNIMDA is an effective method for predicting hidden MDAs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08908-8.
Collapse
Affiliation(s)
- Junliang Shang
- School of Computer Science, Qufu Normal University, 276826, Rizhao, China
| | - Yi Yang
- School of Computer Science, Qufu Normal University, 276826, Rizhao, China
| | - Feng Li
- School of Computer Science, Qufu Normal University, 276826, Rizhao, China
| | - Boxin Guan
- School of Computer Science, Qufu Normal University, 276826, Rizhao, China
| | - Jin-Xing Liu
- School of Computer Science, Qufu Normal University, 276826, Rizhao, China
| | - Yan Sun
- School of Computer Science, Qufu Normal University, 276826, Rizhao, China.
| |
Collapse
|
15
|
Li M, Fan Y, Zhang Y, Lv Z. Using Sequence Similarity Based on CKSNP Features and a Graph Neural Network Model to Identify miRNA-Disease Associations. Genes (Basel) 2022; 13:1759. [PMID: 36292644 PMCID: PMC9602123 DOI: 10.3390/genes13101759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 01/12/2024] Open
Abstract
Among many machine learning models for analyzing the relationship between miRNAs and diseases, the prediction results are optimized by establishing different machine learning models, and less attention is paid to the feature information contained in the miRNA sequence itself. This study focused on the impact of the different feature information of miRNA sequences on the relationship between miRNA and disease. It was found that when the graph neural network used was the same and the miRNA features based on the K-spacer nucleic acid pair composition (CKSNAP) feature were adopted, a better graph neural network prediction model of miRNA-disease relationship could be built (AUC = 93.71%), which was 0.15% greater than the best model in the literature based on the same benchmark dataset. The optimized model was also used to predict miRNAs related to lung tumors, esophageal tumors, and kidney tumors, and 47, 47, and 37 of the top 50 miRNAs related to three diseases predicted separately by the model were consistent with descriptions in the wet experiment validation database (dbDEMC).
Collapse
Affiliation(s)
- Mingxin Li
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Yu Fan
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Yiting Zhang
- College of Biology, Southwest Jiaotong University, Chengdu 611756, China
- College of Biology, Georgia State University, Atlanta, GA 30302-3965, USA
| | - Zhibin Lv
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
16
|
Dong TN, Schrader J, Mücke S, Khosla M. A message passing framework with multiple data integration for miRNA-disease association prediction. Sci Rep 2022; 12:16259. [PMID: 36171337 PMCID: PMC9519928 DOI: 10.1038/s41598-022-20529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022] Open
Abstract
Micro RNA or miRNA is a highly conserved class of non-coding RNA that plays an important role in many diseases. Identifying miRNA-disease associations can pave the way for better clinical diagnosis and finding potential drug targets. We propose a biologically-motivated data-driven approach for the miRNA-disease association prediction, which overcomes the data scarcity problem by exploiting information from multiple data sources. The key idea is to enrich the existing miRNA/disease-protein-coding gene (PCG) associations via a message passing framework, followed by the use of disease ontology information for further feature filtering. The enriched and filtered PCG associations are then used to construct the inter-connected miRNA-PCG-disease network to train a structural deep network embedding (SDNE) model. Finally, the pre-trained embeddings and the biologically relevant features from the miRNA family and disease semantic similarity are concatenated to form the pair input representations to a Random Forest classifier whose task is to predict the miRNA-disease association probabilities. We present large-scale comparative experiments, ablation, and case studies to showcase our approach's superiority. Besides, we make the model prediction results for 1618 miRNAs and 3679 diseases, along with all related information, publicly available at http://software.mpm.leibniz-ai-lab.de/ to foster assessments and future adoption.
Collapse
Affiliation(s)
- Thi Ngan Dong
- L3S Research Center, Leibniz University of Hannover, Hannover, Germany.
| | - Johanna Schrader
- L3S Research Center, Leibniz University of Hannover, Hannover, Germany
| | - Stefanie Mücke
- Hannover Unified Biobank (HUB), Hannover Medical School, Hannover, Germany
| | - Megha Khosla
- Delft University of Technology (TU Delft), Delft, Netherlands
| |
Collapse
|
17
|
Rao Y, Xie M, Wang H. Predict potential miRNA-disease associations based on bounded nuclear norm regularization. Front Genet 2022; 13:978975. [PMID: 36072658 PMCID: PMC9441603 DOI: 10.3389/fgene.2022.978975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidences show that the abnormal microRNA (miRNA) expression is related to a variety of complex human diseases. However, the current biological experiments to determine miRNA-disease associations are time consuming and expensive. Therefore, computational models to predict potential miRNA-disease associations are in urgent need. Though many miRNA-disease association prediction methods have been proposed, there is still a room to improve the prediction accuracy. In this paper, we propose a matrix completion model with bounded nuclear norm regularization to predict potential miRNA-disease associations, which is called BNNRMDA. BNNRMDA at first constructs a heterogeneous miRNA-disease network integrating the information of miRNA self-similarity, disease self-similarity, and the known miRNA-disease associations, which is represented by an adjacent matrix. Then, it models the miRNA-disease prediction as a relaxed matrix completion with error tolerance, value boundary and nuclear norm minimization. Finally it implements the alternating direction method to solve the matrix completion problem. BNNRMDA makes full use of available information of miRNAs and diseases, and can deals with the data containing noise. Compared with four state-of-the-art methods, the experimental results show BNNRMDA achieved the best performance in five-fold cross-validation and leave-one-out cross-validation. The case studies on two complex human diseases showed that 47 of the top 50 prediction results of BNNRMDA have been verified in the latest HMDD database.
Collapse
|
18
|
Wu Q, Deng Z, Pan X, Shen HB, Choi KS, Wang S, Wu J, Yu DJ. MDGF-MCEC: a multi-view dual attention embedding model with cooperative ensemble learning for CircRNA-disease association prediction. Brief Bioinform 2022; 23:6652197. [PMID: 35907779 DOI: 10.1093/bib/bbac289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/19/2022] [Accepted: 06/26/2022] [Indexed: 11/12/2022] Open
Abstract
Circular RNA (circRNA) is closely involved in physiological and pathological processes of many diseases. Discovering the associations between circRNAs and diseases is of great significance. Due to the high-cost to verify the circRNA-disease associations by wet-lab experiments, computational approaches for predicting the associations become a promising research direction. In this paper, we propose a method, MDGF-MCEC, based on multi-view dual attention graph convolution network (GCN) with cooperative ensemble learning to predict circRNA-disease associations. First, MDGF-MCEC constructs two disease relation graphs and two circRNA relation graphs based on different similarities. Then, the relation graphs are fed into a multi-view GCN for representation learning. In order to learn high discriminative features, a dual-attention mechanism is introduced to adjust the contribution weights, at both channel level and spatial level, of different features. Based on the learned embedding features of diseases and circRNAs, nine different feature combinations between diseases and circRNAs are treated as new multi-view data. Finally, we construct a multi-view cooperative ensemble classifier to predict the associations between circRNAs and diseases. Experiments conducted on the CircR2Disease database demonstrate that the proposed MDGF-MCEC model achieves a high area under curve of 0.9744 and outperforms the state-of-the-art methods. Promising results are also obtained from experiments on the circ2Disease and circRNADisease databases. Furthermore, the predicted associated circRNAs for hepatocellular carcinoma and gastric cancer are supported by the literature. The code and dataset of this study are available at https://github.com/ABard0/MDGF-MCEC.
Collapse
Affiliation(s)
| | - Zhaohong Deng
- Jiangnan University, School of Artificial Intelligence and Computer Science, China
| | - Xiaoyong Pan
- Shanghai Jiao Tong University, Department of Automation, China
| | - Hong-Bin Shen
- Shanghai Jiao Tong University, Shanghai, China, Department of Automation, China
| | - Kup-Sze Choi
- Hong Kong Polytechnic University, School of Nursing, China
| | - Shitong Wang
- Jiangnan University, School of Artificial Intelligence and Computer Science, China
| | - Jing Wu
- Jiangnan University, State Key Laboratory of Food Science and Technology, China
| | - Dong-Jun Yu
- Nanjing University of Science and Technology, School of Computer Science and Engineering, China
| |
Collapse
|
19
|
Yang M, Huang ZA, Gu W, Han K, Pan W, Yang X, Zhu Z. Prediction of biomarker-disease associations based on graph attention network and text representation. Brief Bioinform 2022; 23:6651308. [PMID: 35901464 DOI: 10.1093/bib/bbac298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023] Open
Abstract
MOTIVATION The associations between biomarkers and human diseases play a key role in understanding complex pathology and developing targeted therapies. Wet lab experiments for biomarker discovery are costly, laborious and time-consuming. Computational prediction methods can be used to greatly expedite the identification of candidate biomarkers. RESULTS Here, we present a novel computational model named GTGenie for predicting the biomarker-disease associations based on graph and text features. In GTGenie, a graph attention network is utilized to characterize diverse similarities of biomarkers and diseases from heterogeneous information resources. Meanwhile, a pretrained BERT-based model is applied to learn the text-based representation of biomarker-disease relation from biomedical literature. The captured graph and text features are then integrated in a bimodal fusion network to model the hybrid entity representation. Finally, inductive matrix completion is adopted to infer the missing entries for reconstructing relation matrix, with which the unknown biomarker-disease associations are predicted. Experimental results on HMDD, HMDAD and LncRNADisease data sets showed that GTGenie can obtain competitive prediction performance with other state-of-the-art methods. AVAILABILITY The source code of GTGenie and the test data are available at: https://github.com/Wolverinerine/GTGenie.
Collapse
Affiliation(s)
- Minghao Yang
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Zhi-An Huang
- Center for Computer Science and Information Technology, City University of Hong Kong Dongguan Research Institute, Dongguan, China
| | - Wenhao Gu
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518000, China.,GeneGenieDx Corp, 160 E Tasman Dr, San Jose, CA 95134
| | - Kun Han
- GeneGenieDx Corp, 160 E Tasman Dr, San Jose, CA 95134
| | - Wenying Pan
- GeneGenieDx Corp, 160 E Tasman Dr, San Jose, CA 95134
| | - Xiao Yang
- GeneGenieDx Corp, 160 E Tasman Dr, San Jose, CA 95134
| | - Zexuan Zhu
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518000, China
| |
Collapse
|
20
|
Huang D, An J, Zhang L, Liu B. Computational method using heterogeneous graph convolutional network model combined with reinforcement layer for MiRNA-disease association prediction. BMC Bioinformatics 2022; 23:299. [PMID: 35879658 PMCID: PMC9316361 DOI: 10.1186/s12859-022-04843-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A large number of evidences from biological experiments have confirmed that miRNAs play an important role in the progression and development of various human complex diseases. However, the traditional experiment methods are expensive and time-consuming. Therefore, it is a challenging task that how to develop more accurate and efficient methods for predicting potential associations between miRNA and disease. RESULTS In the study, we developed a computational model that combined heterogeneous graph convolutional network with enhanced layer for miRNA-disease association prediction (HGCNELMDA). The major improvement of our method lies in through restarting the random walk optimized the original features of nodes and adding a reinforcement layer to the hidden layer of graph convolutional network retained similar information between nodes in the feature space. In addition, the proposed approach recalculated the influence of neighborhood nodes on target nodes by introducing the attention mechanism. The reliable performance of the HGCNELMDA was certified by the AUC of 93.47% in global leave-one-out cross-validation (LOOCV), and the average AUCs of 93.01% in fivefold cross-validation. Meanwhile, we compared the HGCNELMDA with the state‑of‑the‑art methods. Comparative results indicated that o the HGCNELMDA is very promising and may provide a cost‑effective alternative for miRNA-disease association prediction. Moreover, we applied HGCNELMDA to 3 different case studies to predict potential miRNAs related to lung cancer, prostate cancer, and pancreatic cancer. Results showed that 48, 50, and 50 of the top 50 predicted miRNAs were supported by experimental association evidence. Therefore, the HGCNELMDA is a reliable method for predicting disease-related miRNAs. CONCLUSIONS The results of the HGCNELMDA method in the LOOCV (leave-one-out cross validation, LOOCV) and 5-cross validations were 93.47% and 93.01%, respectively. Compared with other typical methods, the performance of HGCNELMDA is higher. Three cases of lung cancer, prostate cancer, and pancreatic cancer were studied. Among the predicted top 50 candidate miRNAs, 48, 50, and 50 were verified in the biological database HDMMV2.0. Therefore; this further confirms the feasibility and effectiveness of our method. Therefore, this further confirms the feasibility and effectiveness of our method. To facilitate extensive studies for future disease-related miRNAs research, we developed a freely available web server called HGCNELMDA is available at http://124.221.62.44:8080/HGCNELMDA.jsp .
Collapse
Affiliation(s)
- Dan Huang
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 21116, Jiangsu, China
| | - JiYong An
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 21116, Jiangsu, China.
| | - Lei Zhang
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 21116, Jiangsu, China.
| | - BaiLong Liu
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 21116, Jiangsu, China
| |
Collapse
|
21
|
Predicting miRNA-Disease Association Based on Neural Inductive Matrix Completion with Graph Autoencoders and Self-Attention Mechanism. Biomolecules 2022; 12:biom12010064. [PMID: 35053212 PMCID: PMC8774034 DOI: 10.3390/biom12010064] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Many studies have clarified that microRNAs (miRNAs) are associated with many human diseases. Therefore, it is essential to predict potential miRNA-disease associations for disease pathogenesis and treatment. Numerous machine learning and deep learning approaches have been adopted to this problem. In this paper, we propose a Neural Inductive Matrix completion-based method with Graph Autoencoders (GAE) and Self-Attention mechanism for miRNA-disease associations prediction (NIMGSA). Some of the previous works based on matrix completion ignore the importance of label propagation procedure for inferring miRNA-disease associations, while others cannot integrate matrix completion and label propagation effectively. Varying from previous studies, NIMGSA unifies inductive matrix completion and label propagation via neural network architecture, through the collaborative training of two graph autoencoders. This neural inductive matrix completion-based method is also an implementation of self-attention mechanism for miRNA-disease associations prediction. This end-to-end framework can strengthen the robustness and preciseness of both matrix completion and label propagation. Cross validations indicate that NIMGSA outperforms current miRNA-disease prediction methods. Case studies demonstrate that NIMGSA is competent in detecting potential miRNA-disease associations.
Collapse
|
22
|
Liu T, Chen J, Zhang Q, Hippe K, Hunt C, Le T, Cao R, Tang H. The Development of Machine Learning Methods in discriminating Secretory Proteins of Malaria Parasite. Curr Med Chem 2021; 29:807-821. [PMID: 34636289 DOI: 10.2174/0929867328666211005140625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/28/2021] [Accepted: 08/15/2021] [Indexed: 11/22/2022]
Abstract
Malaria caused by Plasmodium falciparum is one of the major infectious diseases in the world. It is essential to exploit an effective method to predict secretory proteins of malaria parasites to develop effective cures and treatment. Biochemical assays can provide details for accurate identification of the secretory proteins, but these methods are expensive and time-consuming. In this paper, we summarized the machine learning-based identification algorithms and compared the construction strategies between different computational methods. Also, we discussed the use of machine learning to improve the ability of algorithms to identify proteins secreted by malaria parasites.
Collapse
Affiliation(s)
- Ting Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou. China
| | - Jiamao Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou. China
| | - Qian Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou. China
| | - Kyle Hippe
- Department of Computer Science, Pacific Lutheran University. United States
| | - Cassandra Hunt
- Department of Computer Science, Pacific Lutheran University. United States
| | - Thu Le
- Department of Computer Science, Pacific Lutheran University. United States
| | - Renzhi Cao
- Department of Computer Science, Pacific Lutheran University. United States
| | - Hua Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou. China
| |
Collapse
|
23
|
Chu Y, Wang X, Dai Q, Wang Y, Wang Q, Peng S, Wei X, Qiu J, Salahub DR, Xiong Y, Wei DQ. MDA-GCNFTG: identifying miRNA-disease associations based on graph convolutional networks via graph sampling through the feature and topology graph. Brief Bioinform 2021; 22:6261915. [PMID: 34009265 DOI: 10.1093/bib/bbab165] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Accurate identification of the miRNA-disease associations (MDAs) helps to understand the etiology and mechanisms of various diseases. However, the experimental methods are costly and time-consuming. Thus, it is urgent to develop computational methods towards the prediction of MDAs. Based on the graph theory, the MDA prediction is regarded as a node classification task in the present study. To solve this task, we propose a novel method MDA-GCNFTG, which predicts MDAs based on Graph Convolutional Networks (GCNs) via graph sampling through the Feature and Topology Graph to improve the training efficiency and accuracy. This method models both the potential connections of feature space and the structural relationships of MDA data. The nodes of the graphs are represented by the disease semantic similarity, miRNA functional similarity and Gaussian interaction profile kernel similarity. Moreover, we considered six tasks simultaneously on the MDA prediction problem at the first time, which ensure that under both balanced and unbalanced sample distribution, MDA-GCNFTG can predict not only new MDAs but also new diseases without known related miRNAs and new miRNAs without known related diseases. The results of 5-fold cross-validation show that the MDA-GCNFTG method has achieved satisfactory performance on all six tasks and is significantly superior to the classic machine learning methods and the state-of-the-art MDA prediction methods. Moreover, the effectiveness of GCNs via the graph sampling strategy and the feature and topology graph in MDA-GCNFTG has also been demonstrated. More importantly, case studies for two diseases and three miRNAs are conducted and achieved satisfactory performance.
Collapse
Affiliation(s)
- Yanyi Chu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Xuhong Wang
- School of Electronic, Information and Electrical Engineering (SEIEE), Shanghai Jiao Tong University, China
| | - Qiuying Dai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Yanjing Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Qiankun Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, China
| | | | | | - Dennis Russell Salahub
- Department of Chemistry, University of Calgary, Fellow Royal Society of Canada and Fellow of the American Association for the Advancement of Science, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
24
|
Vatansever S, Schlessinger A, Wacker D, Kaniskan HÜ, Jin J, Zhou M, Zhang B. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions. Med Res Rev 2021; 41:1427-1473. [PMID: 33295676 PMCID: PMC8043990 DOI: 10.1002/med.21764] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/30/2020] [Accepted: 11/20/2020] [Indexed: 01/11/2023]
Abstract
Neurological disorders significantly outnumber diseases in other therapeutic areas. However, developing drugs for central nervous system (CNS) disorders remains the most challenging area in drug discovery, accompanied with the long timelines and high attrition rates. With the rapid growth of biomedical data enabled by advanced experimental technologies, artificial intelligence (AI) and machine learning (ML) have emerged as an indispensable tool to draw meaningful insights and improve decision making in drug discovery. Thanks to the advancements in AI and ML algorithms, now the AI/ML-driven solutions have an unprecedented potential to accelerate the process of CNS drug discovery with better success rate. In this review, we comprehensively summarize AI/ML-powered pharmaceutical discovery efforts and their implementations in the CNS area. After introducing the AI/ML models as well as the conceptualization and data preparation, we outline the applications of AI/ML technologies to several key procedures in drug discovery, including target identification, compound screening, hit/lead generation and optimization, drug response and synergy prediction, de novo drug design, and drug repurposing. We review the current state-of-the-art of AI/ML-guided CNS drug discovery, focusing on blood-brain barrier permeability prediction and implementation into therapeutic discovery for neurological diseases. Finally, we discuss the major challenges and limitations of current approaches and possible future directions that may provide resolutions to these difficulties.
Collapse
Affiliation(s)
- Sezen Vatansever
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Avner Schlessinger
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Therapeutics DiscoveryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Daniel Wacker
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Therapeutics DiscoveryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - H. Ümit Kaniskan
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Therapeutics DiscoveryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological Sciences, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jian Jin
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Therapeutics DiscoveryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological Sciences, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ming‐Ming Zhou
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological Sciences, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Bin Zhang
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
25
|
Liu B, Zhu X, Zhang L, Liang Z, Li Z. Combined embedding model for MiRNA-disease association prediction. BMC Bioinformatics 2021; 22:161. [PMID: 33765909 PMCID: PMC7995599 DOI: 10.1186/s12859-021-04092-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cumulative evidence from biological experiments has confirmed that miRNAs have significant roles to diagnose and treat complex diseases. However, traditional medical experiments have limitations in time-consuming and high cost so that they fail to find the unconfirmed miRNA and disease interactions. Thus, discovering potential miRNA-disease associations will make a contribution to the decrease of the pathogenesis of diseases and benefit disease therapy. Although, existing methods using different computational algorithms have favorable performances to search for the potential miRNA-disease interactions. We still need to do some work to improve experimental results. RESULTS We present a novel combined embedding model to predict MiRNA-disease associations (CEMDA) in this article. The combined embedding information of miRNA and disease is composed of pair embedding and node embedding. Compared with the previous heterogeneous network methods that are merely node-centric to simply compute the similarity of miRNA and disease, our method fuses pair embedding to pay more attention to capturing the features behind the relative information, which models the fine-grained pairwise relationship better than the previous case when each node only has a single embedding. First, we construct the heterogeneous network from supported miRNA-disease pairs, disease semantic similarity and miRNA functional similarity. Given by the above heterogeneous network, we find all the associated context paths of each confirmed miRNA and disease. Meta-paths are linked by nodes and then input to the gate recurrent unit (GRU) to directly learn more accurate similarity measures between miRNA and disease. Here, the multi-head attention mechanism is used to weight the hidden state of each meta-path, and the similarity information transmission mechanism in a meta-path of miRNA and disease is obtained through multiple network layers. Second, pair embedding of miRNA and disease is fed to the multi-layer perceptron (MLP), which focuses on more important segments in pairwise relationship. Finally, we combine meta-path based node embedding and pair embedding with the cost function to learn and predict miRNA-disease association. The source code and data sets that verify the results of our research are shown at https://github.com/liubailong/CEMDA . CONCLUSIONS The performance of CEMDA in the leave-one-out cross validation and fivefold cross validation are 93.16% and 92.03%, respectively. It denotes that compared with other methods, CEMDA accomplishes superior performance. Three cases with lung cancers, breast cancers, prostate cancers and pancreatic cancers show that 48,50,50 and 50 out of the top 50 miRNAs, which are confirmed in HDMM V2.0. Thus, this further identifies the feasibility and effectiveness of our method.
Collapse
Affiliation(s)
- Bailong Liu
- Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, China
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| | - Xiaoyan Zhu
- Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, China
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| | - Lei Zhang
- Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, China.
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China.
| | - Zhizheng Liang
- Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, China
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| | - Zhengwei Li
- Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, China.
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China.
| |
Collapse
|
26
|
Prediction of miRNA-Disease Association Using Deep Collaborative Filtering. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6652948. [PMID: 33681362 PMCID: PMC7929672 DOI: 10.1155/2021/6652948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022]
Abstract
The existing studies have shown that miRNAs are related to human diseases by regulating gene expression. Identifying miRNA association with diseases will contribute to diagnosis, treatment, and prognosis of diseases. The experimental identification of miRNA-disease associations is time-consuming, tremendously expensive, and of high-failure rate. In recent years, many researchers predicted potential associations between miRNAs and diseases by computational approaches. In this paper, we proposed a novel method using deep collaborative filtering called DCFMDA to predict miRNA-disease potential associations. To improve prediction performance, we integrated neural network matrix factorization (NNMF) and multilayer perceptron (MLP) in a deep collaborative filtering framework. We utilized known miRNA-disease associations to capture miRNA-disease interaction features by NNMF and utilized miRNA similarity and disease similarity to extract miRNA feature vector and disease feature vector, respectively, by MLP. At last, we merged outputs of the NNMF and MLP to obtain the prediction matrix. The experimental results indicate that compared with other existing computational methods, our method can achieve the AUC of 0.9466 based on 10-fold cross-validation. In addition, case studies show that the DCFMDA can effectively predict candidate miRNAs for breast neoplasms, colon neoplasms, kidney neoplasms, leukemia, and lymphoma.
Collapse
|
27
|
Qiu W, Lv Z, Hong Y, Jia J, Xiao X. BOW-GBDT: A GBDT Classifier Combining With Artificial Neural Network for Identifying GPCR-Drug Interaction Based on Wordbook Learning From Sequences. Front Cell Dev Biol 2021; 8:623858. [PMID: 33598456 PMCID: PMC7882597 DOI: 10.3389/fcell.2020.623858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022] Open
Abstract
Background: As a class of membrane protein receptors, G protein-coupled receptors (GPCRs) are very important for cells to complete normal life function and have been proven to be a major drug target for widespread clinical application. Hence, it is of great significance to find GPCR targets that interact with drugs in the process of drug development. However, identifying the interaction of the GPCR–drug pairs by experimental methods is very expensive and time-consuming on a large scale. As more and more database about GPCR–drug pairs are opened, it is viable to develop machine learning models to accurately predict whether there is an interaction existing in a GPCR–drug pair. Methods: In this paper, the proposed model aims to improve the accuracy of predicting the interactions of GPCR–drug pairs. For GPCRs, the work extracts protein sequence features based on a novel bag-of-words (BOW) model improved with weighted Silhouette Coefficient and has been confirmed that it can extract more pattern information and limit the dimension of feature. For drug molecules, discrete wavelet transform (DWT) is used to extract features from the original molecular fingerprints. Subsequently, the above-mentioned two types of features are contacted, and SMOTE algorithm is selected to balance the training dataset. Then, artificial neural network is used to extract features further. Finally, a gradient boosting decision tree (GBDT) model is trained with the selected features. In this paper, the proposed model is named as BOW-GBDT. Results: D92M and Check390 are selected for testing BOW-GBDT. D92M is used for a cross-validation dataset which contains 635 interactive GPCR–drug pairs and 1,225 non-interactive pairs. Check390 is used for an independent test dataset which consists of 130 interactive GPCR–drug pairs and 260 non-interactive GPCR–drug pairs, and each element in Check390 cannot be found in D92M. According to the results, the proposed model has a better performance in generation ability compared with the existing machine learning models. Conclusion: The proposed predictor improves the accuracy of the interactions of GPCR–drug pairs. In order to facilitate more researchers to use the BOW-GBDT, the predictor has been settled into a brand-new server, which is available at http://www.jci-bioinfo.cn/bowgbdt.
Collapse
Affiliation(s)
- Wangren Qiu
- School of Information Engineering, Jingdezhen Ceramic Institute, Jingdezhen, China
| | - Zhe Lv
- School of Information Engineering, Jingdezhen Ceramic Institute, Jingdezhen, China
| | - Yaoqiu Hong
- School of Information Engineering, Jingdezhen University, Jingdezhen, China
| | - Jianhua Jia
- School of Information Engineering, Jingdezhen Ceramic Institute, Jingdezhen, China
| | - Xuan Xiao
- School of Information Engineering, Jingdezhen Ceramic Institute, Jingdezhen, China
| |
Collapse
|
28
|
|
29
|
Dou L, Li X, Zhang L, Xiang H, Xu L. iGlu_AdaBoost: Identification of Lysine Glutarylation Using the AdaBoost Classifier. J Proteome Res 2020; 20:191-201. [PMID: 33090794 DOI: 10.1021/acs.jproteome.0c00314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Lysine glutarylation is a newly reported post-translational modification (PTM) that plays significant roles in regulating metabolic and mitochondrial processes. Accurate identification of protein glutarylation is the primary task to better investigate molecular functions and various applications. Due to the common disadvantages of the time-consuming and expensive nature of traditional biological sequencing techniques as well as the explosive growth of protein data, building precise computational models to rapidly diagnose glutarylation is a popular and feasible solution. In this work, we proposed a novel AdaBoost-based predictor called iGlu_AdaBoost to distinguish glutarylation and non-glutarylation sequences. Here, the top 37 features were chosen from a total of 1768 combined features using Chi2 following incremental feature selection (IFS) to build the model, including 188D, the composition of k-spaced amino acid pairs (CKSAAP), and enhanced amino acid composition (EAAC). With the help of the hybrid-sampling method SMOTE-Tomek, the AdaBoost algorithm was performed with satisfactory recall, specificity, and AUC values of 87.48%, 72.49%, and 0.89 over 10-fold cross validation as well as 72.73%, 71.92%, and 0.63 over independent test, respectively. Further feature analysis inferred that positively charged amino acids RK play critical roles in glutarylation recognition. Our model presented the well generalization ability and consistency of the prediction results of positive and negative samples, which is comparable to four published tools. The proposed predictor is an efficient tool to find potential glutarylation sites and provides helpful suggestions for further research on glutarylation mechanisms and concerned disease treatments.
Collapse
Affiliation(s)
- Lijun Dou
- School of Automotive and Transportation Engineering, Shenzhen Polytechnic, Shenzhen 518055, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiaoling Li
- Department of Oncology, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin 150000, China
| | - Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Huaikun Xiang
- School of Automotive and Transportation Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| |
Collapse
|
30
|
Zhang L, Liu B, Li Z, Zhu X, Liang Z, An J. Predicting MiRNA-disease associations by multiple meta-paths fusion graph embedding model. BMC Bioinformatics 2020; 21:470. [PMID: 33087064 PMCID: PMC7579830 DOI: 10.1186/s12859-020-03765-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/17/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Many studies prove that miRNAs have significant roles in diagnosing and treating complex human diseases. However, conventional biological experiments are too costly and time-consuming to identify unconfirmed miRNA-disease associations. Thus, computational models predicting unidentified miRNA-disease pairs in an efficient way are becoming promising research topics. Although existing methods have performed well to reveal unidentified miRNA-disease associations, more work is still needed to improve prediction performance. RESULTS In this work, we present a novel multiple meta-paths fusion graph embedding model to predict unidentified miRNA-disease associations (M2GMDA). Our method takes full advantage of the complex structure and rich semantic information of miRNA-disease interactions in a self-learning way. First, a miRNA-disease heterogeneous network was derived from verified miRNA-disease pairs, miRNA similarity and disease similarity. All meta-path instances connecting miRNAs with diseases were extracted to describe intrinsic information about miRNA-disease interactions. Then, we developed a graph embedding model to predict miRNA-disease associations. The model is composed of linear transformations of miRNAs and diseases, the means encoder of a single meta-path instance, the attention-aware encoder of meta-path type and attention-aware multiple meta-path fusion. We innovatively integrated meta-path instances, meta-path based neighbours, intermediate nodes in meta-paths and more information to strengthen the prediction in our model. In particular, distinct contributions of different meta-path instances and meta-path types were combined with attention mechanisms. The data sets and source code that support the findings of this study are available at https://github.com/dangdangzhang/M2GMDA . CONCLUSIONS M2GMDA achieved AUCs of 0.9323 and 0.9182 in global leave-one-out cross validation and fivefold cross validation with HDMM V2.0. The results showed that our method outperforms other prediction methods. Three kinds of case studies with lung neoplasms, breast neoplasms, prostate neoplasms, pancreatic neoplasms, lymphoma and colorectal neoplasms demonstrated that 47, 50, 49, 48, 50 and 50 out of the top 50 candidate miRNAs predicted by M2GMDA were validated by biological experiments. Therefore, it further confirms the prediction performance of our method.
Collapse
Affiliation(s)
- Lei Zhang
- Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, China
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| | - Bailong Liu
- Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, China.
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China.
| | - Zhengwei Li
- Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, China.
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China.
| | - Xiaoyan Zhu
- Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, China
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| | - Zhizhen Liang
- Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, China
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| | - Jiyong An
- Engineering Research Center of Mine Digitalization of Ministry of Education, China University of Mining and Technology, Xuzhou, China
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| |
Collapse
|
31
|
Wang C, Sun K, Wang J, Guo M. Data fusion-based algorithm for predicting miRNA–Disease associations. Comput Biol Chem 2020; 88:107357. [DOI: 10.1016/j.compbiolchem.2020.107357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/24/2020] [Accepted: 08/05/2020] [Indexed: 11/30/2022]
|
32
|
Ji BY, You ZH, Chen ZH, Wong L, Yi HC. NEMPD: a network embedding-based method for predicting miRNA-disease associations by preserving behavior and attribute information. BMC Bioinformatics 2020; 21:401. [PMID: 32912137 PMCID: PMC7646193 DOI: 10.1186/s12859-020-03716-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/19/2020] [Indexed: 12/25/2022] Open
Abstract
Background As an important non-coding RNA, microRNA (miRNA) plays a significant role in a series of life processes and is closely associated with a variety of Human diseases. Hence, identification of potential miRNA-disease associations can make great contributions to the research and treatment of Human diseases. However, to our knowledge, many existing computational methods only utilize the single type of known association information between miRNAs and diseases to predict their potential associations, without focusing on their interactions or associations with other types of molecules. Results In this paper, we propose a network embedding-based method for predicting miRNA-disease associations by preserving behavior and attribute information. Firstly, a heterogeneous network is constructed by integrating known associations among miRNA, protein and disease, and the network representation method Learning Graph Representations with Global Structural Information (GraRep) is implemented to learn the behavior information of miRNAs and diseases in the network. Then, the behavior information of miRNAs and diseases is combined with the attribute information of them to represent miRNA-disease association pairs. Finally, the prediction model is established based on the Random Forest algorithm. Under the five-fold cross validation, the proposed NEMPD model obtained average 85.41% prediction accuracy with 80.96% sensitivity at the AUC of 91.58%. Furthermore, the performance of NEMPD is also validated by the case studies. Among the top 50 predicted disease-related miRNAs, 48 (breast neoplasms), 47 (colon neoplasms), 47 (lung neoplasms) were confirmed by two other databases. Conclusions The proposed NEMPD model has a good performance in predicting the potential associations between miRNAs and diseases, and has great potency in the field of miRNA-disease association prediction in the future.
Collapse
Affiliation(s)
- Bo-Ya Ji
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhu-Hong You
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhan-Heng Chen
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leon Wong
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Cheng Yi
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
33
|
Global exponential anti-synchronization for delayed memristive neural networks via event-triggering method. Neural Comput Appl 2020. [DOI: 10.1007/s00521-020-04762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Li Q, Zhou W, Wang D, Wang S, Li Q. Prediction of Anticancer Peptides Using a Low-Dimensional Feature Model. Front Bioeng Biotechnol 2020; 8:892. [PMID: 32903381 PMCID: PMC7434836 DOI: 10.3389/fbioe.2020.00892] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/10/2020] [Indexed: 01/09/2023] Open
Abstract
Cancer is still a severe health problem globally. The therapy of cancer traditionally involves the use of radiotherapy or anticancer drugs to kill cancer cells, but these methods are quite expensive and have side effects, which will cause great harm to patients. With the find of anticancer peptides (ACPs), significant progress has been achieved in the therapy of tumors. Therefore, it is invaluable to accurately identify anticancer peptides. Although biochemical experiments can solve this work, this method is expensive and time-consuming. To promote the application of anticancer peptides in cancer therapy, machine learning can be used to recognize anticancer peptides by extracting the feature vectors of anticancer peptides. Nevertheless, poor performance usually be found in training the machine learning model to utilizing high-dimensional features in practice. In order to solve the above job, this paper put forward a 19-dimensional feature model based on anticancer peptide sequences, which has lower dimensionality and better performance than some existing methods. In addition, this paper also separated a model with a low number of dimensions and acceptable performance. The few features identified in this study may represent the important features of anticancer peptides.
Collapse
Affiliation(s)
- Qingwen Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Wenyang Zhou
- Center for Bioinformatics, School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| | - Donghua Wang
- Department of General Surgery, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Sui Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qingyuan Li
- Forestry and Fruit Tree Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
35
|
Liu Z, Zhang Y, Han X, Li C, Yang X, Gao J, Xie G, Du N. Identifying Cancer-Related lncRNAs Based on a Convolutional Neural Network. Front Cell Dev Biol 2020; 8:637. [PMID: 32850792 PMCID: PMC7432192 DOI: 10.3389/fcell.2020.00637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
Millions of people are suffering from cancers, but accurate early diagnosis and effective treatment are still tough for all doctors. In recent years, long non-coding RNAs (lncRNAs) have been proven to play an important role in diseases, especially cancers. These lncRNAs execute their functions by regulating gene expression. Therefore, identifying lncRNAs which are related to cancers could help researchers gain a deeper understanding of cancer mechanisms and help them find treatment options. A large number of relationships between lncRNAs and cancers have been verified by biological experiments, which give us a chance to use computational methods to identify cancer-related lncRNAs. In this paper, we applied the convolutional neural network (CNN) to identify cancer-related lncRNAs by lncRNA's target genes and their tissue expression specificity. Since lncRNA regulates target gene expression and it has been reported to have tissue expression specificity, their target genes and expression in different tissues were used as features of lncRNAs. Then, the deep belief network (DBN) was used to unsupervised encode features of lncRNAs. Finally, CNN was used to predict cancer-related lncRNAs based on known relationships between lncRNAs and cancers. For each type of cancer, we built a CNN model to predict its related lncRNAs. We identified more related lncRNAs for 41 kinds of cancers. Ten-cross validation has been used to prove the performance of our method. The results showed that our method is better than several previous methods with area under the curve (AUC) 0.81 and area under the precision–recall curve (AUPR) 0.79. To verify the accuracy of our results, case studies have been done.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Oncology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China.,Department of Oncology, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ying Zhang
- Department of Pharmacy, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Xudong Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chenxi Li
- Department of Oncology, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xuhui Yang
- Department of Oncology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jie Gao
- Department of Oncology, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ganfeng Xie
- Department of Oncology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Nan Du
- Department of Oncology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China.,Department of Oncology, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
36
|
Drug repositioning based on the target microRNAs using bilateral-inductive matrix completion. Mol Genet Genomics 2020; 295:1305-1314. [DOI: 10.1007/s00438-020-01702-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
|
37
|
Missing Value Estimation Methods Research for Arrhythmia Classification Using the Modified Kernel Difference-Weighted KNN Algorithms. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7141725. [PMID: 32685521 PMCID: PMC7327608 DOI: 10.1155/2020/7141725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022]
Abstract
Electrocardiogram (ECG) signal is critical to the classification of cardiac arrhythmia using some machine learning methods. In practice, the ECG datasets are usually with multiple missing values due to faults or distortion. Unfortunately, many established algorithms for classification require a fully complete matrix as input. Thus it is necessary to impute the missing data to increase the effectiveness of classification for datasets with a few missing values. In this paper, we compare the main methods for estimating the missing values in electrocardiogram data, e.g., the “Zero method”, “Mean method”, “PCA-based method”, and “RPCA-based method” and then propose a novel KNN-based classification algorithm, i.e., a modified kernel Difference-Weighted KNN classifier (MKDF-WKNN), which is fit for the classification of imbalance datasets. The experimental results on the UCI database indicate that the “RPCA-based method” can successfully handle missing values in arrhythmia dataset no matter how many values in it are missing and our proposed classification algorithm, MKDF-WKNN, is superior to other state-of-the-art algorithms like KNN, DS-WKNN, DF-WKNN, and KDF-WKNN for uneven datasets which impacts the accuracy of classification.
Collapse
|
38
|
Sumathipala M, Weiss ST. Predicting miRNA-based disease-disease relationships through network diffusion on multi-omics biological data. Sci Rep 2020; 10:8705. [PMID: 32457435 PMCID: PMC7251138 DOI: 10.1038/s41598-020-65633-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
With critical roles in regulating gene expression, miRNAs are strongly implicated in the pathophysiology of many complex diseases. Experimental methods to determine disease related miRNAs are time consuming and costly. Computationally predicting miRNA-disease associations has potential applications in finding miRNA therapeutic pathways and in understanding the role of miRNAs in disease-disease relationships. In this study, we propose the MiRNA-disease Association Prediction (MAP) method, an in-silico method to predict and prioritize miRNA-disease associations. The MAP method applies a network diffusion approach, starting from the known disease genes in a heterogenous network constructed from miRNA-gene associations, protein-protein interactions, and gene-disease associations. Validation using experimental data on miRNA-disease associations demonstrated superior performance to two current state-of-the-art methods, with areas under the ROC curve all over 0.8 for four types of cancer. MAP is successfully applied to predict differential miRNA expression in four cancer types. Most strikingly, disease-disease relationships in terms of shared miRNAs revealed hidden disease subtyping comparable to that of previous work on shared genes between diseases, with applications for multi-omics characterization of disease relationships.
Collapse
Affiliation(s)
- Marissa Sumathipala
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard College, Cambridge, MA, USA.
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Yu Y, Wang S, Wang Y, Cao Y, Yu C, Pan Y, Su D, Lu Q, Zuo Y, Yang L. Using Reduced Amino Acid Alphabet and Biological Properties to Analyze and Predict Animal Neurotoxin Protein. Curr Drug Metab 2020; 21:810-817. [PMID: 32433000 DOI: 10.2174/1389200221666200520090555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/07/2020] [Accepted: 01/15/2020] [Indexed: 11/22/2022]
Abstract
AIMS Because of the high affinity of these animal neurotoxin proteins for some special target site, they were usually used as pharmacological tools and therapeutic agents in medicine to gain deep insights into the function of the nervous system. BACKGROUND AND OBJECTIVE The animal neurotoxin proteins are one of the most common functional groups among the animal toxin proteins. Thus, it was very important to characterize and predict the animal neurotoxin proteins. METHODS In this study, the differences between the animal neurotoxin proteins and non-toxin proteins were analyzed. RESULT Significant differences were found between them. In addition, the support vector machine was proposed to predict the animal neurotoxin proteins. The predictive results of our classifier achieved the overall accuracy of 96.46%. Furthermore, the random forest and k-nearest neighbors were applied to predict the animal neurotoxin proteins. CONCLUSION The compared results indicated that the predictive performances of our classifier were better than other two algorithms.
Collapse
Affiliation(s)
- Yao Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shiyuan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yakun Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yiyin Cao
- Public Health College, Harbin Medical University, Harbin 150081, China
| | - Chunlu Yu
- Public Health College, Harbin Medical University, Harbin 150081, China
| | - Yi Pan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Dongqing Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Qianzi Lu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yongchun Zuo
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lei Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
40
|
Wei H, Xu Y, Liu B. iPiDi-PUL: identifying Piwi-interacting RNA-disease associations based on positive unlabeled learning. Brief Bioinform 2020; 22:5829704. [PMID: 32393982 DOI: 10.1093/bib/bbaa058] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/15/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
Accumulated researches have revealed that Piwi-interacting RNAs (piRNAs) are regulating the development of germ and stem cells, and they are closely associated with the progression of many diseases. As the number of the detected piRNAs is increasing rapidly, it is important to computationally identify new piRNA-disease associations with low cost and provide candidate piRNA targets for disease treatment. However, it is a challenging problem to learn effective association patterns from the positive piRNA-disease associations and the large amount of unknown piRNA-disease pairs. In this study, we proposed a computational predictor called iPiDi-PUL to identify the piRNA-disease associations. iPiDi-PUL extracted the features of piRNA-disease associations from three biological data sources, including piRNA sequence information, disease semantic terms and the available piRNA-disease association network. Principal component analysis (PCA) was then performed on these features to extract the key features. The training datasets were constructed based on known positive associations and the negative associations selected from the unknown pairs. Various random forest classifiers trained with these different training sets were merged to give the predictive results via an ensemble learning approach. Finally, the web server of iPiDi-PUL was established at http://bliulab.net/iPiDi-PUL to help the researchers to explore the associated diseases for newly discovered piRNAs.
Collapse
|
41
|
Wang S, Cao Y, Huang T, Chen Y, Wen S. Event-triggered distributed control for synchronization of multiple memristive neural networks under cyber-physical attacks. Inf Sci (N Y) 2020. [DOI: 10.1016/j.ins.2020.01.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
42
|
Fang C, Jia Y, Hu L, Lu Y, Wang H. IMPContact: An Interhelical Residue Contact Prediction Method. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4569037. [PMID: 32309431 PMCID: PMC7140131 DOI: 10.1155/2020/4569037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/09/2020] [Indexed: 11/17/2022]
Abstract
As an important category of proteins, alpha-helix transmembrane proteins (αTMPs) play an important role in various biological activities. Because the solved αTMP structures are inadequate, predicting the residue contacts among the transmembrane segments of an αTMP exhibits the basis of protein fold, which can be used to further discover more protein functions. A few efforts have been devoted to predict the interhelical residue contact using machine learning methods based on the prior knowledge of transmembrane protein structure. However, it is still a challenge to improve the prediction accuracy, while the deep learning method provides an opportunity to utilize the structural knowledge in a different insight. For this purpose, we proposed a novel αTMP residue-residue contact prediction method IMPContact, in which a convolutional neural network (CNN) was applied to recognize those interhelical contacts in a TMP using its specific structural features. There were four sequence-based TMP-specific features selected to descript a pair of residues, namely, evolutionary covariation, predicted topology structure, residue relative position, and evolutionary conservation. An up-to-date dataset was used to train and test the IMPContact; our method achieved better performance compared to peer methods. In the case studies, IHRCs in the regular transmembrane helixes were better predicted than in the irregular ones.
Collapse
Affiliation(s)
- Chao Fang
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Yajie Jia
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
- Institute of Computational Biology, Northeast Normal University, Changchun 130117, China
| | - Lihong Hu
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Yinghua Lu
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
- Department of Computer Science, College of Humanities & Sciences of Northeast Normal University, Changchun 130117, China
| | - Han Wang
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
- Institute of Computational Biology, Northeast Normal University, Changchun 130117, China
- Department of Computer Science, College of Humanities & Sciences of Northeast Normal University, Changchun 130117, China
| |
Collapse
|
43
|
Kou N, Zhou W, He Y, Ying X, Chai S, Fei T, Fu W, Huang J, Liu H. A Mendelian Randomization Analysis to Expose the Causal Effect of IL-18 on Osteoporosis Based on Genome-Wide Association Study Data. Front Bioeng Biotechnol 2020; 8:201. [PMID: 32266232 PMCID: PMC7099043 DOI: 10.3389/fbioe.2020.00201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/28/2020] [Indexed: 01/16/2023] Open
Abstract
Accumulating evidence showed that Interleukin (IL) level is associated with Osteoporosis. Whereas, most of these associations are based on observational studies. Thus, their causality was still unclear. Mendelian randomization (MR) is a widely used statistical framework that uses genetic instrumental variables (IVs) to explore the causality of intermediate phenotype with disease. To classify their causality, we conducted a MR analysis to investigate the effect of IL-18 level on the risk of Osteoporosis. First, based on summarized genome-wide association study (GWAS) data, 8 independent IL-18 SNPs reaching genome-wide significance were deemed as IVs. Next, Simple median method was used to calculate the pooled odds ratio (OR) of these 8 SNPs for the assessment of IL-8 on the risk of Osteoporosis. Then, MR-Egger regression was utilized to detect potential bias due to the horizontal pleiotropy of these IVs. As a result of simple median method, we get the SE (−0.001; 95% CI−0.002 to 0; P = 0.042), which means low IL-18 level could increases the risk of the development of Osteoporosis. The low intercept (0; 95% CI −0.001 to 0; P = 0.59) shows there is no bias due to the horizontal pleiotropy of the IVs.
Collapse
Affiliation(s)
- Ni Kou
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Dalian, China
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuzhu He
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Dalian, China
| | - Xiaoxia Ying
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Dalian, China
| | - Songling Chai
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Dalian, China
| | - Tao Fei
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Dalian, China
| | - Wenqi Fu
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Dalian, China
| | - Jiaqian Huang
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Dalian, China
| | - Huiying Liu
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Dalian, China
- *Correspondence: Huiying Liu
| |
Collapse
|
44
|
Xiao Q, Zhang N, Luo J, Dai J, Tang X. Adaptive multi-source multi-view latent feature learning for inferring potential disease-associated miRNAs. Brief Bioinform 2020; 22:2043-2057. [PMID: 32186712 DOI: 10.1093/bib/bbaa028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/16/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence has shown that microRNAs (miRNAs) play crucial roles in different biological processes, and their mutations and dysregulations have been proved to contribute to tumorigenesis. In silico identification of disease-associated miRNAs is a cost-effective strategy to discover those most promising biomarkers for disease diagnosis and treatment. The increasing available omics data sources provide unprecedented opportunities to decipher the underlying relationships between miRNAs and diseases by computational models. However, most existing methods are biased towards a single representation of miRNAs or diseases and are also not capable of discovering unobserved associations for new miRNAs or diseases without association information. In this study, we present a novel computational method with adaptive multi-source multi-view latent feature learning (M2LFL) to infer potential disease-associated miRNAs. First, we adopt multiple data sources to obtain similarity profiles and capture different latent features according to the geometric characteristic of miRNA and disease spaces. Then, the multi-modal latent features are projected to a common subspace to discover unobserved miRNA-disease associations in both miRNA and disease views, and an adaptive joint graph regularization term is developed to preserve the intrinsic manifold structures of multiple similarity profiles. Meanwhile, the Lp,q-norms are imposed into the projection matrices to ensure the sparsity and improve interpretability. The experimental results confirm the superior performance of our proposed method in screening reliable candidate disease miRNAs, which suggests that M2LFL could be an efficient tool to discover diagnostic biomarkers for guiding laborious clinical trials.
Collapse
|
45
|
Zhu Y, Jia C, Li F, Song J. Inspector: a lysine succinylation predictor based on edited nearest-neighbor undersampling and adaptive synthetic oversampling. Anal Biochem 2020; 593:113592. [DOI: 10.1016/j.ab.2020.113592] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
|
46
|
Liu Y, Wang X, Liu B. RFPR-IDP: reduce the false positive rates for intrinsically disordered protein and region prediction by incorporating both fully ordered proteins and disordered proteins. Brief Bioinform 2020; 22:2000-2011. [PMID: 32112084 PMCID: PMC7986600 DOI: 10.1093/bib/bbaa018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As an important type of proteins, intrinsically disordered proteins/regions (IDPs/IDRs) are related to many crucial biological functions. Accurate prediction of IDPs/IDRs is beneficial to the prediction of protein structures and functions. Most of the existing methods ignore the fully ordered proteins without IDRs during training and test processes. As a result, the corresponding predictors prefer to predict the fully ordered proteins as disordered proteins. Unfortunately, these methods were only evaluated on datasets consisting of disordered proteins without or with only a few fully ordered proteins, and therefore, this problem escapes the attention of the researchers. However, most of the newly sequenced proteins are fully ordered proteins in nature. These predictors fail to accurately predict the ordered and disordered proteins in real-world applications. In this regard, we propose a new method called RFPR-IDP trained with both fully ordered proteins and disordered proteins, which is constructed based on the combination of convolution neural network (CNN) and bidirectional long short-term memory (BiLSTM). The experimental results show that although the existing predictors perform well for predicting the disordered proteins, they tend to predict the fully ordered proteins as disordered proteins. In contrast, the RFPR-IDP predictor can correctly predict the fully ordered proteins and outperform the other 10 state-of-the-art methods when evaluated on a test dataset with both fully ordered proteins and disordered proteins. The web server and datasets of RFPR-IDP are freely available at http://bliulab.net/RFPR-IDP/server.
Collapse
Affiliation(s)
- Yumeng Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Xiaolong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Bin Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China.,School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China.,Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
47
|
Wang Y, Yang C, Liu X, Zheng J, Zhang F, Wang D, Xue Y, Li X, Shen S, Shao L, Yang Y, Liu L, Ma J, Liu Y. Transcription factor AP-4 (TFAP4)-upstream ORF coding 66 aa inhibits the malignant behaviors of glioma cells by suppressing the TFAP4/long noncoding RNA 00520/microRNA-520f-3p feedback loop. Cancer Sci 2020; 111:891-906. [PMID: 31943575 PMCID: PMC7060482 DOI: 10.1111/cas.14308] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
Upstream ORF (uORF) is a translational initiation element located in the 5′UTR of eukaryotic mRNAs. Studies have found that uORFs play an important regulatory role in many diseases. Based on The Cancer Genome Atlas database, the results of our experiments and previous research evidence, we investigated transcription factor AP‐4 (TFAP4) and its uORF, LIM and SH3 protein 1 (LASP1), long noncoding RNA 00520 (LINC00520), and microRNA (miR)‐520f‐3p as candidates involved in glioma malignancy, which is a poorly understood process. Both TFAP4‐66aa‐uORF and miR‐520f‐3p were downregulated, and TFAP4, LASP1, and LINC00520 were highly expressed in glioma tissues and cells. TFAP4‐66aa‐uORF or miR‐520f‐3p overexpression or TFAP4, LASP1, or LINC00520 knockdown inhibited glioma cell proliferation, migration, and invasion, but promoted apoptosis. TFAP4‐66aa‐uORF inhibited the translation of TFAP4 by binding to the TFAP4 mRNA. MicroRNA‐520f‐3p inhibited TFAP4 expression by binding to its 3′UTR. However, LINC00520 could promote the expression of TFAP4 by competitively binding to miR‐520f‐3p. In addition, TFAP4 transcriptionally activated LASP1 and LINC00520 expression by binding to their promoter regions, forming a positive feedback loop of TFAP4/LINC00520/miR‐520f‐3p. Our findings together indicated that TFAP4‐66aa‐uORF inhibited the TFAP4/LINC00520/miR‐520f‐3p feedback loop by directly inhibiting TFAP4 expression, subsequently leading to inhibition of glioma malignancy. This provides a basis for developing new therapeutic approaches for glioma treatment.
Collapse
Affiliation(s)
- Yipeng Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Fangfang Zhang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Xiaozhi Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Shuyuan Shen
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Lianqi Shao
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Yang Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Jun Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| |
Collapse
|
48
|
Wang C, Zhang J, Wang X, Han K, Guo M. Pathogenic Gene Prediction Algorithm Based on Heterogeneous Information Fusion. Front Genet 2020; 11:5. [PMID: 32117433 PMCID: PMC7010852 DOI: 10.3389/fgene.2020.00005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/06/2020] [Indexed: 12/23/2022] Open
Abstract
Complex diseases seriously affect people's physical and mental health. The discovery of disease-causing genes has become a target of research. With the emergence of bioinformatics and the rapid development of biotechnology, to overcome the inherent difficulties of the long experimental period and high cost of traditional biomedical methods, researchers have proposed many gene prioritization algorithms that use a large amount of biological data to mine pathogenic genes. However, because the currently known gene-disease association matrix is still very sparse and lacks evidence that genes and diseases are unrelated, there are limits to the predictive performance of gene prioritization algorithms. Based on the hypothesis that functionally related gene mutations may lead to similar disease phenotypes, this paper proposes a PU induction matrix completion algorithm based on heterogeneous information fusion (PUIMCHIF) to predict candidate genes involved in the pathogenicity of human diseases. On the one hand, PUIMCHIF uses different compact feature learning methods to extract features of genes and diseases from multiple data sources, making up for the lack of sparse data. On the other hand, based on the prior knowledge that most of the unknown gene-disease associations are unrelated, we use the PU-Learning strategy to treat the unknown unlabeled data as negative examples for biased learning. The experimental results of the PUIMCHIF algorithm regarding the three indexes of precision, recall, and mean percentile ranking (MPR) were significantly better than those of other algorithms. In the top 100 global prediction analysis of multiple genes and multiple diseases, the probability of recovering true gene associations using PUIMCHIF reached 50% and the MPR value was 10.94%. The PUIMCHIF algorithm has higher priority than those from other methods, such as IMC and CATAPULT.
Collapse
Affiliation(s)
- Chunyu Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jie Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xueping Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ke Han
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Maozu Guo
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China
- Beijing Key Laboratory of Intelligent Processing for Building Big Data, Beijing University of Civil Engineering and Architecture, Beijing, China
| |
Collapse
|
49
|
Basith S, Manavalan B, Hwan Shin T, Lee G. Machine intelligence in peptide therapeutics: A next‐generation tool for rapid disease screening. Med Res Rev 2020; 40:1276-1314. [DOI: 10.1002/med.21658] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/26/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Shaherin Basith
- Department of PhysiologyAjou University School of MedicineSuwon Republic of Korea
| | | | - Tae Hwan Shin
- Department of PhysiologyAjou University School of MedicineSuwon Republic of Korea
| | - Gwang Lee
- Department of PhysiologyAjou University School of MedicineSuwon Republic of Korea
| |
Collapse
|
50
|
Li S, Xie M, Liu X. A Novel Approach Based on Bipartite Network Recommendation and KATZ Model to Predict Potential Micro-Disease Associations. Front Genet 2019; 10:1147. [PMID: 31803235 PMCID: PMC6873782 DOI: 10.3389/fgene.2019.01147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/21/2019] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence indicates that the microbes colonizing human bodies have crucial effects on human health and the discovery of disease-related microbes will promote the discovery of biomarkers and drugs for the prevention, diagnosis, treatment, and prognosis of diseases. However clinical experiments of disease-microbe associations are time-consuming, laborious and expensive, and there are few methods for predicting potential microbe-disease association. Therefore, developing effective computational models utilizing the accumulated public data of clinically validated microbe-disease associations to identify novel disease-microbe associations is of practical importance. We propose a novel method based on the KATZ model and Bipartite Network Recommendation Algorithm (KATZBNRA) to discover potential associations between microbes and diseases. We calculate the Gaussian interaction profile kernel similarity of diseases and microbes based on validated disease-microbe associations. Then, we construct a bipartite graph and execute a bipartite network recommendation algorithm. Finally, we integrate the disease similarity, microbe similarity and bipartite network recommendation score to obtain the final score, which is used to infer whether there are some novel disease-microbe interactions. To evaluate the predictive power of KATZBNRA, we tested it with the walk length 2 using global leave-one-out cross validation (LOOV), two-fold and five-fold cross validations, with AUCs of 0.9098, 0.8463 and 0.8969, respectively. The test results also show that KATZBNRA is more accurate than two recent similar methods KATZHMDA and BNPMDA.
Collapse
Affiliation(s)
- Shiru Li
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Minzhu Xie
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Xinqiu Liu
- Hunan Vocational College of Engineering, Changsha, China
| |
Collapse
|