1
|
Franconi F, Capobianco G, Diana G, Lodde V, De Donno A, Idda ML, Montella A, Campesi I. Sex Influence on Autophagy Markers and miRNAs in Basal and Angiotensin II-Treated Human Umbilical Vein Endothelial Cells. Int J Mol Sci 2023; 24:14929. [PMID: 37834376 PMCID: PMC10573886 DOI: 10.3390/ijms241914929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Cardiovascular diseases (CVD) display many sex and gender differences, and endothelial dysfunction, angiotensin II (Ang II), and autophagy represent key factors in the autophagic process Therefore, we studied whether Ang II modulates the mentioned processes in a sex-specific way in HUVECs obtained from healthy male and female newborns. In basal HUVECs, the Parkin gene and protein were higher in FHUVECs than in MHUVECs, while the Beclin-1 protein was more expressed in MHUVECs, and no other significant differences were detected. Ang II significantly increases LAMP-1 and p62 protein expression and decreases the expression of Parkin protein in comparison to basal in MHUVECs. In FHUVECs, Ang II significantly increases the expression of Beclin-1 gene and protein, and Parkin gene. The LC3 II/I ratio and LAMP-1 protein were significantly higher in MHUVECs than in FHUVECs, while Parkin protein was significantly more expressed in Ang II-treated FHUVECs than in male cells. Ang II affects the single miRNA levels: miR-126-3p and miR-133a-3p are downregulated and upregulated in MHUVECs and FHUVECs, respectively. MiR-223 is downregulated in MHUVEC and FHUVECs. Finally, miR-29b-3p and miR-133b are not affected by Ang II. Ang II effects and the relationship between miRNAs and organelles-specific autophagy is sex-dependent in HUVECs. This could lead to a better understanding of the mechanisms underlying sex differences in endothelial dysfunction, providing useful indications for innovative biomarkers and personalized therapeutic approaches.
Collapse
Affiliation(s)
- Flavia Franconi
- Laboratory of Gender Medicine, National Institute of Biostructures and Biosystems, 07100 Sassari, Italy;
| | - Giampiero Capobianco
- Department of Medicine, Surgery and Pharmacy, Gynecologic and Obstetric Clinic, University of Sassari, 07100 Sassari, Italy; (G.C.); (A.D.D.)
| | - Giuseppe Diana
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy (V.L.)
| | - Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy (V.L.)
| | - Alberto De Donno
- Department of Medicine, Surgery and Pharmacy, Gynecologic and Obstetric Clinic, University of Sassari, 07100 Sassari, Italy; (G.C.); (A.D.D.)
| | - Maria Laura Idda
- Institute of Genetics and Biomedical Research, National Research Council, 07100 Sassari, Italy;
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy (V.L.)
| | - Ilaria Campesi
- Laboratory of Gender Medicine, National Institute of Biostructures and Biosystems, 07100 Sassari, Italy;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy (V.L.)
| |
Collapse
|
2
|
Wan X, Wang H, Qian Q, Yan J. MiR-133b as a crucial regulator of TCS-induced cardiotoxicity via activating β-adrenergic receptor signaling pathway in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122199. [PMID: 37467918 DOI: 10.1016/j.envpol.2023.122199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/02/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
As a commonly used antibacterial agent in daily consumer products, triclosan (TCS) has attracted significant attention due to its potential environmental risks. In this study, we investigated the toxic effects of TCS exposure (1.4 μM) on heart development in zebrafish embryos. Our findings revealed that TCS exposure caused significant cardiac dysfunction, characterized by pericardial edema, malformations in the heart structure, and a slow heart rate. Additionally, TCS exposure induced oxidative damage and abnormal apoptosis in heart cells through the up-regulation of β-adrenergic receptor (β-AR) signaling pathway genes (adrb1, adrb2a, arrb2b), similar to the effects induced by β-AR agonists. Notably, the adverse effects of TCS exposure were alleviated by β-AR antagonists. Using high-throughput transcriptome miRNA sequencing and targeted miRNA screening, we focused on miR-133b, which targets adrb1 and was down-regulated by TCS exposure, as a potential contributor to TCS-induced cardiotoxicity. Inhibition of miR-133b produced similar toxic effects as TCS exposure, while overexpression of miR-133b down-regulated the β-AR signaling pathway and rescued heart defects caused by TCS. In summary, our findings provide new insights into the mechanisms underlying the cardiotoxic effects of TCS. We suggest that targeting the β-AR pathway and miR-133b may be effective strategies for pharmacotherapy in cardiotoxicity induced by environmental pollutants such as TCS.
Collapse
Affiliation(s)
- Xiancheng Wan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jin Yan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
3
|
Sæther JC, Vesterbekkmo EK, Taraldsen MD, Gigante B, Follestad T, Røsjø HR, Omland T, Wiseth R, Madssen E, Bye A. Associations between circulating microRNAs and lipid-rich coronary plaques measured with near-infrared spectroscopy. Sci Rep 2023; 13:7580. [PMID: 37165064 PMCID: PMC10172303 DOI: 10.1038/s41598-023-34642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
Lipid-rich coronary atherosclerotic plaques often cause myocardial infarction (MI), and circulating biomarkers that reflect lipid content may predict risk of MI. We investigated the association between circulating microRNAs (miRs) are lipid-rich coronary plaques in 47 statin-treated patients (44 males) with stable coronary artery disease undergoing percutaneous coronary intervention. We assessed lipid content in non-culprit coronary artery lesions with near-infrared spectroscopy and selected the 4 mm segment with the highest measured lipid core burden index (maxLCBI4mm). Lipid-rich plaques were predefined as a lesion with maxLCBI4mm ≥ 324.7. We analyzed 177 circulating miRs with quantitative polymerase chain reaction in plasma samples. The associations between miRs and lipid-rich plaques were analyzed with elastic net. miR-133b was the miR most strongly associated with lipid-rich coronary plaques, with an estimated 18% increase in odds of lipid-rich plaques per unit increase in miR-133b. Assessing the uncertainty by bootstrapping, miR-133b was present in 82.6% of the resampled dataset. Inclusion of established cardiovascular risk factors did not attenuate the association. No evidence was found for an association between the other analyzed miRs and lipid-rich coronary plaques. Even though the evidence for an association was modest, miR-133b could be a potential biomarker of vulnerable coronary plaques and risk of future MI. However, the prognostic value and clinical relevance of miR-133b needs to be assessed in larger cohorts.
Collapse
Affiliation(s)
- Julie Caroline Sæther
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Cardiology, St. Olavs Hospital, Trondheim, Norway.
| | - Elisabeth Kleivhaug Vesterbekkmo
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Cardiology, St. Olavs Hospital, Trondheim, Norway
- National Advisory Unit on Exercise Training as Medicine for Cardiopulmonary Conditions, Trondheim, Norway
| | - Maria Dalen Taraldsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bruna Gigante
- Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Turid Follestad
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Clinical Research Unit Central Norway, St. Olavs Hospital, Trondheim, Norway
| | - Helge Rørvik Røsjø
- Division of Research and Innovation, Akershus University Hospital, Lørenskog, Norway
- K. G. Jebsen Center for Cardiac Biomarkers, University of Oslo, Oslo, Norway
| | - Torbjørn Omland
- Division of Research and Innovation, Akershus University Hospital, Lørenskog, Norway
- K. G. Jebsen Center for Cardiac Biomarkers, University of Oslo, Oslo, Norway
- Department of Cardiology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Rune Wiseth
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Cardiology, St. Olavs Hospital, Trondheim, Norway
| | - Erik Madssen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Cardiology, St. Olavs Hospital, Trondheim, Norway
| | - Anja Bye
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Cardiology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
4
|
Komal S, Han SN, Cui LG, Zhai MM, Zhou YJ, Wang P, Shakeel M, Zhang LR. Epigenetic Regulation of Macrophage Polarization in Cardiovascular Diseases. Pharmaceuticals (Basel) 2023; 16:141. [PMID: 37259293 PMCID: PMC9963081 DOI: 10.3390/ph16020141] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 08/17/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of hospitalization and death worldwide, especially in developing countries. The increased prevalence rate and mortality due to CVDs, despite the development of several approaches for prevention and treatment, are alarming trends in global health. Chronic inflammation and macrophage infiltration are key regulators of the initiation and progression of CVDs. Recent data suggest that epigenetic modifications, such as DNA methylation, posttranslational histone modifications, and RNA modifications, regulate cell development, DNA damage repair, apoptosis, immunity, calcium signaling, and aging in cardiomyocytes; and are involved in macrophage polarization and contribute significantly to cardiac disease development. Cardiac macrophages not only trigger damaging inflammatory responses during atherosclerotic plaque formation, myocardial injury, and heart failure but are also involved in tissue repair, remodeling, and regeneration. In this review, we summarize the key epigenetic modifications that influence macrophage polarization and contribute to the pathophysiology of CVDs, and highlight their potential for the development of advanced epigenetic therapies.
Collapse
Affiliation(s)
- Sumra Komal
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Liu-Gen Cui
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Miao-Miao Zhai
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yue-Jiao Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Muhammad Shakeel
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Szydełko J, Matyjaszek-Matuszek B. MicroRNAs as Biomarkers for Coronary Artery Disease Related to Type 2 Diabetes Mellitus-From Pathogenesis to Potential Clinical Application. Int J Mol Sci 2022; 24:ijms24010616. [PMID: 36614057 PMCID: PMC9820734 DOI: 10.3390/ijms24010616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with still growing incidence among adults and young people worldwide. Patients with T2DM are more susceptible to developing coronary artery disease (CAD) than non-diabetic individuals. The currently used diagnostic methods do not ensure the detection of CAD at an early stage. Thus, extensive research on non-invasive, blood-based biomarkers is necessary to avoid life-threatening events. MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs that are stable in human body fluids and easily detectable. A number of reports have highlighted that the aberrant expression of miRNAs may impair the diversity of signaling pathways underlying the pathophysiology of atherosclerosis, which is a key player linking T2DM with CAD. The preclinical evidence suggests the atheroprotective and atherogenic influence of miRNAs on every step of T2DM-induced atherogenesis, including endothelial dysfunction, endothelial to mesenchymal transition, macrophage activation, vascular smooth muscle cells proliferation/migration, platelet hyperactivity, and calcification. Among the 122 analyzed miRNAs, 14 top miRNAs appear to be the most consistently dysregulated in T2DM and CAD, whereas 10 miRNAs are altered in T2DM, CAD, and T2DM-CAD patients. This up-to-date overview aims to discuss the role of miRNAs in the development of diabetic CAD, emphasizing their potential clinical usefulness as novel, non-invasive biomarkers and therapeutic targets for T2DM individuals with a predisposition to undergo CAD.
Collapse
|
6
|
Yuan X, Sun L, Jeske R, Nkosi D, York SB, Liu Y, Grant SC, Meckes DG, Li Y. Engineering extracellular vesicles by three-dimensional dynamic culture of human mesenchymal stem cells. J Extracell Vesicles 2022; 11:e12235. [PMID: 35716062 PMCID: PMC9206229 DOI: 10.1002/jev2.12235] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Human mesenchymal stem cell (hMSC) derived extracellular vesicles (EVs) have shown therapeutic potential in recent studies. However, the corresponding therapeutic components are largely unknown, and scale-up production of hMSC EVs is a major challenge for translational applications. In the current study, hMSCs were grown as 3D aggregates under wave motion to promote EV secretion. Results demonstrate that 3D hMSC aggregates promote activation of the endosomal sorting complexes required for transport (ESCRT)-dependent and -independent pathways. mRNA sequencing revealed global transcriptome alterations for 3D hMSC aggregates. Compared to 2D-hMSC-EVs, the quantity of 3D-hMSC-EVs was enhanced significantly (by 2-fold), with smaller sizes, higher miR-21 and miR-22 expression, and an altered protein cargo (e.g., upregulation of cytokines and anti-inflammatory factors) uncovered by proteomics analysis, possibly due to altered EV biogenesis. Functionally, 3D-hMSC-EVs rejuvenated senescent stem cells and exhibited enhanced immunomodulatory potentials. In summary, this study provides a promising strategy for scalable production of high-quality EVs from hMSCs with enhanced therapeutic potential.
Collapse
Affiliation(s)
- Xuegang Yuan
- Department of Chemical and Biomedical EngineeringFlorida State UniversityTallahasseeFloridaUSA
- Present address:
Broad Stem Cell Research Center, David Geffen School of MedicineUniversity of California‐Los Angeles (UCLA)Los AngelesCAUSA
- The National High Magnetic Field LaboratoryTallahasseeFloridaUSA
| | - Li Sun
- Department of Chemical and Biomedical EngineeringFlorida State UniversityTallahasseeFloridaUSA
- Department of Biomedical SciencesCollege of MedicineTallahasseeFloridaUSA
| | - Richard Jeske
- Department of Chemical and Biomedical EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Dingani Nkosi
- Department of Biomedical SciencesCollege of MedicineTallahasseeFloridaUSA
| | - Sara B. York
- Department of Biomedical SciencesCollege of MedicineTallahasseeFloridaUSA
| | - Yuan Liu
- Department of Chemical and Biomedical EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Samuel C. Grant
- Department of Chemical and Biomedical EngineeringFlorida State UniversityTallahasseeFloridaUSA
- The National High Magnetic Field LaboratoryTallahasseeFloridaUSA
| | - David G. Meckes
- Department of Biomedical SciencesCollege of MedicineTallahasseeFloridaUSA
| | - Yan Li
- Department of Chemical and Biomedical EngineeringFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
7
|
Challagundla N, Saha B, Agrawal-Rajput R. Insights into inflammasome regulation: cellular, molecular, and pathogenic control of inflammasome activation. Immunol Res 2022; 70:578-606. [PMID: 35610534 DOI: 10.1007/s12026-022-09286-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Maintenance of immune homeostasis is an intricate process wherein inflammasomes play a pivotal role by contributing to innate and adaptive immune responses. Inflammasomes are ensembles of adaptor proteins that can trigger a signal following innate sensing of pathogens or non-pathogens eventuating in the inductions of IL-1β and IL-18. These inflammatory cytokines substantially influence the antigen-presenting cell's costimulatory functions and T helper cell differentiation, contributing to adaptive immunity. As acute and chronic disease conditions may accompany parallel tissue damage, we analyze the critical role of extracellular factors such as cytokines, amyloids, cholesterol crystals, etc., intracellular metabolites, and signaling molecules regulating inflammasome activation/inhibition. We develop an operative framework for inflammasome function and regulation by host cell factors and pathogens. While inflammasomes influence the innate and adaptive immune components' interplay modulating the anti-pathogen adaptive immune response, pathogens may target inflammasome inhibition as a survival strategy. As trapped between health and diseases, inflammasomes serve as promising therapeutic targets and their modus operandi serves as a scientific rationale for devising better therapeutic strategies.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Lab-5, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Reena Agrawal-Rajput
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India.
| |
Collapse
|
8
|
Roberts LB, Kapoor P, Howard JK, Shah AM, Lord GM. An update on the roles of immune system-derived microRNAs in cardiovascular diseases. Cardiovasc Res 2021; 117:2434-2449. [PMID: 33483751 PMCID: PMC8562329 DOI: 10.1093/cvr/cvab007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVD) are a leading cause of human death worldwide. Over the past two decades, the emerging field of cardioimmunology has demonstrated how cells of the immune system play vital roles in the pathogenesis of CVD. MicroRNAs (miRNAs) are critical regulators of cellular identity and function. Cell-intrinsic, as well as cell-extrinsic, roles of immune and inflammatory cell-derived miRNAs have been, and continue to be, extensively studied. Several 'immuno-miRNAs' appear to be specifically expressed or demonstrate greatly enriched expression within leucocytes. Identification of miRNAs as critical regulators of immune system signalling pathways has posed the question of whether and how targeting these molecules therapeutically, may afford opportunities for disease treatment and/or management. As the field of cardioimmunology rapidly continues to advance, this review discusses findings from recent human and murine studies which contribute to our understanding of how leucocytes of innate and adaptive immunity are regulated-and may also regulate other cell types, via the actions of the miRNAs they express, in the context of CVD. Finally, we focus on available information regarding miRNA regulation of regulatory T cells and argue that targeted manipulation of miRNA regulated pathways in these cells may hold therapeutic promise for the treatment of CVD and associated risk factors.
Collapse
Affiliation(s)
- Luke B Roberts
- School of Immunology and Microbial Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK
| | - Puja Kapoor
- School of Immunology and Microbial Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK
- School of Cardiovascular Medicine and Sciences, King’s British Heart Foundation Centre, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Jane K Howard
- School of Life Course Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine and Sciences, King’s British Heart Foundation Centre, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Graham M Lord
- School of Immunology and Microbial Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| |
Collapse
|
9
|
Marracino L, Fortini F, Bouhamida E, Camponogara F, Severi P, Mazzoni E, Patergnani S, D’Aniello E, Campana R, Pinton P, Martini F, Tognon M, Campo G, Ferrari R, Vieceli Dalla Sega F, Rizzo P. Adding a "Notch" to Cardiovascular Disease Therapeutics: A MicroRNA-Based Approach. Front Cell Dev Biol 2021; 9:695114. [PMID: 34527667 PMCID: PMC8435685 DOI: 10.3389/fcell.2021.695114] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of the Notch pathway is implicated in the pathophysiology of cardiovascular diseases (CVDs), but, as of today, therapies based on the re-establishing the physiological levels of Notch in the heart and vessels are not available. A possible reason is the context-dependent role of Notch in the cardiovascular system, which would require a finely tuned, cell-specific approach. MicroRNAs (miRNAs) are short functional endogenous, non-coding RNA sequences able to regulate gene expression at post-transcriptional levels influencing most, if not all, biological processes. Dysregulation of miRNAs expression is implicated in the molecular mechanisms underlying many CVDs. Notch is regulated and regulates a large number of miRNAs expressed in the cardiovascular system and, thus, targeting these miRNAs could represent an avenue to be explored to target Notch for CVDs. In this Review, we provide an overview of both established and potential, based on evidence in other pathologies, crosstalks between miRNAs and Notch in cellular processes underlying atherosclerosis, myocardial ischemia, heart failure, calcification of aortic valve, and arrhythmias. We also discuss the potential advantages, as well as the challenges, of using miRNAs for a Notch-based approach for the diagnosis and treatment of the most common CVDs.
Collapse
Affiliation(s)
- Luisa Marracino
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | - Esmaa Bouhamida
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Camponogara
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Paolo Severi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Emanuele D’Aniello
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Roberta Campana
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Gianluca Campo
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Roberto Ferrari
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| | | | - Paola Rizzo
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| |
Collapse
|
10
|
Xia Z, Huang R, Zhou X, Chai Y, Chen H, Ma L, Yu Q, Li Y, Li W, He Y. The synthesis and bioactivity of pyrrolo[2,3-d]pyrimidine derivatives as tyrosine kinase inhibitors for NSCLC cells with EGFR mutations. Eur J Med Chem 2021; 224:113711. [PMID: 34315040 DOI: 10.1016/j.ejmech.2021.113711] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/05/2023]
Abstract
EGFR mutations are an ongoing challenge in the treatment of NSCLC, and demand continuous updating of EGFR TKI drug candidates. Pyrrolopyrimidines are one group of versatile scaffolds suitable for tailored drug development. However not many precedents of this type of pharmacophore have been investigated in the realm of third generation of covalent EGFR-TKIs. Herein, a series of pyrrolo[2,3-d]pyrimidine derivatives able to block mutant EGFR activity in a covalent manner were synthesized, through optimized Buchwald-Hartwig C-N cross coupling reactions. Their preliminary bioactivity and corresponding inhibitory mechanistic pathways were investigated at molecular and cellular levels. Several compounds exhibited increased biological activity and enhanced selectivity compared to the control compound. Notably, compound 12i selectively inhibits HCC827 cells harboring the EGFR activating mutation with up to 493-fold increased efficacy compared to in normal HBE cells. Augmented selectivity was also confirmed by kinase enzymatic assay, with the test compound selectively inhibiting the T790 M activating mutant EGFRs (IC50 values of 0.21 nM) with up to 104-fold potency compared to the wild-type EGFR (IC50 values of 22 nM). Theoretical simulations provide structural evidence of selective kinase inhibitory activity. Thus, this series of pyrrolo[2,3-d]pyrimidine derivatives could serve as a starting point for the development of new EGFR-TKIs.
Collapse
Affiliation(s)
- Zhenqiang Xia
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610093, PR China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, PR China
| | - Ridong Huang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610093, PR China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, PR China
| | - Xinglong Zhou
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610093, PR China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, PR China
| | - Yingying Chai
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610093, PR China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, PR China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610093, PR China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, PR China
| | - Lingling Ma
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610093, PR China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, PR China
| | - Quanwei Yu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610093, PR China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, PR China
| | - Ying Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610093, PR China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, PR China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610093, PR China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, PR China.
| | - Yang He
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610093, PR China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, PR China.
| |
Collapse
|
11
|
Chang YJ, Tuz-Zahra F, Godbole S, Avitia Y, Bellettiere J, Rock CL, Jankowska MM, Allison MA, Dunstan DW, Rana B, Natarajan L, Sears DD. Endothelial-derived cardiovascular disease-related microRNAs elevated with prolonged sitting pattern among postmenopausal women. Sci Rep 2021; 11:11766. [PMID: 34083573 PMCID: PMC8175392 DOI: 10.1038/s41598-021-90154-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/06/2021] [Indexed: 02/03/2023] Open
Abstract
Time spent sitting is positively correlated with endothelial dysfunction and cardiovascular disease risk. The underlying molecular mechanisms are unknown. MicroRNAs contained in extracellular vesicles (EVs) reflect cell/tissue status and mediate intercellular communication. We explored the association between sitting patterns and microRNAs isolated from endothelial cell (EC)-derived EVs. Using extant actigraphy based sitting behavior data on a cohort of 518 postmenopausal overweight/obese women, we grouped the woman as Interrupted Sitters (IS; N = 18) or Super Sitters (SS; N = 53) if they were in the shortest or longest sitting pattern quartile, respectively. The cargo microRNA in EC-EVs from the IS and SS women were compared. MicroRNA data were weighted by age, physical functioning, MVPA, device wear days, device wear time, waist circumference, and body mass index. Screening of CVD-related microRNAs demonstrated that miR-199a-5p, let-7d-5p, miR-140-5p, miR-142-3p, miR-133b level were significantly elevated in SS compared to IS groups. Group differences in let-7d-5p, miR-133b, and miR-142-3p were validated in expanded groups. Pathway enrichment analyses show that mucin-type O-glycan biosynthesis and cardiomyocyte adrenergic signaling (P < 0.001) are downstream of the three validated microRNAs. This proof-of-concept study supports the possibility that CVD-related microRNAs in EC-EVs may be molecular transducers of sitting pattern-associated CVD risk in overweight postmenopausal women.
Collapse
Affiliation(s)
- Ya-Ju Chang
- Department of Family Medicine, UC San Diego, La Jolla, CA, USA
| | - Fatima Tuz-Zahra
- Herbert Wertheim School of Public Health, UC San Diego, La Jolla, CA, USA
| | - Suneeta Godbole
- Department of Family Medicine, UC San Diego, La Jolla, CA, USA
| | - Yesenia Avitia
- Department of Family Medicine, UC San Diego, La Jolla, CA, USA
| | - John Bellettiere
- Herbert Wertheim School of Public Health, UC San Diego, La Jolla, CA, USA.,Center for Behavioral Epidemiology and Community Health, San Diego State University, San Diego, CA, USA
| | - Cheryl L Rock
- Department of Family Medicine, UC San Diego, La Jolla, CA, USA.,Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | | | | | - David W Dunstan
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Brinda Rana
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA.,Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| | - Loki Natarajan
- Herbert Wertheim School of Public Health, UC San Diego, La Jolla, CA, USA.,Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Dorothy D Sears
- Department of Family Medicine, UC San Diego, La Jolla, CA, USA. .,Moores Cancer Center, UC San Diego, La Jolla, CA, USA. .,Department of Medicine, UC San Diego, La Jolla, CA, USA. .,College of Health Solutions, Arizona State University, 550 N 3rd Street, Phoenix, AZ, 85004, USA.
| |
Collapse
|
12
|
Zareba L, Fitas A, Wolska M, Junger E, Eyileten C, Wicik Z, De Rosa S, Siller-Matula JM, Postula M. MicroRNAs and Long Noncoding RNAs in Coronary Artery Disease: New and Potential Therapeutic Targets. Cardiol Clin 2020; 38:601-617. [PMID: 33036721 DOI: 10.1016/j.ccl.2020.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Noncoding RNAs (ncRNAs), including long noncoding RNAs and microRNAs, play an important role in coronary artery disease onset and progression. The ability of ncRNAs to simultaneously regulate many target genes allows them to modulate various key processes involved in atherosclerosis, including lipid metabolism, smooth muscle cell proliferation, autophagy, and foam cell formation. This review focuses on the therapeutic potential of the most important ncRNAs in coronary artery disease. Moreover, various other promising microRNAs and long noncoding RNAs that attract substantial scientific interest as potential therapeutic targets in coronary artery disease and merit further investigation are presented.
Collapse
Affiliation(s)
- Lukasz Zareba
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland
| | - Marta Wolska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland
| | - Eva Junger
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland; Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Alameda da Universidade, s/n-Anchieta, São Paulo 09606-045, Brazil
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, "Magna Graecia" University, Viale Europa, Catanzaro 88100, Italy
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland; Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Spitalgasse 23, Vienna 1090, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland; Longevity Center, Warsaw, Poland.
| |
Collapse
|
13
|
Sun Z, Li L, Zhang L, Yan J, Shao C, Bao Z, Liu J, Li Y, Zhou M, Hou L, Jing L, Pang Q, Geng Y, Mao X, Gu W, Wang Z. Macrophage galectin-3 enhances intimal translocation of vascular calcification in diabetes mellitus. Am J Physiol Heart Circ Physiol 2020; 318:H1068-H1079. [PMID: 32216615 DOI: 10.1152/ajpheart.00690.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The clinical risks and prognosis of diabetic vascular intimal calcification (VIC) and medial calcification (VMC) are different. This study aims to investigate the mechanism of VIC/VMC translocation. Anterior tibial arteries were collected from patients with diabetic foot amputation. The patients were then divided into VIC and VMC groups. There were plaques in all anterior tibial arteries, while the enrichment of galectin-3 in arterial plaques in the VIC group was significantly higher than that in the VMC group. Furthermore, a macrophage/vascular smooth muscle cell (VSMC) coculture system was constructed. VSMC-derived extracellular vesicles (EVs) was labeled with fluorescent probe. After macrophages were pretreated with recombinant galectin-3 protein, the migration of VSMC-derived EVs and VSMC-derived calcification was more pronounced. And anti-galectin-3 antibody can inhibit this process of EVs and calcification translocation. Then, lentivirus (LV)-treated bone marrow cells (BMCs) were transplanted into apolipoprotein E-deficient (ApoE-/-) mice, and a diabetic atherosclerosis mouse model was constructed. After 15 wk of high-fat diet, ApoE-/- mice transplanted with LV-shgalectin-3 BMCs exhibited medial calcification and a concentrated distribution of EVs in the media. In conclusion, upregulation of galectin-3 in macrophages promotes the migration of VSMC-derived EVs to the intima and induces diabetic vascular intimal calcification.NEW & NOTEWORTHY The clinical risk and prognosis of vascular intimal and medial calcification are different. Macrophage galectin-3 regulates the migration of vascular smooth muscle cell-derived extracellular vesicles and mediates diabetic vascular intimal/medial calcification translocation. This study may provide insights into the early intervention in diabetic vascular calcification.
Collapse
Affiliation(s)
- Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhengyang Bao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jia Liu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yalan Li
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mengxue Zhou
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lina Hou
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lele Jing
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qiwen Pang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yue Geng
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang Mao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wen Gu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Kotyla PJ, Islam MA. MicroRNA (miRNA): A New Dimension in the Pathogenesis of Antiphospholipid Syndrome (APS). Int J Mol Sci 2020; 21:ijms21062076. [PMID: 32197340 PMCID: PMC7139820 DOI: 10.3390/ijms21062076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are single-stranded, endogenous RNA molecules that play a significant role in the regulation of gene expression as well as cell development, differentiation, and function. Recent data suggest that these small molecules are responsible for the regulation of immune responses. Therefore, they may act as potent modulators of the immune system and play an important role in the development of several autoimmune diseases. Antiphospholipid syndrome (APS) is an autoimmune systemic disease characterized by venous and/or arterial thromboses and/or recurrent fetal losses in the presence of antiphospholipid antibodies (aPLs). Several lines of evidence suggest that like other autoimmune disorders, miRNAs are deeply involved in the pathogenesis of APS, interacting with the function of innate and adaptive immune responses. In this review, we characterize miRNAs in the light of having a functional role in the immune system and autoimmune responses focusing on APS. In addition, we also discuss miRNAs as potential biomarkers and target molecules in treating APS.
Collapse
Affiliation(s)
- Przemysław J. Kotyla
- Department of Internal Medicine, Rheumatology and Clinical Immunology, Faculty in Katowice, Medical University of Silesia, 40-635 Katowice, Poland
- Correspondence: (P.J.K.); (M.A.I.)
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence: (P.J.K.); (M.A.I.)
| |
Collapse
|
15
|
Circulatory miR-133b and miR-21 as Novel Biomarkers in Early Prediction and Diagnosis of Coronary Artery Disease. Genes (Basel) 2020; 11:genes11020164. [PMID: 32033332 PMCID: PMC7073535 DOI: 10.3390/genes11020164] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
While coronary artery disease (CAD) has become a major threat worldwide, the timely biomarker-based early diagnosis of CAD remains a major unmet clinical challenge. We aimed towards assessing the level of circulatory microRNAs as candidates of novel biomarkers in patients with CAD. A total of 147 subjects were recruited which includes 78 subjects with angiographically proven CAD, 15 pre-atherosclerotic normal coronary artery (NCA) subjects and 54 healthy individuals. Quantitative real-time PCR assays were performed. MiR-133b was downregulated by 4.6 fold (p < 0.0001) whereas miR-21 was upregulated by ~2 fold (p < 0.0001) in plasma samples of CAD patients. Importantly, both the miRNAs showed association with disease severity as miR-133b was downregulated by 8.45 fold in acute coronary syndrome (ACS), 3.38 fold in Stable angina (SA) and 2.08 fold in NCA. MiR-21 was upregulated by 2.46 fold in ACS, 1.90 fold in SA and 1.12 fold in NCA. Moreover, miR-133b could significantly differentiate subjects with ST-elevation myocardial infarction (STEMI) from Non-STEMI. Area under the curve (AUC) for miR-133b was 0.80 with >75.6% sensitivity and specificity, AUC for miR-21 was 0.79 with >69.4% sensitivity and specificity. Our results suggest that miR-133b and miR-21 could be possible candidates of novel biomarkers in early prediction of CAD.
Collapse
|