1
|
Nadhan R, Isidoro C, Song YS, Dhanasekaran DN. LncRNAs and the cancer epigenome: Mechanisms and therapeutic potential. Cancer Lett 2024; 605:217297. [PMID: 39424260 DOI: 10.1016/j.canlet.2024.217297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical regulators of epigenome, modulating gene expression through DNA methylation, histone modification, and/or chromosome remodeling. Dysregulated lncRNAs act as oncogenes or tumor suppressors, driving tumor progression by shaping the cancer epigenome. By interacting with the writers, readers, and erasers of the epigenetic script, lncRNAs induce epigenetic modifications that bring about changes in cancer cell proliferation, apoptosis, epithelial-mesenchymal transition, migration, invasion, metastasis, cancer stemness and chemoresistance. This review analyzes and discusses the multifaceted role of lncRNAs in cancer pathobiology, from cancer genesis and progression through metastasis and therapy resistance. It also explores the therapeutic potential of targeting lncRNAs through innovative diagnostic, prognostic, and therapeutic strategies. Understanding the dynamic interplay between lncRNAs and epigenome is crucial for developing personalized therapeutic strategies, offering new avenues for precision cancer medicine.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 151-921, South Korea.
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Lu Y, Yang B, Shen A, Yu K, Ma M, Li Y, Wang H. LncRNA UCA1 promotes vasculogenic mimicry by targeting miR-1-3p in gastric cancer. Carcinogenesis 2024; 45:658-672. [PMID: 38742453 DOI: 10.1093/carcin/bgae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/10/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024] Open
Abstract
Long noncoding RNA urothelial carcinoma-associated 1 (UCA1) has been implicated in several tumors. UCA1 promotes cell proliferation, migration, and invasion of gastric cancer (GC) cells, but the molecular mechanism has not been fully elucidated. This study revealed the oncogenic effects of UCA1 on cell growth and invasion. Furthermore, UCA1 expression was significantly correlated with the overall survival of GC patients, and the clinicopathological indicators, including tumor size, depth of invasion, lymph node metastasis, and TNM stage. Additionally, miR-1-3p was identified as a downstream target of UCA1, which was negatively regulated by UCA1. MiR-1-3p inhibited cell proliferation and vasculogenic mimicry (VM), and induced cell apoptosis by upregulating BAX, BAD, and tumor suppressor TP53 expression levels. Moreover, miR-1-3p almost completely reversed the oncogenic effect caused by UCA1, including cell growth, migration, and VM formation. This study also confirmed that UCA1 promoted tumor growth in vivo. In this study, we also revealed the correlation between UCA1 and VM formation, which is potentially crucial for tumor metastasis. Meanwhile, its downstream target miR-1-3p inhibited VM formation in GC cells. In summary, these findings indicate that the UCA1/miR-1-3p axis is a potential target for GC treatment.
Collapse
Affiliation(s)
- Yida Lu
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, China
| | - Bo Yang
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, China
| | - Aolin Shen
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, China
| | - Kexun Yu
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, China
| | - MengDi Ma
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, China
| | - Yongxiang Li
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, China
| | - Huizhen Wang
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, China
| |
Collapse
|
3
|
Yang B, Wang Y, Liu T, Zhang M, Luo T. The necroptosis-related signature and tumor microenvironment immune characteristics associated with clinical prognosis and drug sensitivity analysis in stomach adenocarcinoma. Aging (Albany NY) 2024; 16:6098-6117. [PMID: 38546403 PMCID: PMC11042952 DOI: 10.18632/aging.205690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/30/2024] [Indexed: 04/23/2024]
Abstract
PURPOSE Necroptosis plays an important role in the tumorigenesis, development, metastasis, and drug resistance of malignant tumors. This study explored the new model for assessing stomach adenocarcinoma (STAD) prognosis and immunotherapy by combining long noncoding RNAs associated with necroptosis. METHODS Patient clinical data and STAD gene expression profiles were curated from The Cancer Genome Atlas (TCGA). Immune-related genes were sourced from a specialized molecular database. Perl software and R software were used for data processing and analysis. Necroptosis-related lncRNAs in STAD were pinpointed via R's correlation algorithms. These lncRNAs, in conjunction with clinical data, informed the construction of a prognostic lncRNA-associated risk score model using univariate and multivariate Cox regression analyses. The model's prognostic capacity was evaluated by Kaplan-Meier survival curves and validated as an independent prognostic variable. Further, a nomogram incorporating this model with clinical parameters was developed, offering refined individual survival predictions. Subsequent analyses of immune infiltration and chemosensitivity within necroptosis-related lncRNA clusters utilized an arsenal of bioinformatic tools, culminating in RT-PCR validation of lncRNA expression. RESULTS Through rigorous Cox regression, 21 lncRNAs were implicated in the risk score model. Stratification by median risk scores delineated patients into high- and low-risk cohorts, with the latter demonstrating superior prognostic outcomes. The risk model was corroborated as an independent prognostic indicator for STAD. The integrative nomogram displayed high concordance between predicted and observed survival rates, as evidenced by calibration curves. Differential immune infiltration in risk-defined groups was illuminated by the single sample GSEA (ssGSEA), indicating pronounced immune presence in higher-risk patients. Tumor microenvironment (TME) analysis showed that cluster-C3 had the highest score in the analysis of the three TMEs. Through the differential analysis of immune checkpoints, it was found that almost all immune checkpoint-related genes were expressed differently in various tumor clusters. Among them, CD44 expression was the highest. By comparing all drug sensitivities, we screened out 29 drugs with differences in drug sensitivity across different clusters. Risk score gene expression identification results showed that these lncRNAs were abnormally expressed in gastric cancer cell lines. CONCLUSIONS This investigation provides a robust methodological advance in prognosticating and personalizing immunotherapy for STAD, leveraging quantitatively derived tumor cluster risk scores. It posits the use of necroptosis-related lncRNAs as pivotal molecular beacons for guiding therapeutic strategies and enhancing clinical outcomes in STAD.
Collapse
Affiliation(s)
- Biao Yang
- Department of General Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yingnan Wang
- Henan University of Science and Technology, Henan 471000, China
| | - Tao Liu
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Meijing Zhang
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Tianhang Luo
- Department of General Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
4
|
Xie R, Liu L, Lu X, He C, Yao H, Li G. N6-methyladenosine modification of OIP5-AS1 promotes glycolysis, tumorigenesis, and metastasis of gastric cancer by inhibiting Trim21-mediated hnRNPA1 ubiquitination and degradation. Gastric Cancer 2024; 27:49-71. [PMID: 37897508 PMCID: PMC10761432 DOI: 10.1007/s10120-023-01437-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/01/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Opa-interacting protein 5 antisense transcript 1 (OIP5-AS1) has been demonstrated to play vital roles in development and progression of tumors such as gastric cancer (GC). However, the detailed molecular mechanism of OIP5-AS1 has not been completely elucidated. Our study aimed to investigate the role and the epigenetic regulation mechanism of OIP5-AS1 in GC. METHODS OIP5-AS1 expression in GC tissues was detected by RT-qPCR. Loss- and gain-of-function experiments were conducted to assess the biological function of OIP5-AS1 in vitro and in vivo. The interaction of OIP5-AS1 with insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) or heterogeneous nuclear nucleoprotein A1 (hnRNPA1) was verified by bioinformatics analysis, RNA pull-down assays, and RNA immunoprecipitation assays. RESULTS In this study, we identified that OIP5-AS1 is specifically overexpressed in GC tumor tissues and cell lines and correlated with a poor prognosis. The loss of OIP5-AS1 suppressed the proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and glycolysis of GC cells, but the ectopic expression of OIP5-AS1 had the opposite impact. Meanwhile, knockdown of OIP5-AS1 inhibited tumor growth in patient-derived xenograft models, as well as repressed tumor metastasis. Mechanistically, IGF2BP3 could bind to OIP5-AS1 by N6-methyladenosine (m6A) modification sites on OIP5-AS1, thereby stabilizing OIP5-AS1. Moreover, OIP5-AS1 prevented Trim21-mediated ubiquitination and degradation of hnRNPA1, stabilizing hnRNPA1 protein and promoting the malignant progression of GC by regulating PKM2 signaling pathway. CONCLUSIONS In conclusion, this study highlighted that OIP5-AS1 is an oncogenic m6A-modified long non-coding RNA (lncRNA) in GC and that IGF2BP3/OIP5-AS1/hnRNPA1 axis may provide a potential diagnostic or prognostic target for GC.
Collapse
Affiliation(s)
- Rongjun Xie
- Department of General Surgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Zhuhui District, 336, Dongfeng South Road, Hengyang, 421002, China
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Baiyun District, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Longfei Liu
- Department of General Surgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Zhuhui District, 336, Dongfeng South Road, Hengyang, 421002, China
| | - Xianzhou Lu
- Department of General Surgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Zhuhui District, 336, Dongfeng South Road, Hengyang, 421002, China
| | - Chengjian He
- Department of Intensive Care Medicine, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Zhuhui District, 336, Dongfeng South Road, Hengyang, 421002, China
| | - Hongyi Yao
- Department of Intensive Care Medicine, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Zhuhui District, 336, Dongfeng South Road, Hengyang, 421002, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Baiyun District, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Huang HH, You GR, Tang SJ, Chang JT, Cheng AJ. Molecular Signature of Long Non-Coding RNA Associated with Areca Nut-Induced Head and Neck Cancer. Cells 2023; 12:cells12060873. [PMID: 36980216 PMCID: PMC10047708 DOI: 10.3390/cells12060873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
The areca nut is a high-risk carcinogen for head and neck cancer (HNC) patients in Southeast Asia. The underlying molecular mechanism of areca nut-induced HNC remains unclear, especially regarding the role of long non-coding RNA (lncRNA). This study employed a systemic strategy to identify lncRNA signatures related to areca nut-induced HNC. In total, 84 cancer-related lncRNAs were identified. Using a PCR array method, 28 lncRNAs were identified as being dysregulated in HNC cells treated with areca nut (17 upregulated and 11 downregulated). Using bioinformatics analysis of The Cancer Genome Atlas Head-Neck Squamous Cell Carcinoma (TCGA-HNSC) dataset, 45 lncRNAs were differentially expressed in tumor tissues from HNC patients (39 over- and 6 under-expressions). The integrated evaluation showed 10 lncRNAs dysregulated by the areca nut and altered expression in patients, suggesting that these panel molecules participate in areca nut-induced HNC. Five oncogenic (LUCAT1, MIR31HG, UCA1, HIF1A-AS2, and SUMO1P3) and tumor-suppressive (LINC00312) lncRNAs were independently validated, and three key molecules were further examined. Pathway prediction revealed that LUCAT1, UCA1, and MIR31HG modulate multiple oncogenic mechanisms, including stress response and cellular motility. Clinical assessment showed that these lncRNAs exhibited biomarker potentials in diagnosis (area under the curve = 0.815 for LUCAT1) and a worse prognosis (both p < 0.05, survival analysis). Cellular studies further demonstrated that MIR31HG facilitates areca nut-induced cancer progression, as silencing this molecule attenuated arecoline-induced invasion ability in HNC cells. This study identified lncRNA signatures that play a role in areca nut-induced HNC. These molecules may be further applied in risk assessment, diagnosis, prognosis, and therapeutics for areca nut-associated malignancies.
Collapse
Affiliation(s)
- Hung-Han Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Guo-Rung You
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shang-Ju Tang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Joseph T. Chang
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (J.T.C.); (A.-J.C.); Tel.: +886-3-328-1200 (J.T.C.); +886-3-2118-800 (A.-J.C.)
| | - Ann-Joy Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- Correspondence: (J.T.C.); (A.-J.C.); Tel.: +886-3-328-1200 (J.T.C.); +886-3-2118-800 (A.-J.C.)
| |
Collapse
|
6
|
Zeng X, Xiao J, Bai X, Liu Y, Zhang M, Liu J, Lin Z, Zhang Z. Research progress on the circRNA/lncRNA-miRNA-mRNA axis in gastric cancer. Pathol Res Pract 2022; 238:154030. [PMID: 36116329 DOI: 10.1016/j.prp.2022.154030] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 01/19/2023]
Abstract
Gastric cancer is one of the most common malignant tumours worldwide. Genetic and epigenetic alterations are key factors in gastric carcinogenesis and drug resistance to chemotherapy. Competing endogenous RNA (ceRNA) regulation models have defined circRNA/lncRNA as miRNA sponges that indirectly regulate miRNA downstream target genes. The ceRNA regulatory network is related to the malignant biological behaviour of gastric cancer. The circRNA/lncRNA-miRNA-mRNA axis may be a marker for the early diagnosis and prognosis of gastric cancer and a potential therapeutic target for gastric cancer. Exosomal ncRNAs play an important role in gastric cancer and are expected to be ideal biomarkers for the diagnosis, prognosis, and treatment of gastric cancer. This review summarizes the specific ceRNA regulatory network (circRNA/lncRNA-miRNA-mRNA) discovered in gastric cancer in recent years, which may provide new ideas or strategies for early clinical diagnosis, further development, and application.
Collapse
Affiliation(s)
- Xuemei Zeng
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Juan Xiao
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang 421001, China
| | - Xue Bai
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Yiwen Liu
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Meilan Zhang
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Jiangrong Liu
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Zixuan Lin
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China.
| |
Collapse
|
7
|
TGF-β1/Smad3 upregulates UCA1 to promote liver fibrosis through DKK1 and miR18a. J Mol Med (Berl) 2022; 100:1465-1478. [PMID: 36001113 DOI: 10.1007/s00109-022-02248-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
TGF-β1 is the strongest cytokine known to promote liver fibrosis. It has been previously demonstrated that the activation of TGF-β1 initiates a temporary collagen accumulation program, which is important for wound repair in several organs. Furthermore, temporary extracellular matrix enhancement often leads to progressive fibrosis, which is accountable for cases of severe morbidity and mortality worldwide. However, its action mechanism has not been fully explored. It was previously reported that UCA1 could promote its occurrence and development in various tumors. Importantly, it was reported that TGF-β1 could activate the expression of UCA1 in liver cancer, gastric cancer, and breast cancer. However, the role of UCA1 in organ fibrosis, including liver fibrosis, remains unreported. The present study reported for the first time that TGF-β1/Smad3 could promote liver fibrosis by upregulating UCA1, which further affected DKK1 and collagen, such as COL1A1, COL1A2, and COL3A1. Meanwhile, UCA1 could competitively bind with miR18a to stabilize Smad3 to constitute a positive feedback pathway, which played a significant role in the promotion of liver fibrosis. Altogether, the present study provides a theoretical basis for devising promising treatment strategies for liver fibrosis. KEY MESSAGES : UCA1 was found to promote the progression of liver fibrosis in vitro. UCA1 is regulated by TGF-β1 and promotes liver fibrosis through the canonical Smad pathway. UCA1 can competitively bind with miR18a, promote liver fibrosis by stabilizing Smad3, and form a UCA1-miR18a/Smad3 positive feedback. UCA1 binds EZH2 to inhibit the DKK1 expression and promote liver fibrosis.
Collapse
|
8
|
Nadhan R, Isidoro C, Song YS, Dhanasekaran DN. Signaling by LncRNAs: Structure, Cellular Homeostasis, and Disease Pathology. Cells 2022; 11:2517. [PMID: 36010595 PMCID: PMC9406440 DOI: 10.3390/cells11162517] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/11/2022] Open
Abstract
The cellular signaling network involves co-ordinated regulation of numerous signaling molecules that aid the maintenance of cellular as well as organismal homeostasis. Aberrant signaling plays a major role in the pathophysiology of many diseases. Recent studies have unraveled the superfamily of long non-coding RNAs (lncRNAs) as critical signaling nodes in diverse signaling networks. Defective signaling by lncRNAs is emerging as a causative factor underlying the pathophysiology of many diseases. LncRNAs have been shown to be involved in the multiplexed regulation of diverse pathways through both genetic and epigenetic mechanisms. They can serve as decoys, guides, scaffolds, and effector molecules to regulate cell signaling. In comparison with the other classes of RNAs, lncRNAs possess unique structural modifications that contribute to their diversity in modes of action within the nucleus and cytoplasm. In this review, we summarize the structure and function of lncRNAs as well as their vivid mechanisms of action. Further, we provide insights into the role of lncRNAs in the pathogenesis of four major disease paradigms, namely cardiovascular diseases, neurological disorders, cancers, and the metabolic disease, diabetes mellitus. This review serves as a succinct treatise that could open windows to investigate the role of lncRNAs as novel therapeutic targets.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul 151-921, Korea
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
9
|
Mirzaei S, Gholami MH, Hushmandi K, Hashemi F, Zabolian A, Canadas I, Zarrabi A, Nabavi N, Aref AR, Crea F, Wang Y, Ashrafizadeh M, Kumar AP. The long and short non-coding RNAs modulating EZH2 signaling in cancer. J Hematol Oncol 2022; 15:18. [PMID: 35236381 PMCID: PMC8892735 DOI: 10.1186/s13045-022-01235-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a large family of RNA molecules with no capability in encoding proteins. However, they participate in developmental and biological processes and their abnormal expression affects cancer progression. These RNA molecules can function as upstream mediators of different signaling pathways and enhancer of zeste homolog 2 (EZH2) is among them. Briefly, EZH2 belongs to PRCs family and can exert functional roles in cells due to its methyltransferase activity. EZH2 affects gene expression via inducing H3K27me3. In the present review, our aim is to provide a mechanistic discussion of ncRNAs role in regulating EZH2 expression in different cancers. MiRNAs can dually induce/inhibit EZH2 in cancer cells to affect downstream targets such as Wnt, STAT3 and EMT. Furthermore, miRNAs can regulate therapy response of cancer cells via affecting EZH2 signaling. It is noteworthy that EZH2 can reduce miRNA expression by binding to promoter and exerting its methyltransferase activity. Small-interfering RNA (siRNA) and short-hairpin RNA (shRNA) are synthetic, short ncRNAs capable of reducing EZH2 expression and suppressing cancer progression. LncRNAs mainly regulate EZH2 expression via targeting miRNAs. Furthermore, lncRNAs induce EZH2 by modulating miRNA expression. Circular RNAs (CircRNAs), like lncRNAs, affect EZH2 expression via targeting miRNAs. These areas are discussed in the present review with a focus on molecular pathways leading to clinical translation.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, 1417466191, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Gorgan, Golestan, Iran
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada.
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, 34956, Turkey.
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
10
|
Alkhathami AG, Hadi A, Alfaifi M, Alshahrani MY, Verma AK, Beg MMA. Serum-Based lncRNA ANRIL, TUG1, UCA1, and HIT Expressions in Breast Cancer Patients. DISEASE MARKERS 2022; 2022:9997212. [PMID: 35132340 PMCID: PMC8817891 DOI: 10.1155/2022/9997212] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 09/25/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022]
Abstract
Breast cancer is a heterogeneous disease and is the most common and prevalent form of malignancy diagnosed in women. lncRNAs are found to be frequently dysregulated in cancer, and its expression plays a critical role in tumorigenesis. The study included 100 histopathologically confirmed, newly diagnosed untreated patients of invasive ductal carcinoma (IDC) of breast cancer patients and 100 healthy subjects. After blood collection, the serum was separated and total RNA was extracted, cDNA was synthesized using 100 ng of total RNA, and lncRNA (ANRIL, TUG1, UCA1, and HIT) expression was analyzed. Increased ANRIL (3.83-fold), TUG1 (7.64-fold), UCA1 (7.82-fold), and HIT (3.31-fold) expressions were observed in breast cancer patients compared to healthy controls. Relative expression of lncRNAs UCA-1 (p = 0.010) and HIT-1 (p < 0.0001) was significantly elevated in patients with advanced breast cancer stage compared to those with early-stage disease. While lncRNA TUG-1 expression was found to be higher in patients with early-stage tumors than those with advanced-stage tumors (p = 0.06), lncRNA ANRIL showed increased expression in patients with PR positive status (p = 0.04). However, we found a significant difference in lncRNA HIT expression in HER-2 positive breast cancer patients compared to HER-2 negative breast cancer patients (p = 0.005). An increase in the expression of serum lncRNAs ANRIL (p < 0.0001), UCA-1 (p = 0.004), and HIT (p < 0.0001) was observed in the distant organ metastatic breast cancer patients. In the ROC curve concerning lymph node involvement, the sensitivity and specificity of lncRNA HIT were 68% and 58%, respectively (p value = 0.007). In the ROC curve w.r.t. stages of disease, the sensitivity and specificity of lncRNA HIT were 80% and 50%, respectively (p value < 0.0001). Better sensitivity and specificity were observed for lncRNA HIT (sensitivity 91% and specificity 78%; p value < 0.0001) and ANRIL (sensitivity 70% and specificity 60%; p value < 0.0001) w.r.t distant organ metastases.
Collapse
Affiliation(s)
- Ali G. Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Abdul Hadi
- Department of Medicine, Xi'an Jiaotong University, China
| | - Mohammed Alfaifi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Mohammad Yahya Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Amit Kumar Verma
- Department of Zoology and Environmental Sciences, GKV, Haridwar, India
| | - Mirza Masroor Ali Beg
- Faculty of Medicine, Alatoo International University, Bishkek, Kyrgyzstan
- Centre for Promotion of Medical Research, Alatoo International University, Bishkek, Kyrgyzstan
| |
Collapse
|
11
|
Song W, Fei F, Qiao F, Weng Z, Yang Y, Cao B, Yue J, Xu J, Zheng M, Li J. ALKBH5-mediated N 6-methyladenosine modification of TRERNA1 promotes DLBCL proliferation via p21 downregulation. Cell Death Dis 2022; 8:25. [PMID: 35031597 PMCID: PMC8760254 DOI: 10.1038/s41420-022-00819-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022]
Abstract
Long noncoding RNAs (lncRNAs) have crucial functions in the tumorigenesis and metastasis of cancers. N6-methyladenosine (m6A) modification of RNA is an important epigenetic regulatory mechanism in various malignancies. Nevertheless, the mechanism of m6A-modified lncRNA in diffuse large B cell lymphoma (DLBCL) has remained poorly defined. In the present study, we showed that lncRNA TRERNA1 was associated with the poor prognosis of DLBCL patients. TRERNA1 with internal m6A modification was highly correlated with the demethylase ALKBH5 expression. We further demonstrated that TRERNA1 was a potential downstream target of ALKBH5-mediated m6A modification by m6A-RNA sequencing and m6A-RIP assays. Decreased m6A methylation of TRERNA1 regulated by ALKBH5 was shown to regulate cell proliferation in vitro and in vivo. The results of mechanism analyses revealed that TRERNA1 recruited EZH2 to epigenetically silence the expression of the cyclin-dependent kinases inhibitor p21 by H3K27me3 modification of its promoter region. In addition, ALKBH5 further inhibited p21 expression. Taken together, our results elucidate the functional roles and epigenetic alterations of TRERNA1 through m6A modification in DLBCL. TRERNA1, the expression of which is upregulated by ALKBH5, acts as a scaffold that decreases p21 expression. The results of the present study provide novel targets for the diagnosis and treatment of DLBCL.
Collapse
Affiliation(s)
- Wei Song
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Anhui Province Key Laboratory of Translational Cancer Research (Bengbu Medical College), Bengbu, 233030, China.
| | - Fei Fei
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Fengchang Qiao
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health care Hospital, Nanjing, 210001, China
| | - Zuyi Weng
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yuanxun Yang
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Bei Cao
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jing Yue
- Department of Gynaecology and Obstetrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jiaxuan Xu
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Meihong Zheng
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Juan Li
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
12
|
Lv G, Wang Y, Ji C, Shi C, Li Y. SPRY1 promotes cell proliferation and inhibits apoptosis by activating Hedgehog pathway in acute myeloid leukemia. Hematology 2021; 27:1-10. [PMID: 34957932 DOI: 10.1080/16078454.2021.2010330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The aim of this study was to determine the biological function of Sprouty 1 (SPRY1) on acute myeloid leukemia (AML), and to investigate the potential mechanism. METHODS The expression of SPRY1 and the prognostic values of SPRY1 were assessed through the analysis of the Cancer Genome Atlas. Meanwhile, the expression of SPRY1 in AML cells was determined by qRT-PCR and western blot. Then, the biological function of SPRY1 on the proliferation, cell cycle and apoptosis in K-562 and HL-60 cells were tested using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony-formation assay, 5-ethynyl-20-deoxyuridine assay and flow cytometry. Additionally, the protein expressions were measured by western blot. RESULTS We found that SPRY1 was markedly overexpressed in the cells of the patients with AML, and the patients with AML having a high SPRY1 expression has a bad prognosis. The proliferation and cell cycle progression in K-562 and HL-60 cells were notably promoted by SPRY1 overexpression, but inhibited by SPRY1 knockdown. Meanwhile, the apoptosis of K-562 and HL-60 cells was significantly repressed by SPRY1 overexpression and facilitated by SPRY1 knockdown. In addition, we found that SPRY1 overexpression significantly activated the Hedgehog pathway in AML cells. The function of SPRY1 on the proliferation, cell cycle and apoptosis was reversed by Gli1 in K-562 and HL-60 cells. DISCUSSION Identifying new biomarkers and exploring the pathogenesis of AML is urgent to improve the disease surveillance for patients with AML. CONCLUSIONS SPRY1 could facilitate cell proliferation and cell cycle progression, and suppress cell apoptosis via activating the Hedgehog pathway in AML.
Collapse
Affiliation(s)
- Guiyang Lv
- Department of Hematology, Affiliated Qingdao Central Hospital, Qingdao University, Shandong, People's Republic of China
| | - Yuanyuan Wang
- Department of Hematology, Affiliated Qingdao Central Hospital, Qingdao University, Shandong, People's Republic of China
| | - ChunXiao Ji
- Department of Hematology, Affiliated Qingdao Central Hospital, Qingdao University, Shandong, People's Republic of China
| | - Chunlei Shi
- Department of Hematology, Affiliated Qingdao Central Hospital, Qingdao University, Shandong, People's Republic of China
| | - Ying Li
- Department of Hematology, Affiliated Qingdao Central Hospital, Qingdao University, Shandong, People's Republic of China
| |
Collapse
|
13
|
Dashti F, Mirazimi SMA, Rabiei N, Fathazam R, Rabiei N, Piroozmand H, Vosough M, Rahimian N, Hamblin MR, Mirzaei H. The role of non-coding RNAs in chemotherapy for gastrointestinal cancers. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:892-926. [PMID: 34760336 PMCID: PMC8551789 DOI: 10.1016/j.omtn.2021.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, hepatic, esophageal, and pancreatic tumors, are responsible for large numbers of deaths around the world. Chemotherapy is the most common approach used to treat advanced GI cancer. However, chemoresistance has emerged as a critical challenge that prevents successful tumor elimination, leading to metastasis and recurrence. Chemoresistance mechanisms are complex, and many factors and pathways are involved. Among these factors, non-coding RNAs (ncRNAs) are critical regulators of GI tumor development and subsequently can induce resistance to chemotherapy. This occurs because ncRNAs can target multiple signaling pathways, affect downstream genes, and modulate proliferation, apoptosis, tumor cell migration, and autophagy. ncRNAs can also induce cancer stem cell features and affect the epithelial-mesenchymal transition. Thus, ncRNAs could possibly act as new targets in chemotherapy combinations to treat GI cancer and to predict treatment response.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fathazam
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
14
|
Long non-coding RNA UCA1 enhances cervical cancer cell proliferation and invasion by regulating microRNA-299-3p expression. Oncol Lett 2021; 22:772. [PMID: 34589151 PMCID: PMC8442166 DOI: 10.3892/ol.2021.13033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
The long non-coding RNA, urothelial cancer-associated 1 (UCA1) is an important regulator in several tumors. However, to the best of our knowledge, the clinical roles of UCA1 in cervical cancer remain unclear. Thus, the present study aimed to investigate the function and mechanism of UCA1 in cervical cancer. Reverse transcription-quantitative PCR analysis was performed to detect UCA1 and microRNA (miR)-299-3p expression in cervical cancer tissues and cell lines. The Cell Counting Kit-8 and Transwell assays were performed to assess cell proliferation and invasion, respectively. Furthermore, the dual-luciferase reporter assay was performed to confirm the association between UCA1 and miR-299-3p. Rescue experiments were performed to determine the mechanism of the UCA1/miR-299-3p axis. The results demonstrated that UCA1 expression was upregulated in cervical cancer tissues and cell lines. Furthermore, overexpression of UCA1 enhanced the proliferation and invasion of cervical cancer cells, the effects of which were reversed following UCA1 knockdown. Notably, UCA1 interacted with miR-299-3p and negatively regulated miR-299-3p expression. In addition, miR-299-3p expression was downregulated in cervical cancer tissues and cell lines. Overexpression of miR-299-3p suppressed the proliferation and invasion of cervical cancer cells, reversing the effects of UCA1 knockdown on cervical cancer cell proliferation. Taken together, the results of the present study suggest that UCA1 promotes cell proliferation and invasion by regulating miR-299-3p expression in cervical cancer.
Collapse
|
15
|
Fang Y, Sun B, Gao J, Huang Y, Wang C. LncRNA SLCO4A1-AS1 Accelerates Growth and Metastasis of Gastric Cancer via Regulation of the miR-149/XIAP Axis. Front Oncol 2021; 11:683256. [PMID: 34650909 PMCID: PMC8505954 DOI: 10.3389/fonc.2021.683256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/30/2021] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Recently, long noncoding RNA SLCO4A1 antisense RNA 1 (SLCO4A1-AS1) has been shown to act as an oncogene in several cancer types; however, its role in gastric cancer (GC) and its underlying molecular mechanisms are yet to be elucidated. METHODS Using the ENCORI database, we identified SLCO4A1-AS1, miR-149-5p (miR-149), and the X-linked inhibitor of apoptosis (XIAP) whose expressions were obviously changed in GC samples, and analyzed the correlation between their expressions in GC samples. Moreover, we explored the expression of SLCO4A1-AS1, miR-149, and XIAP in clinical samples and GC cell lines using RT-qPCR and western blotting assay; the correlation between them was analyzed using RNA immunoprecipitation and dual-luciferase reporter. CCK-8, colony formation, and Transwell assays were conducted to determine the effects of SLCO4A1-AS1, miR-149, and XIAP expression on cell proliferation, migration, and invasion, respectively. A nude mouse xenograft model was used to explore their function in xenograft growth. RESULTS SLCO4A1-AS1 was significantly upregulated in the GC samples and cell lines, and a high level of SLCO4A1-AS1 was associated with an advanced tumor stage and shortened patient survival. Mechanistically, SLCO4A1-AS1 post-transcriptionally regulated XIAP by functioning as competing endogenous RNA in GC to sponge miR-149. Further functional assays revealed that the overexpression of miR-149 and knockdown of XIAP considerably inhibited GC cell viability and its migratory and invasive characteristics in vitro. SLCO4A1-AS1 knockdown also determined the function of GC cells but was diminished by the miR-149 inhibitor in vitro. Finally, we demonstrated that the deletion of SLCO4A1-AS1 suppressed tumor growth and metastasis in vivo. CONCLUSIONS Altogether, these findings suggest that SLCO4A1-AS1 functions as a crucial oncogenic lncRNA in GC and it can facilitate GC tumor growth and metastasis by interacting with miR-149 and enhancing XIAP expression. Therefore, SLCO4A1-AS1 is a potential novel therapeutic target in GC treatment.
Collapse
Affiliation(s)
- Yantian Fang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bo Sun
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianpeng Gao
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yakai Huang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenchen Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
16
|
Fu J, Pan J, Yang X, Zhang Y, Shao F, Chen J, Huang K, Wang Y. Mechanistic study of lncRNA UCA1 promoting growth and cisplatin resistance in lung adenocarcinoma. Cancer Cell Int 2021; 21:505. [PMID: 34544452 PMCID: PMC8454127 DOI: 10.1186/s12935-021-02207-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
Aim This study aimed to explore the mechanism of LncRNA urothelial carcinoma-associated 1 (UCA1) promoting cisplatin resistance in lung adenocarcinoma (LUAD). Method The UCA1 expression level in LUAD cell lines was detected by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). We overexpressed UCA1 in A549 cells and downregulated UCA1 in A549/DDP cells by the lentivirus‑mediated technique. Subsequently, in vitro, and in vivo functional experiments were performed to investigate the functional roles of UCA1 in the growth and metastasis of LUAD cell lines. Furthermore, RNA pulldown, mass spectrometry, and RNA immunoprecipitation technique were performed to analyze various downstream target factors regulated by UCA1. Results The results revealed a higher UCA1 expression level in A549/DDP cells and LUAD tissues than in A549 cells and adjacent cancer tissues. UCA1 expression was significantly associated with distant metastasis, clinical stage, and survival time of patients with LUAD. UCA1 overexpression significantly increased the proliferation, invasion, clone formation, and cisplatin resistance ability and enhanced the expression levels of proliferating cell nuclear antigen and excision repair cross-complementing gene 1 in A549 cells. However, these trends were mostly reversed after the knockdown of UCA1 in A549/DDP cells. Tumorigenic assays in nude mice showed that UCA1 knockdown significantly inhibited tumor growth and reduced cisplatin resistance. Enolase 1 was the RNA-binding protein (RBP) of UCA1. Conclusion Based on the results, we concluded that UCA1 promoted LUAD progression and cisplatin resistance and hence could be a potential diagnostic marker and therapeutic target in patients with LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02207-0.
Collapse
Affiliation(s)
- Jiali Fu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jingjing Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiang Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yan Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Fanggui Shao
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jie Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Kate Huang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Yumin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
17
|
Li HL, Li QY, Jin MJ, Lu CF, Mu ZY, Xu WY, Song J, Zhang Y, Zhang SY. A review: hippo signaling pathway promotes tumor invasion and metastasis by regulating target gene expression. J Cancer Res Clin Oncol 2021; 147:1569-1585. [PMID: 33864521 DOI: 10.1007/s00432-021-03604-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The Hippo pathway is widely considered to inhibit cell growth and play an important role in regulating the size of organs. However, recent studies have shown that abnormal regulation of the Hippo pathway can also affect tumor invasion and metastasis. Therefore, finding out how the Hippo pathway promotes tumor development by regulating the expression of target genes provides new ideas for future research on targeted drugs that inhibit tumor progression. METHODS PubMed, Embase, Web of Science, and the Cochrane Library were systematically searched. RESULTS The search strategy identified 1892 hits and 196 publications were finally included in this review. As the core molecule of the Hippo pathway, YAP/TAZ are usually highly expressed in tumors that undergo invasion and migration and are accompanied by abnormally strong nuclear metastasis. Through its interaction with nuclear transcription factors TEADs, it directly or indirectly regulates and the expressions of target genes related to tumor metastasis and invasion. These target genes can induce the formation of invasive pseudopodia in tumor cells, reduce intercellular adhesion, degrade extracellular matrix (ECM), and cause epithelial-mesenchymal transition (EMT), or indirectly promote through other signaling pathways, such as mitogen-activated protein kinases (MAPK), TGF/Smad, etc, which facilitate the invasion and metastasis of tumors. CONCLUSION This article mainly introduces the research progress of YAP/TAZ which are the core molecules of the Hippo pathway regulating related target genes to promote tumor invasion and metastasis. Focus on the target genes that affect tumor invasion and metastasis, providing the possibility for the selection of clinical drug treatment targets, to provide some help for a more in-depth study of tumor invasion and migration mechanism and the development of clinical drugs.
Collapse
Affiliation(s)
- Hong-Li Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qian-Yu Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Min-Jie Jin
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chao-Fan Lu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Yang Mu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei-Yi Xu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China. .,School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Institute of Drug Discovery and Development, Zhengzhou, 450001, China.
| | - Yan Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China. .,School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Institute of Drug Discovery and Development, Zhengzhou, 450001, China. .,Zhengzhou University, Henan Institute of Advanced Technology, Zhengzhou, 450001, China.
| |
Collapse
|
18
|
Huang S, Li Y, Hu J, Li L, Liu Z, Guo H, Jiang B, Chen J, Li J, Xiang X, Deng J, Xiong J. LncRNA PWAR6 regulates proliferation and migration by epigenetically silencing YAP1 in tumorigenesis of pancreatic ductal adenocarcinoma. J Cell Mol Med 2021; 25:4275-4286. [PMID: 33834618 PMCID: PMC8093982 DOI: 10.1111/jcmm.16480] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022] Open
Abstract
Long non‐coding RNAs (lncRNAs) are a novel class of regulators in multiple cancer biological processes. However, the functions of lncRNAs in pancreatic ductal adenocarcinoma (PDAC) remain largely unknown. In this study, we identified PWAR6 as a frequently down‐regulated lncRNA in PDAC samples as well as a panel of pancreatic cancer cell lines. Down‐regulated PWAR6 was associated with multiple clinical outcomes, including advanced tumour stage, distant metastasis, and overall survival of PDAC patients. In our cell‐based assays, ectopic expression of PWAR6 dramatically repressed PDAC cells proliferation, invasion and migration, accelerated apoptosis, and induced cell cycle arrest at G0/G1 phase. In contrast, depletion of PWAR6 mediated by siRNA exhibited opposite effects on PDAC cell behaviours. In vivo study further validated the anti‐tumour role of PWAR6 in PDAC. By taking advantage of available online sources, we also identified YAP1 as a potential PWAR6 target gene. Negative correlation between YAP1 and PWAR6 expressions were observed in both online database and our PDAC samples. Notably, rescue experiments further indicated that YAP1 is an important downstream effector involved in PWAR6‐mediated functions. Mechanistically, PWAR6 could bind to methyltransferase EZH2, a core component of Polycomb Repressive Complex 2 (PRC2) in regulating gene expression, and scaffold EZH2 to the promoter region of YAP1, resulting in epigenetic repression of YAP1. In conclusion, our data manifest the vital roles of PWAR6 in PDAC tumorigenesis and underscore the potential of PWAR6 as a promising target for PDAC diagnosis and therapy.
Collapse
Affiliation(s)
- Shanshan Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yaqi Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinhua Hu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Oncology, The Affiliated Xinyu Hospital, Nanchang University, Xinyu, China
| | - Li Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen Liu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui Guo
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bailing Jiang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Junhe Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaojun Xiang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Hosseini NF, Manoochehri H, Khoei SG, Sheykhhasan M. The Functional Role of Long Non-coding RNA UCA1 in Human Multiple Cancers: a Review Study. Curr Mol Med 2021; 21:96-110. [PMID: 32560605 DOI: 10.2174/1566524020666200619124543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 02/08/2023]
Abstract
In various cancers, high-grade tumor and poor survival rate in patients with upregulated lncRNAs UCA1 have been confirmed. Urothelial carcinoma associated 1 (UCA1) is an oncogenic non-coding RNA with a length of more than 200 nucleotides. The UCA1 regulate critical biological processes that are involved in cancer progression, including cancer cell growth, invasion, migration, metastasis, and angiogenesis. So It should not surprise that UCA1 overexpresses in variety of cancers type, including pancreatic cancer, ovarian cancer, gastric cancer, colorectal cancer, breast cancer, prostate cancer, endometrial cancer, cervical cancer, bladder cancer, adrenal cancer, hypopharyngeal cancer, oral cancer, gallbladder cancer, nasopharyngeal cancer, laryngeal cancer, osteosarcoma, esophageal squamous cell carcinoma, renal cell carcinoma, cholangiocarcinoma, leukemia, glioma, thyroid cancer, medulloblastoma, hepatocellular carcinoma and multiple myeloma. In this article, we review the biological function and regulatory mechanism of UCA1 in several cancers and also, we will discuss the potential of its as cancer biomarker and cancer treatment.
Collapse
Affiliation(s)
- Nashmin Fayazi Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Manoochehri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
20
|
Fu T, Ji K, Jin L, Zhang J, Wu X, Ji X, Fan B, Jia Z, Wang A, Liu J, Bu Z, Ji J. ASB16-AS1 up-regulated and phosphorylated TRIM37 to activate NF-κB pathway and promote proliferation, stemness, and cisplatin resistance of gastric cancer. Gastric Cancer 2021; 24:45-59. [PMID: 32572790 DOI: 10.1007/s10120-020-01096-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Long non-coding RNA (lncRNA) ASB16 antisense RNA 1 (ASB16-AS1) is recognized as an oncogene in several cancer types, but its relation to GC is unknown. Tripartite motif containing 37 (TRIM37) has been proven to accelerate the development of gastric cancer (GC), whereas the molecular mechanism assisted ASB16-AS1 and TRIM37 in regulating GC progression remains unclear. METHODS Differentially expressed lncRNAs in GC samples were analyzed based on Gene Expression Omnibus (GEO) data. CCK-8 and colony formation assays were applied to determine the proliferative ability of GC cells. Stem cell-like phenotype of GC cells was assessed by sphere formation assay and flow cytometry analysis. Luciferase reporter assay, RNA immunoprecipitation (RIP), pulldown, and co-immunoprecipitation (Co-IP) were performed to verify the interplay of RNA molecules. RESULTS ASB16-AS1 was upregulated in GC samples according to GEO data and qRT-PCR analysis. ASB16-AS1 strengthened the proliferative ability and stem cell-like characteristics in GC cells. More importantly, ASB16-AS1 encouraged GC cell growth in vivo. Mechanistically, ASB16-AS1 strengthened TRIM37 expression by sequestering miR-3918 and miR-4676-3p. ASB16-AS1 activated NF-kappa B (NF-κB) pathway by cooperating with ATM serine/threonine kinase (ATM) to induce TRIM37 phosphorylation. CONCLUSION In summary, ASB16-AS1 exerted oncogenic functions in GC through modulating TRIM37 expression at both mRNA and protein levels.
Collapse
Affiliation(s)
- Tao Fu
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Ke Ji
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Li Jin
- Department of Radiotherapy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Ji Zhang
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xiaojiang Wu
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xin Ji
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Biao Fan
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Ziyu Jia
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Anqiang Wang
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Jiaen Liu
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Zhaode Bu
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| | - Jiafu Ji
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
21
|
Hu L, Liu J, Meng Y, Zheng H, Ding C, Wang H, Charwudzi A, Li M, Li J, Zhai Z, Xiong S. Long non-coding RNA HOTAIR regulates myeloid differentiation through the upregulation of p21 via miR-17-5p in acute myeloid leukaemia. RNA Biol 2020; 18:1434-1444. [PMID: 33241756 DOI: 10.1080/15476286.2020.1854520] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA HOTAIR has been reported to play a key role in regulating various biological processes in various cancers. However, the roles and mechanisms of HOTAIR in acute myeloid leukaemia (AML) are still unclear and need to be investigated. In this study, we induced differentiation of four AML cell lines by all-trans retinoic acid (ATRA) and found HOTAIR was significantly upregulated in the process. Chromatin immunoprecipitation (ChIP) assays indicated that C/EBPβ upregulated HOTAIR during ATRA induced differentiation in HL-60 cells. By gain- and loss-of-function analysis, we then observed that HOTAIR expression was positively correlated with ATRA-induced differentiation and negatively regulated G1 phase arrest in HL-60 cells. In addition, we found that HOTAIR promoted ATRA-induced differentiation via the regulation of the cell cycle regulator p21 via miR-17-5p. Moreover, we detected the expression of HOTAIR in 84 de novo AML patients, HOTAIR was found significantly downregulated in the AML patients compared to the iron deficiency anaemia (IDA) control group, negatively correlated with the platelet level in M2 patients. In all, our data suggest that HOTAIR may be subtype-specific in AML-M2 patients, also HOTAIR regulates AML differentiation by C/EBPBβ/HOTAIR/miR-17-5p/p21 pathway. The findings of the present study provide a novel insight into the mechanism of lncRNA-mediated differentiation and indicate that HOTAIR may be a promising therapeutic target for leukaemia, especially for AML with M2 type.Abbreviation: AML: acute myeloid leukaemia; APL: acute promyelocytic leukaemia; ATRA: all-trans retinoic acid; CCK8: cell Counting Kit-8; CDKs: cyclin-dependent kinases ; CeRNA: competing endogenous RNAs; ChIP: chromatin immunoprecipitation; CHX: cycloheximide; FAB: French-American-British; FCM: flow cytometry; HOTAIR: HOX transcript antisense RNA; IDA: iron-deficiency anemia; lncRNA: long non-coding RNA; 3'UTR: 3'untranslated region; MT: Mutation type; WT: Wild type; qRT-PCR: Quantitative real-time PCR.
Collapse
Affiliation(s)
- Linhui Hu
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Jun Liu
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Ye Meng
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Huimin Zheng
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Chen Ding
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Huiping Wang
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Alice Charwudzi
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Manman Li
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Jingrong Li
- Department of Emergency, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Zhimin Zhai
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Shudao Xiong
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
22
|
Bai Y, Deng S. A six-long noncoding RNA model predicts prognosis in lung adenocarcinoma. Transl Cancer Res 2020; 9:7505-7518. [PMID: 35117351 PMCID: PMC8799207 DOI: 10.21037/tcr-20-2436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/21/2020] [Indexed: 02/05/2023]
Abstract
Background The incidence and mortality of lung cancer rank first among various malignant tumors. The lack of clear molecular classification and effective individualized treatment greatly limits the treatment benefits of patients. Long non-coding RNAs (lncRNAs) have been demonstrated widely involve in tumor progressing, and been proved easy to detect for occupying majority in transcriptome. However, less work focuses on studying the potency of lncRNAs as molecular typing and prognostic indicator in lung cancer. Methods Based on the 448 lung adenocarcinoma (LUAD) samples and the expression of 14,127 lncRNAs from the Cancer Genome Atlas (TCGA) database, we constructed a co-expression network using weighted gene co-expression network analysis. Then based on the feature module and the overall survival of patients, we constructed a risk score model through Cox proportional hazards regression and verified it with a validation cohort. Finally, according to the median of risk score, the function of this model was enriched. Results We identified a module containing 123 lncRNAs that is related with the prognosis of LUAD. Using univariate and multivariate Cox proportional hazards regression with lasso regression, six lncRNAs were identified to construct a risk score model. The calculation formula shown as follows: risk score = (−0.3057 × EXPVIM-AS1) + (0.9678 × EXPAC092811.1) + (1.0829 × EXPNFIA-AS1) + (−0.3505 × EXPAL035701.1) + (3.9378 × EXPAC079336.4) + (−0.2810 × EXPAL121790.2). Six-lncRNA model can be used as an independent prognostic indicator in LUAD (P<0.001) and the area under the 5-year receiver operating characteristic (ROC) curve is 0.715. Conclusions We developed a six-lncRNA model, which could be used for predicting prognosis and guiding medical treatment in LUAD patients.
Collapse
Affiliation(s)
- Yuquan Bai
- Department of Thoracic Surgery research laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Senyi Deng
- Department of Thoracic Surgery research laboratory, West China Hospital, Sichuan University, Chengdu, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Chen W, Li Q, Zhang G, Wang H, Zhu Z, Chen L. LncRNA HOXA-AS3 promotes the malignancy of glioblastoma through regulating miR-455-5p/USP3 axis. J Cell Mol Med 2020; 24:11755-11767. [PMID: 32918360 PMCID: PMC7579690 DOI: 10.1111/jcmm.15788] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Our objective was to determine the molecular mechanisms by which lncRNA HOXA‐AS3 regulates the biological behaviour of glioblastoma multiforme (GBM). We used an lncRNA microarray assay to identify GBM‐related lncRNA expression profiles. Qrt‐PCR was used to survey the levels of expression of long non‐coding RNA (lncRNA) HOXA‐AS3 and the target gene. Dual‐luciferase reporter assays were used to investigate the interaction of lncRNA HOXA‐AS3, the target gene and miRNA. Western blot analysis was used to examine the expression of USP3 and epithelial‐mesenchymal transition (EMT) genes. The MTT assay, transwell assay and wound healing assay were used to analyse the effects of lncRNA HOXA‐AS3 on GBM cell viability, mobility and invasiveness, respectively. Our results showed that lncRNA HOXA‐AS3 was significantly up‐regulated in GBM cells and could promote GBM cell proliferation, invasion and migration in vitro and in vivo. HOXA‐AS was found to be associated with poor survival prognosis in glioma patients. The dual‐luciferase reporter assay also revealed that lncRNA HOXA‐AS3 acts as a mir‐455‐5p sponge by up‐regulating USP3 expression to promote GBM progression. Western blot analysis showed that lncRNA HOXA‐AS3 could up‐regulate EMT‐related gene expression in GBM. Experiments showed mir‐455‐5p could rescue the effect of lncRNA HOXA‐AS3 on cell proliferation and invasion. The newly identified HOXA‐AS3/mir‐455‐5p/USP3 pathway offers important clues to understanding the key mechanisms underlying the action of lncRNA HOXA‐AS3 in glioblastoma.
Collapse
Affiliation(s)
- Wanghao Chen
- Medical School of Southeast University, Nanjing, China
| | - Qiaoyu Li
- Department of Neurosurgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Guilong Zhang
- Medical School of Southeast University, Nanjing, China
| | - Hong Wang
- Medical School of Southeast University, Nanjing, China
| | - Zhihan Zhu
- Medical School of Southeast University, Nanjing, China
| | - Lukui Chen
- Medical School of Southeast University, Nanjing, China.,Department of Neurosurgery, Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Farooqi AA, Fayyaz S, Poltronieri P, Calin G, Mallardo M. Epigenetic deregulation in cancer: Enzyme players and non-coding RNAs. Semin Cancer Biol 2020; 83:197-207. [PMID: 32738290 DOI: 10.1016/j.semcancer.2020.07.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023]
Abstract
Data obtained from cutting-edge research have shown that deregulated epigenetic marks are critical hallmarks of cancer. Rapidly emerging scientific evidence has helped in developing a proper understanding of the mechanisms leading to control of cellular functions, from changes in chromatin accessibility, transcription and translation, and in post-translational modifications. Firstly, mechanisms of DNA methylation and demethylation are introduced, as well as modifications of DNA and RNA, with particular focus on N6-methyladenosine (m6A), discussing the effects of these modifications in normal cells and in malignancies. Then, chromatin modifying proteins and remodelling complexes are discussed. Many enzymes and accessory proteins in these complexes have been found mutated or have undergone differential splicing, leading to defective protein complexes. Epigenetic mechanisms acting on nucleosomes by polycomb repressive complexes and on chromatin by SWI/SNF complexes on nucleosome assembly/disassembly, as well as main mutated genes linked to cancers, are reviewed. Among enzymes acting on histones and other proteins erasing the reversible modifications are histone deacetylases (HDACs). Sirtuins are of interest since most of these enzymes not only deacylate histones and other proteins, but also post-translationally modify proteins adding a Mono-ADP-ribose (MAR) moiety. MAR can be read by MACRO-domain containing proteins such as histone MacroH2A1, with specific function in chromatin assembly. Finally, recent advances are presented on non-coding RNAs with a scaffold function, prospecting their role in assembly of chromatin modifying complexes, recruiting enzyme players to chromatin regions. Lastly, the imbalance in metabolites production due to mitochondrial dysfunction is presented, with the potential of these metabolites to inhibit enzymes, either writers, readers or erasers of epitranscriptome marks. In the perspectives, studies are overwied on drugs under development aiming to limit excessive enzyme activities and to reactivate chromatin modifying complexes, for therapeutic application. This knowledge may lead to novel drugs and personalised medicine for cancer patients.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan.
| | | | - Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, via Monteroni Km 7, 73100 Lecce, Italy.
| | - George Calin
- Department of Experimental Therapeutics, and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples, "Federico II" via Pansini 5, Napoli, Italy.
| |
Collapse
|
25
|
Tan H, Zhang S, Zhang J, Zhu L, Chen Y, Yang H, Chen Y, An Y, Liu B. Long non-coding RNAs in gastric cancer: New emerging biological functions and therapeutic implications. Am J Cancer Res 2020; 10:8880-8902. [PMID: 32754285 PMCID: PMC7392009 DOI: 10.7150/thno.47548] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is currently the fourth most common malignancy and the third leading cause of cancer-related deaths worldwide. Long non-coding RNAs (lncRNAs), transcriptional products with more than 200 nucleotides, are not as well-characterized as protein-coding RNAs. Accumulating evidence has recently revealed that maladjustments of diverse lncRNAs may play key roles in multiple genetic and epigenetic phenomena in GC, affecting all aspects of cellular homeostasis, such as proliferation, migration, and stemness. However, the full extent of their functionality remains to be clarified. Considering the lack of viable biomarkers and therapeutic targets, future research should be focused on unravelling the intricate relationships between lncRNAs and GC that can be translated from bench to clinic. Here, we summarized the state-of-the-art advances in lncRNAs and their biological functions in GC, and we further discuss their potential diagnostic and therapeutic roles. We aim to shed light on the interrelationships between lncRNAs and GC with respect to their potential therapeutic applications. With better understanding of these relationships, the biological functions of lncRNAs in GC development will be exploitable, and promising new strategies developed for the prevention and treatment of GC.
Collapse
|
26
|
Yao X, Wu L, Gu Z, Li J. LINC01535 Promotes the Development of Osteosarcoma Through Modulating miR-214-3p/KCNC4 Axis. Cancer Manag Res 2020; 12:5575-5585. [PMID: 32753970 PMCID: PMC7354912 DOI: 10.2147/cmar.s232757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/09/2020] [Indexed: 12/26/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common primary bone tumor in group of children and adolescents. Increasing studies showed that long non-coding RNAs (lncRNAs) exerted important functions in the development of tumors, including OS. LINC01535 is an lncRNA which has been studied in cervical cancer but not in OS. Aim of the Study This study was aimed to explore the biological function and mechanism of LINC01535 in OS. Methods LINC01535 expression was detected by qRT-PCR. Colony formation assay, EdU assay and CCK-8 assay were applied to check cell proliferation ability in OS. Flow cytometry analysis was conducted to measure cell apoptosis capacity. Wound healing assay and transwell assay were performed to assess cell migration and invasion. Luciferase reporter assay and RNA pull-down assay were carried out to verify the molecular mechanism. Results The high expression of LINC01535 was presented in OS tissues and cell lines compared with adjacent normal tissues and human osteoblasts. Moreover, OS patients with high LINC01535 expression exhibited poor prognosis. Loss-of-function assay revealed that silenced LINC01535 significantly attenuated cell proliferation, migration and invasion, and enhanced cell apoptosis in OS. Through mechanistic exploration, we found that LINC01535 interacted with miR-214-3p, and KCNC4 was validated to be a target gene of miR-214-3p. The levels of KCNC4 mRNA and protein were positively modulated by LINC01535 and reversely mediated by miR-214-3p. Based on rescue experiments, KCNC4 overexpression reserved the suppressive function of silenced LINC01535 on OS cell growth, migration and invasion. Conclusion LINC01535, miR-214-3p and KCNC4 constituted an effective axis that exerted a pregnant regulation in OS development, which is a quite meaningful discovery for exploring potential therapeutic methods for OS patients.
Collapse
Affiliation(s)
- Xiaoke Yao
- Department of Orthopedics, Chengdu First People's Hospital, Chengdu 610041, Sichuan, People's Republic of China
| | - Lingna Wu
- Intensive Care Unit, Chengdu First People's Hospital, Chengdu, Sichuan, 610041, People's Republic of China
| | - Zuchao Gu
- Department of Orthopedics, Chengdu First People's Hospital, Chengdu 610041, Sichuan, People's Republic of China
| | - Jianhua Li
- Department of Orthopedics, Chengdu First People's Hospital, Chengdu 610041, Sichuan, People's Republic of China
| |
Collapse
|
27
|
Dai Q, Zhang T, Pan J, Li C. LncRNA UCA1 promotes cisplatin resistance in gastric cancer via recruiting EZH2 and activating PI3K/AKT pathway. J Cancer 2020; 11:3882-3892. [PMID: 32328192 PMCID: PMC7171500 DOI: 10.7150/jca.43446] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Drug resistance of cancer cells is one of the major causes of chemotherapy failure. Recently research demonstrated that long non-coding RNA Urothelial cancer associated 1 (UCA1) could promote tumor cisplatin resistance. In this study, we aim to investigate the role of UCA1 in the cisplatin treatment of gastric cancer and its underlying mechanism. Methods: Cell counting kit-8 (CCK-8) assay and apoptosis assay were used to detect the effects of different doses of cisplatin on the proliferation and apoptosis of gastric cancer. We examined the expression relationship between the Enhancer of Zeste Homologue 2 (EZH2) and UCA1 by quantitative Real-time polymerase chain reaction (qRT-PCR) and western blot analysis. Western blot analysis was also performed to detect the expression levels of apoptosis-related proteins, EZH2 and key genes in PI3K/AKT signaling pathway, RIP and RNA pull down assays were performed to explore the interaction between UCA1 and EZH2. Results: We demonstrated that higher the UCA1 expression levels in GC tissues correlated with the poorer the prognosis of patients according to the TCGA database, the GEO database. Moreover, overexpression of UCA1 promotes GC cell proliferation and inhibits cisplatin-induced apoptosis. Knockdown of UCA1 showed the opposite results. Besides, UCA1 exerted its function through interacting with EZH2 and regulates EZH2 expression, knockdown of EZH2 decreased cisplatin resistance of GC cells. Hence, UCA1 promotes cisplatin resistance of GC via recruiting EZH2 and activating PI3K/AKT pathway. Conclusion: Our research revealed the lncRNA UCA1 promoted the cisplatin resistance of GC by recruiting EZH2 and activating PI3K/AKT pathway to modulate cell apoptosis, indicating treatments targeting UCA1 or EZH2 might provide meaningful therapeutic strategies for cisplatin-resistance GC patients.
Collapse
Affiliation(s)
- Qingqiang Dai
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Tianqi Zhang
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jiaomeng Pan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Chen Li
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| |
Collapse
|