1
|
Cao H, Wang Z, Guo Q, Qin S, Li D. MIR194-2HG, a miRNA host gene activated by HNF4A, inhibits gastric cancer by regulating microRNA biogenesis. Biol Direct 2024; 19:95. [PMID: 39425187 PMCID: PMC11487860 DOI: 10.1186/s13062-024-00549-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND MicroRNA host gene (MIRHG) lncRNA is a particular lncRNA subclass that can perform both typical and atypical lncRNA functions. The biological function of MIRHG lncRNA MIR194-2HG in cancer is poorly understood. METHODS Loss-of-function studies were performed in vivo and in vitro to reveal the biological function of MIR194-2HG in GC. MicroRNA PCR array, northern blotting, RNA sequencing, chromatin immunoprecipitation, and rescue assays were conducted to uncover the molecular mechanism of MIR194-2HG. RESULTS In this study, we reported an atypical lncRNA function of MIR194-2HG in GC. MIR194-2HG downregulation was clinically associated with malignant progression and poor prognosis in GC. Functional assays confirmed that MIR194-2HG knockdown significantly promoted GC proliferation and metastasis in vitro and in vivo. Mechanismically, MIR194-2HG was required for the biogenesis of miR-194 and miR-192, which were reported to be tumor-suppressor genes in GC. Moreover, hepatocyte nuclear factor HNF4A directly activated the transcription of MIR194-2HG and its derived miR-194 and miR-192. Meanwhile, BTF3L4 was proved to be a common target gene of miR-192 and miR-194. Rescue assay further confirmed that MIR194-2HG knockdown promotes GC progression through maintaining BTF3L4 overexpression in a miR-194/192-dependent manner. CONCLUSION The dysregulated MIR194-2HG/BTF3L4 axis is responsible for GC progression. Targeting HNF4A to inhibit miR-192/194 expression may be a promising strategy for overcoming GC.
Collapse
Affiliation(s)
- Hong Cao
- Department of Orthopaedic Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Zidi Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Qiwei Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Shanshan Qin
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China.
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| | - Dandan Li
- Department of Orthopaedic Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China.
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| |
Collapse
|
2
|
Song Q, Wu J, Wan H, Fan D. Prognostic signature and immune landscape of 5-methylcytosine-related long non-coding RNAs in gastric cancer. Heliyon 2024; 10:e37290. [PMID: 39323814 PMCID: PMC11422048 DOI: 10.1016/j.heliyon.2024.e37290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been demonstrated to be useful in assessing the prognosis of cancer patients. However, few studies have focused on 5-methylcytosine-related lncRNAs (m5C-lncRNAs) in gastric cancer (GC). In this study, we aimed to establish a m5C-lncRNAs prognostic signature (m5C-LPS) and explore its potential impact on guiding clinical practice for GC. Methods RNA-sequence and clinicopathological data were retrieved from The Cancer Genome Atlas (TCGA) database, while the coexpression of long non-coding RNAs (lncRNAs) was determined using Pearson's correlation analysis. A m5C-LPS model was constructed using univariate and Lasso Cox regression, and its prognostic value and accuracy were subsequently validated. Subsequently, the expression of 11 m5C-lncRNAs was verified via quantitative real-time PCR (qRT-PCR) in gastric cancer (GC) cell lines. The potential biological mechanism of this signature was elucidated using Gene Set Enrichment Analysis (GSEA). Based on the GSEA findings, CIBERSORT and ESTIMATE algorithms were utilized to conduct a comprehensive investigation of the tumor immune microenvironment (TIME) in GC. Additionally, pRRophetic and TIDE algorithms were employed to predict drug sensitivity and the efficacy of immunotherapy for GC patients. Results 280 lncRNAs were identified as m5C-lncRNAs, including RHPN1-AS1, AC093752.3, TSC22D1-AS1, AL391152.1, MAGI2-AS3, AC048382.2, AL033527.3, AC007405.2, AC036103.1, CCDC183-AS1, and ADORA2A-AS1. Their prognostic value was validated, and the expression of these 11 lncRNAs was confirmed in four gastric cancer cell lines using quantitative reverse transcription PCR (qRT-PCR). A nomogram incorporating a risk score was developed to provide more precise clinical decision-making. Gene Set Enrichment Analysis (GSEA) showed that many classical signaling pathways related to tumor progression were enriched in this signature. Analyses related to immunity and drug sensitivity demonstrated distinct differences in features between high-risk and low-risk subgroups. Conclusion The m5C-LPS can predict the survival of gastric cancer (GC) patients, provide novel therapeutic targets, and thus offer more thoughtful perspectives for future clinical decisions regarding GC.
Collapse
Affiliation(s)
- Qingyu Song
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingyu Wu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Wan
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Desen Fan
- The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| |
Collapse
|
3
|
Ma T, Wang M, Wang S, Hu H, Zhang X, Wang H, Wang G, Jin Y. BMSC derived EVs inhibit colorectal Cancer progression by transporting MAGI2-AS3 or something similar. Cell Signal 2024; 121:111235. [PMID: 38806109 DOI: 10.1016/j.cellsig.2024.111235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
In this study, we investigated the molecular mechanisms underlying the impact of extracellular vesicles (EVs) derived from bone marrow stromal cells (BMSCs) on colorectal cancer (CRC) development. The focus was on the role of MAGI2-AS3, delivered by BMSC-EVs, in regulating USP6NL DNA methylation-mediated MYC protein translation modification to promote CDK2 downregulation. Utilizing bioinformatics analysis, we identified significant enrichment of MAGI2-AS3 related to copper-induced cell death in CRC. In vitro experiments demonstrated the downregulation of MAGI2-AS3 in CRC cells, and BMSC-EVs were found to deliver MAGI2-AS3 to inhibit CRC cell proliferation, migration, and invasion. Further exploration revealed that MAGI2-AS3 suppressed MYC protein translation modification by regulating USP6NL DNA methylation, leading to CDK2 downregulation and prevention of colorectal cancer. Overexpression of MYC reversed the functional effects of BMSC-EVs-MAGI2-AS3. In vivo experiments validated the inhibitory impact of BMSC-EVs-MAGI2-AS3 on CRC tumorigenicity by promoting CDK2 downregulation through USP6NL DNA methylation-mediated MYC protein translation modification. Overall, BMSC-EVs-MAGI2-AS3 may serve as a potential intervention to prevent CRC occurrence by modulating key molecular pathways.
Collapse
Affiliation(s)
- Tianyi Ma
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Meng Wang
- Department of Colorectal Surgery, Zhejiang Cancer Hospital (Affiliated Cancer Hospital of the Chinese Academy of Sciences), Hangzhou 310000, China
| | - Song Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hanqing Hu
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Xin Zhang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Hufei Wang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Guiyu Wang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| | - Yinghu Jin
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| |
Collapse
|
4
|
Li Z, Jiang T, Yuan X, Li B, Wu C, Li Y, Huang Y, Xie X, Pan W, Ping Y. Controlled bioorthogonal activation of Bromodomain-containing protein 4 degrader by co-delivery of PROTAC and Pd-catalyst for tumor-specific therapy. J Control Release 2024; 374:441-453. [PMID: 39179113 DOI: 10.1016/j.jconrel.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
The precise and safe treatment of bioorthogonal prodrug system is hindered by separate administration of prodrug and its activator, which often results in poor therapeutic effects and severe side effects. To address above issues, we herein construct a single bioorthogonal-activated co-delivery system for simultaneous PROTAC prodrug (proPROTAC) delivery and controlled, site-specific activation for tumor-specific treatment. In this co-delivery system (termed AuPLs), prodrug (proPROTAC) and water-soluble Pd-catalyst are first encapsulated by gold nanocubes (AuNCs), which are further coated with a layer of phase-change material (lauric acid/stearic acid, LA/SA). Below 39 °C, the solid state of LA/SA prevents the activation of Pd-mediated bioorthogonal reaction due to the solidification of Pd-catalyst and proPROTAC. Nevertheless, once over 42 °C, the phase change of LA/SA into liquid state, enabled by the photothermal effect of AuNCs, triggers the simultaneous release of proPROTAC and Pd-catalyst and initiates the in situ bioorthogonal reaction for proPROTAC activation. In the tumor-bearing mouse models, the systemic administration of AuPLs results in the accumulation in tumor region, where the photothermal effect activates and controls the tumor-specific bioorthogonal reaction to degrade BRD4 protein, leading to anti-tumor effects with minimized side effects. Overall, the co-delivery proPROTAC and Pd-catalyst and controlled activation by photothermal effects provide a precise way for biorthogonal-based anticancer prodrugs.
Collapse
Affiliation(s)
- Zhiyao Li
- School of Basic Medicine/State Key Laboratory of Functions and Applications of Medicinal Plants/Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, PR China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Taibai Jiang
- Guiyang Healthcare Vocational University, Guiyang 550081, PR China
| | - Xu Yuan
- School of Basic Medicine/State Key Laboratory of Functions and Applications of Medicinal Plants/Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, PR China
| | - Bowen Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Chongzhi Wu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Yecheng Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Yong Huang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Xin Xie
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Weidong Pan
- School of Basic Medicine/State Key Laboratory of Functions and Applications of Medicinal Plants/Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, PR China; School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
5
|
Elimam H, Abdel Mageed SS, Hatawsh A, Moussa R, Radwan AF, Elfar N, Alhamshry NAA, Abd-Elmawla MA, Mohammed OA, Zaki MB, Doghish AS. Unraveling the influence of LncRNA in gastric cancer pathogenesis: a comprehensive review focus on signaling pathways interplay. Med Oncol 2024; 41:218. [PMID: 39103705 DOI: 10.1007/s12032-024-02455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
Gastric cancers (GCs) are among the most common and fatal malignancies in the world. Despite our increasing understanding of the molecular mechanisms underlying GC, further biomarkers are still needed for more in-depth examination, focused prognosis, and treatment. GC is one among the long non-coding RNAs, or lncRNAs, that have emerged as key regulators of the pathophysiology of cancer. This comprehensive review focuses on the diverse functions of long noncoding RNAs (lncRNAs) in the development of GC and their interactions with important intracellular signaling pathways. LncRNAs affect GC-related carcinogenic signaling cascades including pathways for EGFR, PI3K/AKT/mTOR, p53, Wnt/β-catenin, JAK/STAT, Hedgehog, NF-κB, and hypoxia-inducible factor. Dysregulated long non-coding RNA (lncRNA) expression has been associated with multiple characteristics of cancer, such as extended growth, apoptosis resistance, enhanced invasion and metastasis, angiogenesis, and therapy resistance. For instance, lncRNAs such as HOTAIR, MALAT1, and H19 promote the development of GC via altering these pathways. Beyond their main roles, GC lncRNAs exhibit potential as diagnostic and prognostic biomarkers. The overview discusses CRISPR/Cas9 genome-modifying methods, antisense oligonucleotides, small molecules, and RNA interference as potential therapeutic approaches to regulate the expression of long noncoding RNAs (lncRNAs). An in-depth discussion of the intricate functions that lncRNAs play in the development of the majority of stomach malignancies is provided in this review. It provides the groundwork for future translational research in lncRNA-based whole processes toward GC by highlighting their carcinogenic effects, regulatory roles in significant signaling cascades, and practical scientific uses as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, 12588, Giza, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
| | - Nourhan Elfar
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, 11578, Cairo, Egypt
- Egyptian Drug Authority (EDA), Ministry of Health and Population, Cairo, 11567, Egypt
| | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
6
|
Sun Y, Gao H, Guo P, Sun N, Peng C, Cheng Z, Gu J, Liu J, Han F. Identification of NR3C2 as a functional diagnostic and prognostic biomarker and potential therapeutic target in non-small cell lung cancer. CANCER INNOVATION 2024; 3:e122. [PMID: 38948253 PMCID: PMC11212315 DOI: 10.1002/cai2.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/04/2023] [Accepted: 02/20/2024] [Indexed: 07/02/2024]
Abstract
Background Non-small cell lung cancer (NSCLC), including the lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) subtypes, is a malignant tumor type with a poor 5-year survival rate. The identification of new powerful diagnostic biomarkers, prognostic biomarkers, and potential therapeutic targets in NSCLC is urgently required. Methods The UCSC Xena, UALCAN, and GEO databases were used to screen and analyze differentially expressed genes, regulatory modes, and genetic/epigenetic alterations in NSCLC. The UCSC Xena database, GEO database, tissue microarray, and immunohistochemistry staining analyses were used to evaluate the diagnostic and prognostic values. Gain-of-function assays were performed to examine the roles. The ESTIMATE, TIMER, Linked Omics, STRING, and DAVID algorithms were used to analyze potential molecular mechanisms. Results NR3C2 was identified as a potentially important molecule in NSCLC. NR3C2 is expressed at low levels in NSCLC, LUAD, and LUSC tissues, which is significantly related to the clinical indexes of these patients. Receiver operating characteristic curve analysis suggests that the altered NR3C2 expression patterns have diagnostic value in NSCLC, LUAD, and especially LUSC patients. Decreased NR3C2 expression levels can help predict poor prognosis in NSCLC and LUAD patients but not in LUSC patients. These results have been confirmed both with database analysis and real-world clinical samples on a tissue microarray. Copy number variation contributes to low NR3C2 expression levels in NSCLC and LUAD, while promoter DNA methylation is involved in its downregulation in LUSC. Two NR3C2 promoter methylation sites have high sensitivity and specificity for LUSC diagnosis with clinical application potential. NR3C2 may be a key participant in NSCLC development and progression and is closely associated with the tumor microenvironment and immune cell infiltration. NR3C2 co-expressed genes are involved in many cancer-related signaling pathways, further supporting a potentially significant role of NR3C2 in NSCLC. Conclusions NR3C2 is a novel potential diagnostic and prognostic biomarker and therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Yuan‐yuan Sun
- Department of Clinical PharmacyJilin University School of Pharmaceutical SciencesChangchunChina
- Institute of Toxicology, College of Preventive MedicineArmy Medical UniversityChongqingChina
| | - Hai‐cheng Gao
- Department of Clinical PharmacyJilin University School of Pharmaceutical SciencesChangchunChina
| | - Peng Guo
- Department of Hepatobiliary SurgeryThird Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Na Sun
- Breast and Thyroid Surgery, Southwest HospitalArmy Medical UniversityChongqingChina
| | - Chan Peng
- Institute of Toxicology, College of Preventive MedicineArmy Medical UniversityChongqingChina
- College of Pharmaceutical SciencesSouthwest UniversityChongqingChina
| | - Zhi‐hua Cheng
- Vascular Surgery Department, General Surgery CenterFirst Hospital of Jilin UniversityChangchunChina
| | - Jing Gu
- Institute of Toxicology, College of Preventive MedicineArmy Medical UniversityChongqingChina
| | - Jin‐yi Liu
- Institute of Toxicology, College of Preventive MedicineArmy Medical UniversityChongqingChina
| | - Fei Han
- Department of Toxicology, School of Public HealthChongqing Medical UniversityChongqingChina
- Laboratory of Reproductive BiologyChongqing Medical UniversityChongqingChina
| |
Collapse
|
7
|
Wang Y, Li D, Xun J, Wu Y, Wang HL. Construction of prognostic markers for gastric cancer and comprehensive analysis of pyroptosis-related long non-coding RNAs. World J Gastrointest Surg 2024; 16:2281-2295. [PMID: 39087128 PMCID: PMC11287702 DOI: 10.4240/wjgs.v16.i7.2281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND China's most frequent malignancy is gastric cancer (GC), which has a very poor survival rate, and the survival rate for patients with advanced GC is dismal. Pyroptosis has been connected to the genesis and development of cancer. The function of pyroptosis-related long non-coding RNAs (PRLs) in GC, on the other hand, remains uncertain. AIM To explore the construction and comprehensive analysis of the prognostic characteristics of long non-coding RNA (lncRNA) related to pyroptosis in GC patients. METHODS The TCGA database provided us with 352 stomach adenocarcinoma samples, and we obtained 28 pyroptotic genes from the Reactome database. We examined the correlation between lncRNAs and pyroptosis using the Pearson correlation coefficient. Prognosis-related PRLs were identified through univariate Cox analysis. A predictive signature was constructed using stepwise Cox regression analysis, and its reliability and independence were assessed. To facilitate clinical application, a nomogram was created based on this signature. we analyzed differences in immune cell infiltration, immune function, and checkpoints between the high-risk group (HRG) and low-risk group (LRG). RESULTS Five hundred and twenty-three PRLs were screened from all lncRNAs (absolute correlation coefficient > 0.4, P < 0.05). Nine PRLs were included in the risk prediction signature that was created through stepwise Cox regression analysis. We determined the risk score for GC patients and employed the median value as the dividing line between HRG and LRG. The ability of the risk signature to predict the overall survival (OS) of GC is demonstrated by the Kaplan-Meier analysis, risk curve, receiver operating characteristic curve, and decision curve analysis curve. The risk signature was shown to be an independent prognostic factor for OS in both univariate and multivariate Cox regression analyses. HRG showed a more efficient local immune response or modulation compared to LRG, as indicated by the predicted signal pathway analysis and examination of immune cell infiltration, function, and checkpoints (P < 0.05). CONCLUSION In general, we have created a brand-new prognostic signature using PRLs, which may provide ideas for immunotherapy in patients with GC.
Collapse
Affiliation(s)
- Yu Wang
- Department of Gastrointestinal Surgery, Hospital of Integrated Chinese and Western Medicine, Tianjin University, Tianjin 300100, China
| | - Di Li
- Department of Gastrointestinal Surgery, Hospital of Integrated Chinese and Western Medicine, Tianjin University, Tianjin 300100, China
| | - Jing Xun
- Department of Gastrointestinal Surgery, Hospital of Integrated Chinese and Western Medicine, Tianjin University, Tianjin 300100, China
| | - Yu Wu
- Department of Gastrointestinal Surgery, Hospital of Integrated Chinese and Western Medicine, Tianjin University, Tianjin 300100, China
| | - Hong-Lei Wang
- Department of Gastrointestinal Surgery, Hospital of Integrated Chinese and Western Medicine, Tianjin University, Tianjin 300100, China
| |
Collapse
|
8
|
Qin S, Liu Y, Zhang X, Huang P, Xia L, Leng W, Li D. lncRNA FGD5-AS1 is required for gastric cancer proliferation by inhibiting cell senescence and ROS production via stabilizing YBX1. J Exp Clin Cancer Res 2024; 43:188. [PMID: 38965605 PMCID: PMC11225384 DOI: 10.1186/s13046-024-03103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/16/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND The vast majority of lncRNAs have low expression abundance, which greatly limits their functional range and impact. As a high expression abundance lncRNA, FGD5-AS1's non-ceRNA biological function in cancer is unclear. METHODS RNA-seq studies and chromatin immunoprecipitation (Chip) assays were performed to identify ZEB1-regulated lncRNAs. RNA sequencing, RNA pulldown, RNA Immunoprecipitation assays, and rescue assays were conducted to explore the molecular mechanisms of FGD5-AS1 in GC. RESULTS As one of the most abundant lncRNAs in cells, FGD5-AS1 has been shown to be transcriptionally activated by ZEB1, thus closely related to epithelial-mesenchymal transition (EMT) signaling. Clinical analysis showed that FGD5-AS1 overexpression was clinically associated with lymph node metastasis, and predicted poor survival in GC. Loss-of-function studies confirmed that FGD5-AS1 knockdown inhibited GC proliferation and induced cisplatin chemosensibility, cell senescence, and DNA damage in GC cells. Mechanismically, FGD5-AS1 is a YBX1-binding lncRNA due to its mRNA contains three adjacent structural motifs (UAAUCCCA, ACCAGCCU, and CAGUGAGC) that can be recognized and bound by YBX1. And this RNA-protein interaction prolonged the half-life of the YBX1 protein in GC. Additionally, a rescue assay showed that FGD5-AS1 promotes GC by repressing cell senescence and ROS production via YBX1. CONCLUSION FGD5-AS1 is a cellular high-abundant lncRNA that is transcriptionally regulated by ZEB1. FGD5-AS1 overexpression promoted GC progression by inhibiting cell senescence and ROS production through binding and stabilizing the YBX1 protein.
Collapse
Affiliation(s)
- Shanshan Qin
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China.
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| | - Yue Liu
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Xiangang Zhang
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Pan Huang
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| | - Dandan Li
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China.
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| |
Collapse
|
9
|
Li D, Xia L, Zhang X, Liu Y, Wang Z, Guo Q, Huang P, Leng W, Qin S. A new high-throughput screening methodology for the discovery of cancer-testis antigen using multi-omics data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 250:108193. [PMID: 38678957 DOI: 10.1016/j.cmpb.2024.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/09/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Cancer/testis antigens (CTAs), also known as tumor-specific antigens (TSAs) are specifically expressed in cancer cells and exhibit high immunogenicity, making them promising targets for immunotherapy and cancer vaccines. METHODS A new integrated high-throughput screening methodology for CTAs was proposed in this study through combining DNA methylation and RNA sequencing data. Briefly, the genes with increased transcript level and decreased DNA methylation were identified by multi-omics analysis. RNA sequencing studies in cell lines exposed to DNA methyltransferase (DNMT) inhibitors were performed to validate the inherent causal relationship between DNA hypomethylation and gene expression upregulation. RESULTS We proposed a new integrated high-throughput screening methodology for identification of CTAs using multi-omics analysis. In addition, we tested the feasibility of this method using gastric cancer (GC) as an example. In GC, we identified over 2000 primary candidate CTAs and ultimately identified 20 CTAs with significant tissue-specificity, including a testis-specific serine protease TESSP1/PRSS41. Integrated analysis confirmed that PRSS41 expression was reactivated in gastrointestinal cancers by promoter DNA hypomethylation at the CpG site (cg08104780). Additionally, DNA hypomethylation of PRSS41 predicted a poor prognosis in GC. CONCLUSION We propose a new high-throughput screening method for the identification of CTAs in cancer and validate its effectiveness. Our work emphasizes that serine protease PRSS41 is a novel TSA that is reactivated in GC due to promoter DNA hypomethylation.
Collapse
Affiliation(s)
- Dandan Li
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China; Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, PR China; Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Xiangang Zhang
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China; Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Yue Liu
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China; Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Zidi Wang
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China; Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Qiwei Guo
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China; Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Pan Huang
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China; Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Shanshan Qin
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China; Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, PR China; Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| |
Collapse
|
10
|
Qin S, Guo Q, Liu Y, Zhang X, Huang P, Yu H, Xia L, Leng W, Li D. A novel TGFbeta/TGILR axis mediates crosstalk between cancer-associated fibroblasts and tumor cells to drive gastric cancer progression. Cell Death Dis 2024; 15:368. [PMID: 38806480 PMCID: PMC11133402 DOI: 10.1038/s41419-024-06744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Transforming growth factor beta (TGFβ) signaling plays a critical role in tumorigenesis and metastasis. However, little is known about the biological function of TGFbeta-induced lncRNA in cancer. In this study, we discovered a novel TGFbeta-induced lncRNA, termed TGILR, whose function in cancer remains unknown to date. TGILR expression was directly activated by the canonical TGFbeta/SMAD3 signaling axis, and this activation is highly conserved in cancer. Clinical analysis showed that TGILR overexpression showed a significant correlation with lymph node metastasis and poor survival and was an independent prognostic factor in gastric cancer (GC). Depletion of TGILR caused an obvious inhibitory effect on GC cell proliferation, invasion, and epithelial-mesenchymal transition (EMT) in vitro and in vivo. More importantly, we demonstrated that TGFbeta signaling in GC was overactivated due to cancer-associated fibroblast (CAF) infiltration. Mechanistically, increased level of CAF-secreted TGFbeta activates TGFbeta signaling, leading to TGILR overexpression in GC cells. Meanwhile, TGILR overexpression inhibited the microRNA biogenesis of miR-1306 and miR-33a by interacting with TARBP2 and reducing its protein stability, thereby promoting GC progression via TCF4-mediated EMT signaling. In conclusion, CAF infiltration drives GC metastasis and EMT signaling through activating TGFbeta/TGILR axis. Targeted blocking of CAF-derived TGFbeta should be a promising anticancer strategy in GC.
Collapse
Affiliation(s)
- Shanshan Qin
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China.
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| | - Qiwei Guo
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Yue Liu
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Xiangang Zhang
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Pan Huang
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Hedong Yu
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Dandan Li
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China.
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| |
Collapse
|
11
|
Cao J, Yang Y, Duan B, Zhang H, Xu Q, Han J, Lu B. LncRNA PCED1B-AS1 mediates miR-3681-3p/MAP2K7 axis to promote metastasis, invasion and EMT in gastric cancer. Biol Direct 2024; 19:34. [PMID: 38698487 PMCID: PMC11064384 DOI: 10.1186/s13062-024-00468-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/19/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND LncRNA PCED1B-AS1 is abnormally expressed in multiple cancers and has been confirmed as an oncogene. Our study aimed to investigate the regulatory mechanism of lncRNA PCED1B-AS1 in gastric cancer. METHODS TCGA database was used to analyze the abnormal expression of lncRNA PCED1B-AS1 in gastric cancer. By database prediction and mass spectrometric analysis, miR-3681-3p and MAP2K7 are potential downstream target molecules of lncRNA PCED1B-AS1 and verified by dual-luciferase report assay. RT-qPCR analysis and western blot were performed to detect the expressions of PCED1B-AS1 and MAP2K7 in gastric cancer cell lines and tissues. CCK-8 kit was applied to measure the cell viability. Wound healing and Transwell experiment were used to detect the migration and invasion. Western blot and immunohistochemical staining were performed to detect the expressions of EMT-related proteins in tissues. The changes of tumor proliferation were detected by xenograft experiment in nude mice. RESULTS PCED1B-AS1 expression was higher but miR-3681-3 expression was lower in gastric cancer cell lines or tissues, compared to normal group. Function analysis verified PCED1B-AS1 promoted cell proliferation and inhibited cell apoptosis in gastric cancer cells in vitro and in vivo. LncRNA PCED1B-AS1 could bind directly to miR-3681-3p, and MAP2K7 was found to be a downstream target of miR-3681-3p. MiR-3681-3p mimics or si-MAP2K7 could partly reverse the effect of PCED1B-AS1 on gastric cancer cells. CONCLUSION PCED1B-AS1 accelerated cell proliferation and inhibited cell apoptosis through sponging miR-3681-3p to upregulate MAP2K7 expression in gastric cancer, which indicated PCED1B-AS1/miR-3681-3p/MAP2K7 axis may serve as a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Jia Cao
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yicheng Yang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bensong Duan
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haibin Zhang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qinwei Xu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junyi Han
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Bing Lu
- Department of General Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
12
|
Ma B, Xiu L, Ding L. The m6 RNA methylation regulator KIAA1429 is associated with autophagy-mediated drug resistance in lung cancer. FASEB Bioadv 2024; 6:105-117. [PMID: 38585432 PMCID: PMC10995705 DOI: 10.1096/fba.2023-00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 04/09/2024] Open
Abstract
N6-methyladenosine (m6A) modification plays a crucial role in cancer progression. However, the role of m6A modification-mediated autophagy underlying non-small cell lung cancer (NSCLC) gefitinib resistance remains unknown. Here, we discovered that m6A methyltransferase KIAA1429 was highly expressed in NSCLC gefitinib-resistant cells (PC9-GR) as well as tissues, and KIAA1429 high expression was associated with poor survival. In addition, silent KIAA1429 repressed gefitinib resistance in NSCLC and reduced tumor growth in vivo. Mechanistically, KIAA1429 stabilized WTAP, a significant player in autophagy, by binding to the 3' untranslated regions (3'-UTR) of WTAP. In a word, our findings indicated that KIAA1429 could elevate NSCLC gefitinib resistance, which may provide a promising targeted therapy for NSCLC patients.
Collapse
Affiliation(s)
- Bo Ma
- Department of General Thoracic SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Lei Xiu
- Department of Thoracic and Cardiac SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Lili Ding
- Department of Obstetrics and Gynecology ExaminationGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| |
Collapse
|
13
|
Yang B, Wang Y, Liu T, Zhang M, Luo T. The necroptosis-related signature and tumor microenvironment immune characteristics associated with clinical prognosis and drug sensitivity analysis in stomach adenocarcinoma. Aging (Albany NY) 2024; 16:6098-6117. [PMID: 38546403 PMCID: PMC11042952 DOI: 10.18632/aging.205690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/30/2024] [Indexed: 04/23/2024]
Abstract
PURPOSE Necroptosis plays an important role in the tumorigenesis, development, metastasis, and drug resistance of malignant tumors. This study explored the new model for assessing stomach adenocarcinoma (STAD) prognosis and immunotherapy by combining long noncoding RNAs associated with necroptosis. METHODS Patient clinical data and STAD gene expression profiles were curated from The Cancer Genome Atlas (TCGA). Immune-related genes were sourced from a specialized molecular database. Perl software and R software were used for data processing and analysis. Necroptosis-related lncRNAs in STAD were pinpointed via R's correlation algorithms. These lncRNAs, in conjunction with clinical data, informed the construction of a prognostic lncRNA-associated risk score model using univariate and multivariate Cox regression analyses. The model's prognostic capacity was evaluated by Kaplan-Meier survival curves and validated as an independent prognostic variable. Further, a nomogram incorporating this model with clinical parameters was developed, offering refined individual survival predictions. Subsequent analyses of immune infiltration and chemosensitivity within necroptosis-related lncRNA clusters utilized an arsenal of bioinformatic tools, culminating in RT-PCR validation of lncRNA expression. RESULTS Through rigorous Cox regression, 21 lncRNAs were implicated in the risk score model. Stratification by median risk scores delineated patients into high- and low-risk cohorts, with the latter demonstrating superior prognostic outcomes. The risk model was corroborated as an independent prognostic indicator for STAD. The integrative nomogram displayed high concordance between predicted and observed survival rates, as evidenced by calibration curves. Differential immune infiltration in risk-defined groups was illuminated by the single sample GSEA (ssGSEA), indicating pronounced immune presence in higher-risk patients. Tumor microenvironment (TME) analysis showed that cluster-C3 had the highest score in the analysis of the three TMEs. Through the differential analysis of immune checkpoints, it was found that almost all immune checkpoint-related genes were expressed differently in various tumor clusters. Among them, CD44 expression was the highest. By comparing all drug sensitivities, we screened out 29 drugs with differences in drug sensitivity across different clusters. Risk score gene expression identification results showed that these lncRNAs were abnormally expressed in gastric cancer cell lines. CONCLUSIONS This investigation provides a robust methodological advance in prognosticating and personalizing immunotherapy for STAD, leveraging quantitatively derived tumor cluster risk scores. It posits the use of necroptosis-related lncRNAs as pivotal molecular beacons for guiding therapeutic strategies and enhancing clinical outcomes in STAD.
Collapse
Affiliation(s)
- Biao Yang
- Department of General Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yingnan Wang
- Henan University of Science and Technology, Henan 471000, China
| | - Tao Liu
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Meijing Zhang
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Tianhang Luo
- Department of General Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
14
|
Chen Y, Gao X, Dai X, Xia Y, Zhang X, Sun L, Zhu Y. Integrated Bioinformatics and Experimental Analysis of Long Noncoding RNA Associated-ceRNA as Prognostic Biomarkers in Advanced Stomach Adenocarcinoma. J Cancer 2024; 15:1536-1550. [PMID: 38370380 PMCID: PMC10869988 DOI: 10.7150/jca.89526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Advanced stomach adenocarcinoma (ASTAD) is a highly malignant and prognostically poor stage of gastric cancer. Recently, long noncoding RNA (lncRNA) was found to play a crucial role, including as competing endogenous RNA (ceRNA) in cancer. However, studies on large-scale sample in ASTAD are still lacking, thus we constructed the ceRNA network of ASTAD to explore its molecular mechanism. METHODS We compared the expression of mRNAs, lncRNAs and miRNAs between ASTAD and normal tissues utilizing RNA-Seq and miRNA-seq Data from The Cancer Genome Atlas (TCGA). GO and KEGG enrichment analysis were executed for annotating the functions of differentially expressed mRNAs. Subsequently, we investigated the expression correlations between the differentially expressed lncRNAs and their respective mRNAs by constructing a ceRNA network. Kaplan-Meier survival analysis was used to assess the relationship between high/low risk scores based on this network with patient prognosis in TCGA training cohort and GSE15459 validation cohort. In vitro functional assays were employed to verify the cancer-promoting effects of key lncRNAs in the ceRNA network and their possible mechanisms. RESULTS In ASTAD tissues, a total of 176 lncRNAs, 124 miRNAs, and 2205 mRNAs were identified as differentially expressed. Our constructed ceRNA network consisted 6 differentially expressed lncRNAs (PVT1, MAGI2-AS3, KCNQ1OT1, LINC02086, AC125807.2 and LINC02535), 25 miRNAs and 130 mRNAs, and the risk score derived from these lincRNAs could predict ASTAD patient outcomes. Key lncRNA LINC02086 was experimentally verified to enhance proliferation and migration of gastric cancer cells by competitively binding to miR-93a-5p with MMP3. CONCLUSION Our comprehensive ceRNA network for ASTAD provides valuable insights into its molecular mechanisms, and LINC02086 may be used as an innovative target for clinical treatment.
Collapse
Affiliation(s)
- Yixin Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Xin Gao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Xinyang Dai
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Yuwei Xia
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Xinran Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Leitao Sun
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ying Zhu
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| |
Collapse
|
15
|
Lu K, Zhao T, Yang L, Liu Y, Ruan X, Cui L, Zhang Y. HMGB2 upregulation promotes the progression of hepatocellular carcinoma cells through the activation of ZEB1/vimentin axis. J Gastrointest Oncol 2023; 14:2178-2191. [PMID: 37969822 PMCID: PMC10643579 DOI: 10.21037/jgo-23-447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/22/2023] [Indexed: 11/17/2023] Open
Abstract
Background High mobility group box 2 (HMGB2) is abnormally expressed in human cancers and participated in multiple biological behaviors, such as proliferation, invasion and prognosis. However, its role in hepatocellular carcinoma (HCC) is largely unknown. Methods In clinical sample analysis, 62 HCC patients were enrolled in this study. The expression of HMGB2 was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical method, clinical prognosis data were analyzed by Kaplan-Meier analysis. In cellular and molecular biology experiments, HMGB2 expression was analyzed in HCC cells. HMGB2 knockdown model was constructed by small interfering RNA (siRNA). Cell counting kit-8 (CCK-8) and cell migration & invasion assay were used to evaluate cell proliferative potential and motility. Recombinant human vimentin protein was used to partially restore the expression and function of vimentin. Western blot and immunochemical staining were performed to detect HMGB2 protein, zinc finger E-box binding homeobox 1 (ZEB1) and vimentin. Flow cytometry analyses were performed to determine the alteration of cell cycle in different groups. Results HMGB2 was abnormally overexpressed in HCC. HMGB2 knockdown reduced malignant behaviors especially the proliferative potential and motility of HCC cells. The inhibition of HCC cells proliferation and mobility could be partially restored via treatment with recombinant vimentin protein. Our findings confirmed abnormal activation of HMGB2-ZEB1 vimentin axis facilitates HCC malignant proliferation and motility. The elevated HMGB2 expression in clinical samples was related to postoperative survival time of HCC patients. It indicated HMGB2 promotes the proliferation and motility potential of HCC via HMGB2-ZEB1-vimentin axis activation. Conclusions HMGB2 is up-regulated in HCC and affects the malignant transformation by modulating HMGB2-ZEB1-vimentin signaling pathway, which may provide a research basis for evaluating the disease progression and developing clinical treatment strategies of HCC.
Collapse
Affiliation(s)
| | | | | | - Yang Liu
- Department of Biliary Tract Surgery, The Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Xiang Ruan
- Department of Biliary Tract Surgery, The Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Longjiu Cui
- Department of Biliary Tract Surgery, The Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Yongjie Zhang
- Department of Biliary Tract Surgery, The Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| |
Collapse
|
16
|
Wang Y, Hong Z, Wei S, Ye Z, Chen L, Qiu C. Investigating the role of LncRNA PSMG3-AS1 in gastric cancer: implications for prognosis and therapeutic intervention. Cell Cycle 2023; 22:2161-2171. [PMID: 37946320 PMCID: PMC10732658 DOI: 10.1080/15384101.2023.2278942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
LncRNAs are widely linked to the complex development of gastric cancer, which is acknowledged worldwide as the third highest contributor to cancer-related deaths and the fifth most common form of cancer. The primary focus of this study is to examine the role of LncRNA PSMG3-AS1 in a group of individuals with gastric cancer. The results of our study indicate that PSMG3-AS1 is highly expressed in over 20 different types of cancer. Significantly, there was a clear association found between the expression of PSMG3-AS1 and a multitude of TMB and MSI tumors. PSMG3-AS1 exhibited significant upregulation in gastric cancer patients compared to healthy individuals within the gastric cancer cohort. The prognosis of gastric cancer patients is intrinsically associated with PSMG3-AS1, as confirmed by survival analysis and ROC curves. Furthermore, we created a disruption vector based on LncRNA PSMG3-AS1 and introduced it into AGS and MKN-45 cells, which are human gastric cancer cells. Significant decreases in the expression of the PSMG3-AS1 gene were noticed in both intervention groups compared to the NC group, reflecting the protein level expressions. Significantly, the proliferative and invasive capabilities of MKN-45 and AGS cells were notably reduced following transfection with PSMG3-AS1 siRNA. The results of our study indicate that disruption of the LncRNA PSMG3-AS1 gene may impact the CAV1/miR-451a signaling pathway, thereby leading to a reduction in the ability of gastric cancer cells to multiply and invade.
Collapse
Affiliation(s)
- Yi Wang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fuzhou, Fujian, China
| | - Zhongshi Hong
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shenghong Wei
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fuzhou, Fujian, China
| | - Zaisheng Ye
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fuzhou, Fujian, China
| | - Luchuan Chen
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fuzhou, Fujian, China
| | - Chengzhi Qiu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
17
|
Wang XJ, Liu Y, Ke B, Zhang L, Liang H. RNA-binding protein CPSF6 regulates IBSP to affect pyroptosis in gastric cancer. World J Gastrointest Oncol 2023; 15:1531-1543. [PMID: 37746647 PMCID: PMC10514719 DOI: 10.4251/wjgo.v15.i9.1531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/31/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Extensive evidence has illustrated the promotive role of integrin binding sialoprotein (IBSP) in the progression of multiple cancers. However, little is known about the functions of IBSP in gastric cancer (GC) progression. AIM To investigate the mechanism underlying the regulatory effects of IBSP in GC progression, and the relationship between IBSP and cleavage and polyadenylation factor 6 (CPSF6) in this process. METHODS The mRNA and protein expression of relevant genes were assessed through real-time quantitative polymerase chain reaction and Western blot, respectively. Cell viability was evaluated by Cell Counting Kit-8 assay. Cell invasion and migration were evaluated by Transwell assay. Pyroptosis was measured by flow cytometry. The binding between CPSF6 and IBSP was confirmed by luciferase reporter and RNA immunoprecipitation (RIP) assays. RESULTS IBSP exhibited higher expression in GC tissues and cell lines than in normal tissues and cell lines. IBSP knockdown suppressed cell proliferation, migration, and invasion but facilitated pyroptosis. In the exploration of the regulatory mechanism of IBSP, potential RNA binding proteins for IBSP were screened with catRAPID omics v2.0. The RNA-binding protein CPSF6 was selected due to its higher expression in stomach adenocarcinoma. Luciferase reporter and RIP assays revealed that CPSF6 binds to the 3'-untranslated region of IBSP and regulates its expression. Knockdown of CPSF6 inhibited cell proliferation, migration, and invasion but boosted pyroptosis. Through rescue assays, it was uncovered that the retarded GC progression mediated by CPSF6 knockdown was reversed by IBSP overexpression. CONCLUSION Our study highlighted the vital role of the CPSF6/IBSP axis in GC, suggesting that IBSP might be an effective bio-target for GC treatment.
Collapse
Affiliation(s)
- Xue-Jun Wang
- Department of Gastric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Yong Liu
- Department of Gastric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Bin Ke
- Department of Gastric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Li Zhang
- Department of Gastric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Han Liang
- Department of Gastric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| |
Collapse
|
18
|
Olufunmilayo EO, Holsinger RMD. Roles of Non-Coding RNA in Alzheimer's Disease Pathophysiology. Int J Mol Sci 2023; 24:12498. [PMID: 37569871 PMCID: PMC10420049 DOI: 10.3390/ijms241512498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is accompanied by deficits in memory and cognitive functions. The disease is pathologically characterised by the accumulation and aggregation of an extracellular peptide referred to as amyloid-β (Aβ) in the form of amyloid plaques and the intracellular aggregation of a hyperphosphorelated protein tau in the form of neurofibrillary tangles (NFTs) that cause neuroinflammation, synaptic dysfunction, and oxidative stress. The search for pathomechanisms leading to disease onset and progression has identified many key players that include genetic, epigenetic, behavioural, and environmental factors, which lend support to the fact that this is a multi-faceted disease where failure in various systems contributes to disease onset and progression. Although the vast majority of individuals present with the sporadic (non-genetic) form of the disease, dysfunctions in numerous protein-coding and non-coding genes have been implicated in mechanisms contributing to the disease. Recent studies have provided strong evidence for the association of non-coding RNAs (ncRNAs) with AD. In this review, we highlight the current findings on changes observed in circular RNA (circRNA), microRNA (miRNA), short interfering RNA (siRNA), piwi-interacting RNA (piRNA), and long non-coding RNA (lncRNA) in AD. Variations in these ncRNAs could potentially serve as biomarkers or therapeutic targets for the diagnosis and treatment of Alzheimer's disease. We also discuss the results of studies that have targeted these ncRNAs in cellular and animal models of AD with a view for translating these findings into therapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Edward O. Olufunmilayo
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Department of Medicine, University College Hospital, Queen Elizabeth Road, Oritamefa, Ibadan 200212, Nigeria
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
19
|
Guz M, Jeleniewicz W, Cybulski M. Interactions between circRNAs and miR-141 in Cancer: From Pathogenesis to Diagnosis and Therapy. Int J Mol Sci 2023; 24:11861. [PMID: 37511619 PMCID: PMC10380543 DOI: 10.3390/ijms241411861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
The function of non-coding RNAs (ncRNAs) in the pathogenesis and development of cancer is indisputable. Molecular mechanisms underlying carcinogenesis involve the aberrant expression of ncRNAs, including circular RNAs (circRNAs), and microRNAs (miRNAs). CircRNAs are a class of single-stranded, covalently closed RNAs responsible for maintaining cellular homeostasis through their diverse functions. As a part of the competing endogenous RNA (ceRNAs) network, they play a central role in the regulation of accessibility of miRNAs to their mRNA targets. The interplay between these molecular players is based on the primary role of circRNAs that act as miRNAs sponges, and the circRNA/miRNA imbalance plays a central role in different pathologies including cancer. Herein, we present the latest state of knowledge about interactions between circRNAs and miR-141, a well-known member of the miR-200 family, in malignant transformation, with emphasis on the biological role of circRNA/miR-141/mRNA networks as a future target for novel anti-cancer therapies.
Collapse
Affiliation(s)
- Małgorzata Guz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Witold Jeleniewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Marek Cybulski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
20
|
Li D, Xia L, Huang P, Wang Z, Guo Q, Huang C, Leng W, Qin S. Serine protease PRSS56, a novel cancer-testis antigen activated by DNA hypomethylation, promotes colorectal and gastric cancer progression via PI3K/AKT axis. Cell Biosci 2023; 13:124. [PMID: 37400936 DOI: 10.1186/s13578-023-01060-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/27/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Cancer/testis (CT) antigens/genes are usually overexpressed in cancers and exhibit high immunogenicity, making them promising targets for immunotherapy and cancer vaccines. The role of serine protease PRSS56 in cancers remains unknown to date. METHODS RNA sequencing studies were performed to screen CT genes in gastric cancer (GC) and colorectal cancer (CRC) cells exposed to DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-AZA-CdR). Bioinformatics analysis was conducted to analyze the correlation between PRSS56 expression and DNA methylation. Functional experiments were performed to explore the biological function of PRSS56 in GC and CRC. RESULTS In this study, we identified the testis-specific serine proteases PRSS56 as a novel CT antigen. PRSS56 was frequently overexpressed in various cancers, especially in gastrointestinal cancer. PRSS56 expression was negatively associated with promoter DNA methylation level, and positively associated with gene body methylation level. PRSS56 expression was significantly activated in colorectal and gastric cancer cells exposed to DNA methyltransferase inhibitors. Importantly, our finding highlights that the decreased methylation level of the CpG site cg10242318 in the PRSS56 promoter region resulted in its overexpression in GC and CRC. Additionally, functional assays verified that PRSS56 overexpression activated PI3K-AKT signaling in GC and CRC. CONCLUSION Serine protease PRSS56 is a novel CT antigen that is reactivated in cancers by promoter DNA hypomethylation. PRSS56 functions oncogenic roles in GC and CRC by activating of PI3K/AKT axis. Our results presented here represent the first data on the function of the serine protease PRSS56 in cancers.
Collapse
Affiliation(s)
- Dandan Li
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
- Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
| | - Pan Huang
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
- Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
| | - Zidi Wang
- Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
| | - Qiwei Guo
- Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
| | - Congcong Huang
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
- Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China.
| | - Shanshan Qin
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China.
- Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China.
| |
Collapse
|
21
|
Zhao Z, Mak TK, Shi Y, Huang H, Huo M, Zhang C. The DNA damage repair-related lncRNAs signature predicts the prognosis and immunotherapy response in gastric cancer. Front Immunol 2023; 14:1117255. [PMID: 37457685 PMCID: PMC10339815 DOI: 10.3389/fimmu.2023.1117255] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most prevalent cancers, and it has unsatisfactory overall treatment outcomes. DNA damage repair (DDR) is a complicated process for signal transduction that causes cancer. lncRNAs can influence the formation and incidence of cancers by influencing DDR-related mRNAs/miRNAs. A DDR-related lncRNA prognostic model is urgently needed to improve treatment strategies. Methods The data of GC samples were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. A total of 588 mRNAs involved in DDR were selected from MSigDB, 62 differentially expressed mRNAs from TCGA-STAD were obtained, and 137 lncRNAs were correlated with these mRNAs. Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses were used to develop a DDR-related lncRNA prognostic model. Based on the risk model, the differentially expressed gene signature A/B in the low-risk and high-risk groups of TCGA-STAD was identified for further validation. Results The prognosis model of 5 genes (AC145285.6, MAGI2-AS3, AL590705.3, AC007405.3, and LINC00106) was constructed and classified into two risk groups. We found that GC patients with a low-risk score had a better OS than those with a high-risk score. We found that the high-risk group tended to have higher TME scores. We also found that patients in the high-risk group had a higher proportion of resting CD4 T cells, monocytes, M2 macrophages, resting dendritic cells, and resting mast cells, whereas the low-risk subgroup had a greater abundance of activated CD4 T cells, follicular helper T cells, M0 macrophages, and M1 macrophages. We observed significant differences in the T-cell exclusion score, T-cell dysfunction, MSI, and TMB between the two risk groups. In addition, we found that patients treated with immunotherapy in the low-RS score group had a longer survival and a better prognosis than those in the high-RS score group. Conclusion The prognostic model has a significant role in the TME, clinicopathological characteristics, prognosis, MSI, and drug sensitivity. We also discovered that patients treated with immunotherapy in the low-RS score group had a better prognosis. This work provides a foundation for improving the prognosis and response to immunotherapy among patients with GC.
Collapse
Affiliation(s)
- Zidan Zhao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tsz Kin Mak
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yuntao Shi
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Huaping Huang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Mingyu Huo
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
22
|
Bai R, Sun M, Chen Y, Zhuo S, Song G, Wang T, Zhang Z. H19 recruited m6A reader YTHDF1 to promote SCARB1 translation and facilitate angiogenesis in gastric cancer. Chin Med J (Engl) 2023:00029330-990000000-00649. [PMID: 37279381 DOI: 10.1097/cm9.0000000000002722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Angiogenesis is described as a complex process in which new microvessels sprout from endothelial cells of existing vasculature. This study aimed to determine whether long non-coding RNA (lncRNA) H19 induced the angiogenesis of gastric cancer (GC) and its possible mechanism. METHODS Gene expression level was determined by quantitative real-time polymerase chain reaction and western blotting. Cell counting kit-8, transwell, 5-Ethynyl-2'-deoxyuridine (EdU), colony formation assay, and human umbilical vein endothelial cells (HUVECs) angiogenesis assay as well as Matrigel plug assay were conducted to study the proliferation, migration, and angiogenesis of GC in vitro and in vivo. The binding protein of H19 was found by RNA pull-down and RNA Immunoprecipitation (RIP). High-throughput sequencing was performed and next Gene Ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was conducted to analyze the genes that are under H19 regulation. Methylated RIP (me-RIP) assay was used to investigate the sites and abundance among target mRNA. The transcription factor acted as upstream of H19 was determined through chromatin immunoprecipitation (ChIP) and luciferase assay. RESULTS In this study, we found that hypoxia-induced factor (HIF-1α) could bind to the promoter region of H19, leading to H19 overexpression. High expression of H19 was correlated with angiogenesis in GC, and H19 knocking down could inhibit cell proliferation, migration and angiogenesis. Mechanistically, the oncogenic role of H19 was achieved by binding with the N6-methyladenosine (m6A) reader YTH domain-containing family protein 1 (YTHDF1), which could recognize the m6A site on the 3'-untransated regions (3'-UTR) of scavenger receptor class B member 1 (SCARB1) mRNA, resulting in over-translation of SCARB1 and thus promoting the proliferation, migration, and angiogenesis of GC cells. CONCLUSION HIF-1α induced overexpression of H19 via binding with the promoter of H19, and H19 promoted GC cells proliferation, migration and angiogenesis through YTHDF1/SCARB1, which might be a beneficial target for antiangiogenic therapy for GC.
Collapse
Affiliation(s)
- Rumeng Bai
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Miaomiao Sun
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Pathology, Wuxi Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, China
| | - Yuanyuan Chen
- Department of Biochemistry, Nanjing Medical University, Nanjing, Jiangsu 211112, China
| | - Shuaishuai Zhuo
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Guoxin Song
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tianjun Wang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhihong Zhang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
23
|
Yang G, Li T, Liu J, Quan Z, Liu M, Guo Y, Wu Y, Ou L, Wu X, Zheng Y. lncRNA MAGI2-AS3 suppresses castration-resistant prostate cancer proliferation and migration via the miR-106a-5p/RAB31 axis. Genomics 2023; 115:110599. [PMID: 36889366 DOI: 10.1016/j.ygeno.2023.110599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Prostate cancer (PCa) is a common malignant cancer in elderly males in Western countries. Whole-genome sequencing confirmed that long non-coding RNAs (lncRNAs) are frequently altered in castration-resistant prostate cancer (CRPC) and promote drug resistance to cancer therapy. Therefore, elucidating the prospective role of lncRNAs in PCa oncogenesis and progression is of remarkable clinical significance. In this study, gene expression in prostate tissues was determined using RNA-sequencing datasets, and the gene diagnostic and prognostic values of CRPC were analyzed using bioinformatics. Further, the expression levels and clinical significance of MAGI2 Antisense RNA 3 (MAGI2-AS3) in PCa clinical specimens were evaluated. The tumor-suppressive activity of MAGI2-AS3 was functionally explored in PCa cell lines and animal xenograft models. MAGI2-AS3 was found to be aberrantly decreased in CRPC and was negatively correlated with Gleason score and lymph node status. Notably, low MAGI2-AS3 expression positively correlated with poorer survival in patients with PCa. The overexpression of MAGI2-AS3 significantly inhibited the proliferation and migration of PCa in vitro and in vivo. Mechanistically, MAGI2-AS3 could play a tumor suppressor function in CRPC through a novel miR-106a-5p/RAB31 regulatory network and could be a target for future cancer therapy.
Collapse
Affiliation(s)
- Guo Yang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| | - Ting Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, 400016 Chongqing, China
| | - Jiayu Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| | - Miao Liu
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, 400030 Chongqing, China
| | - Yuan Guo
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| | - Yingying Wu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, 400016 Chongqing, China
| | - Liping Ou
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, 400016 Chongqing, China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China.
| | - Yongbo Zheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China.
| |
Collapse
|
24
|
Li D, Xia L, Huang P, Wang Z, Guo Q, Huang C, Leng W, Qin S. Heterogeneity and plasticity of epithelial-mesenchymal transition (EMT) in cancer metastasis: Focusing on partial EMT and regulatory mechanisms. Cell Prolif 2023:e13423. [PMID: 36808651 DOI: 10.1111/cpr.13423] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) or mesenchymal-epithelial transition (MET) plays critical roles in cancer metastasis. Recent studies, especially those based on single-cell sequencing, have revealed that EMT is not a binary process, but a heterogeneous and dynamic disposition with intermediary or partial EMT states. Multiple double-negative feedback loops involved by EMT-related transcription factors (EMT-TFs) have been identified. These feedback loops between EMT drivers and MET drivers finely regulate the EMT transition state of the cell. In this review, the general characteristics, biomarkers and molecular mechanisms of different EMT transition states were summarized. We additionally discussed the direct and indirect roles of EMT transition state in tumour metastasis. More importantly, this article provides direct evidence that the heterogeneity of EMT is closely related to the poor prognosis in gastric cancer. Notably, a seesaw model was proposed to explain how tumour cells regulate themselves to remain in specific EMT transition states, including epithelial state, hybrid/intermediate state and mesenchymal state. Additionally, this article also provides a review of the current status, limitations and future perspectives of EMT signalling in clinical applications.
Collapse
Affiliation(s)
- Dandan Li
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Pan Huang
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Zidi Wang
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Qiwei Guo
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Congcong Huang
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Shanshan Qin
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
25
|
Rajakumar S, Jamespaulraj S, Shah Y, Kejamurthy P, Jaganathan MK, Mahalingam G, Ramya Devi KT. Long non-coding RNAs: an overview on miRNA sponging and its co-regulation in lung cancer. Mol Biol Rep 2023; 50:1727-1741. [PMID: 36441373 DOI: 10.1007/s11033-022-07995-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
Abstract
Lung cancer is the most devastating cause of death among all cancers worldwide, and non-small cell lung cancer (NSCLC) accounts for 80% of all the lung cancer cases. Beyond common genetic research and epigenomic studies, the extraordinary investigations of non-coding RNAs have provided insights into the molecular basis of cancer. Existing evidence from various cancer models highlights that the regulation of non-coding RNAs is crucial and that their deregulation may be a common reason for the development and progression of cancer, and competition of cancer therapeutics. Non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are increasingly recognized as potential cancer biomarkers for early detection and application of therapeutic strategies. The miRNAs have gained importance as master regulators of target mRNAs by negatively regulating their expression. The lncRNAs function as both tumor suppressors and oncogenes, and also compete with miRNAs that influence the translational inhibition processes. This review addresses the role of lncRNAs in lung cancer development, highlights their mechanisms of action, and provides an overview of the impact of lncRNAs on lung cancer survival and progression via miRNA sponging. The improved understanding of lung cancer mechanisms has opened opportunities to analyze molecular markers and their potential therapeutics.
Collapse
Affiliation(s)
- Santhosh Rajakumar
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Shalini Jamespaulraj
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Yashesh Shah
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Priyatharcini Kejamurthy
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - M K Jaganathan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Gokulnath Mahalingam
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), Christian Medical College, Vellore, Tamil Nadu, India
| | - K T Ramya Devi
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.
| |
Collapse
|
26
|
Li D, Xia L, Huang P, Wang Z, Guo Q, Huang C, Leng W, Qin S. Cancer-associated fibroblast-secreted IGFBP7 promotes gastric cancer by enhancing tumor associated macrophage infiltration via FGF2/FGFR1/PI3K/AKT axis. Cell Death Dis 2023; 9:17. [PMID: 36681667 PMCID: PMC9867714 DOI: 10.1038/s41420-023-01336-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
We previously reported that IGFBP7 plays a role in maintaining mRNA stability of oncogenic lncRNA UBE2CP3 by RNA-RNA interaction in gastric cancer (GC). Clinical cohort studies had implied an oncogenic role of IGFBP7 in GC. However, the molecular mechanism of IGFBP7 in GC progression remains unknown. In this study, clinical analysis based on two independent cohorts showed that IGFBP7 was positively associated with poor prognosis and macrophage infiltration in GC. Loss-of-function studies confirmed the oncogenic properties of IGFBP7 in regulating GC cell proliferation and invasion. Mechanismly, IGFBP7 was highly expressed in cancer-associated fibroblasts (CAF) and mesenchymal cells, and was induced by epithelial-to-mesenchymal transition (EMT) signaling, since its expression was increased by TGF-beta treatment and reduced by overexpression of OVOL2 in GC. RNA sequencing, qRT-PCR, ELISA assay showed that IGFBP7 positively regulated FGF2 expression and secretion in GC. Transcriptome analysis revealed that FGFR1 was downregulated in M1 polarization but upregulated in M2 polarization. Exogenous recombinant IGFBP7 treatment in macrophages and GC cells further identified that IGFBP7 promotes tumor associated macrophage (TAM) polarization via FGF2/FGFR1/PI3K/AKT axis. Our finding here represented the first evidence that IGFBP7 promotes GC by enhancing TAM/M2 macrophage polarization through FGF2/FGFR1/PI3K/AKT axis.
Collapse
Affiliation(s)
- Dandan Li
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China.,Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China.,Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Pan Huang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China.,Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Zidi Wang
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Qiwei Guo
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Congcong Huang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China.,Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China.
| | - Shanshan Qin
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China. .,Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China. .,Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China.
| |
Collapse
|
27
|
Xu P, Liu S, Song S, yao X, Li X, Zhang J, Liu Y, Zheng Y, Gao G, Xu J. Identification and validation of a novel angiogenesis-related gene signature for predicting prognosis in gastric adenocarcinoma. Front Oncol 2023; 12:965102. [PMID: 36727080 PMCID: PMC9885177 DOI: 10.3389/fonc.2022.965102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/05/2022] [Indexed: 01/19/2023] Open
Abstract
Background Angiogenesis is a major promotor of tumor progression and metastasis in gastric adenocarcinoma (STAD). We aimed to develop a novel lncRNA gene signature by identifying angiogenesis-related genes to better predict prognosis in STAD patients. Methods The expression profiles of angiogenesis-related mRNA and lncRNA genes were collected from The Cancer Genome Atlas (TCGA). Then, the "limma" package was used to identify differentially expressed genes (DEGs). The expression profiles of angiogenesis-related genes were clustered by consumusclusterplus. The Pearson correlation coefficient was further used to identify lncRNAs coexpressed with angiogenesis-related clustere genes. We used Lasso Cox regression analysis to construct the angiogenesis-related lncRNAs signature. Furthermore, the diagnostic accuracy of the prognostic risk signature were validated by the TCGA training set, internal test sets and external test set. We used multifactor Cox analysis to determine that the risk score is an independent prognostic factor different from clinical characteristics. Nomogram has been used to quantitatively determine personal risk in a clinical environment. The ssGSEA method or GSE176307 data were used to evaluate the infiltration state of immune cells or predictive ability for the benefit of immunotherapy by angiogenesis-related lncRNAs signature. Finally, the expression and function of these signature genes were explored by RT-PCR and colony formation assays. Results Among angiogenesis-related genes clusters, the stable number of clusters was 2. A total of 289 DEGs were identified and 116 lncRNAs were screened to have a significant coexpression relationship with angiogenic DEGs (P value<0.001 and |R| >0.5). A six-gene signature comprising LINC01579, LINC01094, RP11.497E19.1, AC093850.2, RP11.613D13.8, and RP11.384P7.7 was constructed by Lasso Cox regression analysis. The multifactor Cox analysis and Nomogram results showed that our angiogenesis-related lncRNAs signature has good predictive ability for some different clinical factors. For immune, angiogenesis-related lncRNAs signature had the ability to efficiently predict infiltration state of 23 immune cells and immunotherapy. The qPCR analysis showed that the expression levels of the six lncRNA signature genes were all higher in gastric adenocarcinoma tissues than in adjacent tissues. The functional experiment results indicated that downregulation of the expression of these six lncRNA signature genes suppressed the proliferation of ASG and MKN45 cells. Conclusion Six angiogenesis-related genes were identified and integrated into a novel risk signature that can effectively assess prognosis and provide potential therapeutic targets for STAD patients.
Collapse
Affiliation(s)
- Peipei Xu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Sailiang Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Shu Song
- Department of Pathology, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai, China
| | - Xiang yao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Xuechuan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Jie Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Yinbing Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Ye Zheng
- Department of Pathology, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai, China,*Correspondence: Ye Zheng, ; Ganglong Gao, ; Jingjing Xu,
| | - Ganglong Gao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China,*Correspondence: Ye Zheng, ; Ganglong Gao, ; Jingjing Xu,
| | - Jingjing Xu
- Department of Pathology, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai, China,*Correspondence: Ye Zheng, ; Ganglong Gao, ; Jingjing Xu,
| |
Collapse
|
28
|
Yan C, Wang P, Zhao C, Yin G, Meng X, Li L, Cai S, Meng B. Long Noncoding RNA MAGI2-AS3 Represses Cell Progression in Clear Cell Renal Cell Carcinoma by Modulating the miR-629-5p/PRDM16 Axis. Crit Rev Eukaryot Gene Expr 2023; 33:43-56. [PMID: 37602452 DOI: 10.1615/critreveukaryotgeneexpr.2023048338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The objective of this study was to determine the regulatory mechanism of MAGI2-AS3 in clear cell renal cell carcinoma (ccRCC), thereby supplying a new insight for ccRCC treatment. Expression data in TCGA-KIRC were obtained. Target gene lncRNA for research was determined using expression analysis and clinical analysis. lncRNA's downstream regulatory miRNA and mRNA were predicted by bioinformatics databases. ccRCC cell malignant phenotypes were detected via CCK-8, colony formation, Transwell migration, and invasion assays. The targeting relationship between genes was assessed through dual-luciferase reporter gene analysis. Kaplan-Meier (K-M) analysis was carried out to verify the effect of MAGI2-AS3, miR-629-5p, and PRDM16 on the survival rate of ccRCC patients. MAGI2-AS3 expression in ccRCC tissue and cells was shown to be markedly decreased and its expression to continuously decline with tumor progression. MAGI2-AS3 suppresses ccRCC proliferation and migration. Dual-luciferase assay showed that MAGI2-AS3 binds miR-629-5p and that miR-629-5p binds PRDM16. In addition, functional experiments showed that MAGI2-AS3 facilitates PRDM16 expression by repressing miR-629-5p expression, thereby suppressing ccRCC cell aggression. K-M analysis showed that upregulation of either MAGI2-AS3 or PRDM16 significantly improves ccRCC patient survival, while upregulation of miR-629-5p has no significant impact. MAGI2-AS3 sponges miR-629-5p to modulate PRDM16 to mediate ccRCC development. Meanwhile, the MAGI2-AS3/miR-629-5p/PRDM16 axis, as a regulatory pathway of ccRCC progression, may be a possible therapeutic target and prognostic indicator of ccRCC.
Collapse
Affiliation(s)
- Chengquan Yan
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Pengfei Wang
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Chaofei Zhao
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Guangwei Yin
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Xin Meng
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Lin Li
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Shengyong Cai
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| | - Bin Meng
- Department of Urology, Area 3, Tangshan Gongren Hospital, Tangshan City, Hebei Province, 063000, China
| |
Collapse
|
29
|
Yin Y, Huang C, Wang Z, Huang P, Qin S. Identification of cellular heterogeneity and key signaling pathways associated with vascular remodeling and calcification in young and old primate aortas based on single-cell analysis. Aging (Albany NY) 2022; 15:982-1003. [PMID: 36566020 PMCID: PMC10008505 DOI: 10.18632/aging.204442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Aging of the vascular system is the main cause of many cardiovascular diseases. The structure and function of the blood vessel wall change with aging. To prevent age-related cardiovascular diseases, it is essential to understand the cellular heterogeneity of vascular wall and changes of cellular communication among cell subpopulations during aging. Here, using published single-cell RNA sequencing datasets of young and old monkey aortas, we analyzed the heterogeneity of vascular endothelial cells and smooth muscle cells in detail and identified a distinct endothelial cell subpopulation that involved in vascular remodeling and calcification. Moreover, cellular communication that changed with aging was analyzed and we identified a number of signaling pathways that associated with vascular aging. We found that EGF signaling pathway play an essential role in vascular remodeling and calcification of aged aortas. This work provided a better understanding of vascular aging and laid the foundation for prevention of age-related vascular pathologies.
Collapse
Affiliation(s)
- Yehu Yin
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, P.R. China.,Institute of Medicine, Jishou University, Jishou 416000, P.R. China
| | - Congcong Huang
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan 442000, Hubei, P.R. China
| | - Zidi Wang
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan 442000, Hubei, P.R. China
| | - Pan Huang
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan 442000, Hubei, P.R. China
| | - Shanshan Qin
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, P.R. China.,Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan 442000, Hubei, P.R. China
| |
Collapse
|
30
|
Huang P, Xia L, Guo Q, Huang C, Wang Z, Huang Y, Qin S, Leng W, Li D. Genome-wide association studies identify miRNA-194 as a prognostic biomarker for gastrointestinal cancer by targeting ATP6V1F, PPP1R14B, BTF3L4 and SLC7A5. Front Oncol 2022; 12:1025594. [PMID: 36620589 PMCID: PMC9815773 DOI: 10.3389/fonc.2022.1025594] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Background The dysregulated genes and miRNAs in tumor progression can be used as biomarkers for tumor diagnosis and prognosis. However, the biomarkers for predicting the clinical outcome of gastrointestinal cancer (GIC) are still scarce. Methods Genome-wide association studies were performed to screen optimal prognostic miRNA biomarkers. RNA-seq, Ago-HITS-CLIP-seq, western blotting and qRT-PCR assays were conducted to identify target genes of miR-194. Genome-wide CRISPR-cas9 proliferation screening analysis were conducted to distinguish passenger gene and driver gene. Results A total of 9 prognostic miRNAs for GIC were identified by global microRNA expression analysis. Among them, miR-194 was the only one miRNA that significantly associated with overall survival, disease-specific survival and progress-free interval in both gastric, colorectal and liver cancers, indicating miR-194 was an optimal prognostic biomarker for GIC. RNA-seq analysis confirmed 18 conservative target genes of miR-194. Four of them, including ATP6V1F, PPP1R14B, BTF3L4 and SLC7A5, were directly targeted by miR-194 and required for cell proliferation. Cell proliferation assay validated that miR-194 inhibits cell proliferation by targeting ATP6V1F, PPP1R14B, BTF3L4 and SLC7A5 in GIC. Conclusion In summary, miR-194 is an optimal biomarker for predicting the outcome of GIC. Our finding highlights that miR-194 exerts a tumor-suppressive role in digestive system cancers by targeting ATP6V1F, PPP1R14B, BTF3L4 and SLC7A5.
Collapse
Affiliation(s)
- Pan Huang
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China,Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qiwei Guo
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Congcong Huang
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zidi Wang
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yinxuan Huang
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shanshan Qin
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China,Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China,*Correspondence: Shanshan Qin, ; Weidong Leng, ; Dandan Li,
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China,*Correspondence: Shanshan Qin, ; Weidong Leng, ; Dandan Li,
| | - Dandan Li
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China,Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China,*Correspondence: Shanshan Qin, ; Weidong Leng, ; Dandan Li,
| |
Collapse
|
31
|
Li D, Shen L, Zhang X, Chen Z, Huang P, Huang C, Qin S. LncRNA ELF3-AS1 inhibits gastric cancer by forming a negative feedback loop with SNAI2 and regulates ELF3 mRNA stability via interacting with ILF2/ILF3 complex. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:332. [PMID: 36457025 PMCID: PMC9716751 DOI: 10.1186/s13046-022-02541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND The biological function of lncRNA ELF3-AS1 remains largely unknown in cancers. The cause of SNAI2 overexpression in tumor metastasis remains largely unclear. The molecular mechanisms underlying the high co-expression of antisense lncRNAs and adjacent protein-coding genes remains unclear. METHODS RNA-seq, CHIP and dual-luciferase reporter assay were performed to identify lncRNAs regulated by SNAI2. MicroRNA-seq and RNA-seq studies were conducted to reveal the biological function of ELF3-AS1 in GC. RNA pulldown and CHIRP assays were conducted to identify the protein that interacts with ELF3-AS1. RESULTS A total of 123 lncRNAs were identified to be regulated by SNAI2 in GC by RNA sequencing. The ELF3 gene and antisense lncRNA ELF3-AS1 were both transcriptionally repressed by SNAI2 or SNAI1. Down-regulation of ELF3-AS1 and ELF3 predicted poor prognosis in GC. Nuclear localized lncRNA ELF3-AS1 negatively regulated GC cell cycle progression via suppressing G1/S transition and histone synthesis. ELF3-AS1 mainly inhibited GC metastasis by repressing SNAI2 signaling. Additionally, ELF3-AS1 modulated ELF3 mRNA stability by RNA-RNA interaction. The RNA duplexes formed by ELF3 mRNA and lncRNA ELF3-AS1 directly interacted with the double-stranded RNA (dsRNA) binding protein complex ILF2/ILF3 (NF45/NF90). In turn, the ILF2/ILF3 complex dynamically regulated the expression of ELF3-AS1 and ELF3 by affecting the dsRNA stability. CONCLUSIONS The SNAI2-ELF3-AS1 feedback loop regulates ELF3 expression at transcriptional and post-transcriptional levels and drives gastric cancer metastasis by maintaining SNAI2 overexpression. The ILF2/ILF3 complex plays a critical role in regulating dsRNA stability. In addition, our work provides a direct evidence that head-to-head antisense lncRNAs can share promoters with neighboring coding genes, which make their expression subject to similar transcriptional regulation, leading to high co-expression.
Collapse
Affiliation(s)
- Dandan Li
- grid.443573.20000 0004 1799 2448Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei P.R. China ,grid.443573.20000 0004 1799 2448Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei P.R. China
| | - Li Shen
- grid.443573.20000 0004 1799 2448Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei P.R. China ,grid.443573.20000 0004 1799 2448Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Xudong Zhang
- grid.443573.20000 0004 1799 2448Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei P.R. China
| | - Zhen Chen
- grid.443573.20000 0004 1799 2448Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei P.R. China
| | - Pan Huang
- grid.443573.20000 0004 1799 2448Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei P.R. China
| | - Congcong Huang
- grid.443573.20000 0004 1799 2448Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei P.R. China
| | - Shanshan Qin
- grid.443573.20000 0004 1799 2448Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei P.R. China ,grid.443573.20000 0004 1799 2448Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei P.R. China
| |
Collapse
|
32
|
Yang R, Liu Z, Cao H, Shi Y. LINC01089, suppressed by YY1, inhibits lung cancer progression by targeting miR-301b-3p/HPDG axis. Cell Biol Toxicol 2022; 38:1063-1077. [PMID: 34561789 DOI: 10.1007/s10565-021-09643-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 08/09/2021] [Indexed: 01/25/2023]
Abstract
PURPOSE LINC01089 is a newly identified lncRNA and rarely reported in human cancers. Our study aimed to investigate its role in lung cancer. METHODS YY1, LINC01089, and miR-301b-3p levels in lung cancer tissues and cells were assessed using qRT-PCR. Bioinformatics analysis and luciferase reporter, ChIP, and RIP assays were carried out for determining the relationships among YY1, LINC01089, miR-301b-3p, and HPGD. Gain- and loss-of-function assays were carried out to confirm the impacts of LINC01089 and HPDG in lung cancer cells. CCK-8 assay was used to assess cell proliferation rate, and Transwell assay was applied to measure cell invasion and migration. An in vivo tumor model was applied for validating the role of LINC01089. RESULTS LINC01089 was decreased in lung cancer tissues and cells, and low LINC01089 level predicted a poor clinical outcome. YY1 directly bound to LINC01089 promoter region and inhibited its transcription. LINC01089 knockdown thwarted the proliferation, invasion, and migration capacity of H1299 and A549 cells and aggravated tumor growth. Specifically, LINC01089 functioned as a competing endogenous RNA of miR-301b-3p to modulate HPGD and thereby affected lung cancer progression. CONCLUSION Our data revealed that LINC01089, directly suppressed by YY1, inhibited lung cancer progression by targeting the miR-301b-3p/HPGD axis. Graphical abstract 1. LINC01089 expression was downregulated in lung cancer tisuues and cell lines, and low LINC01089 levels predicted a poor clinical outcome. 2. LINC01089 knockdown enhanced proliferation, invasion, and migration of H1299 and A549 cells in vitro and promoted lung cancer cell tumorigenesis and metastasis in vivo. 3. LINC01089, directly suppressed by YY1, functioned as a competing endogenous RNA against miR-301b-3p to increase HPGD expression.
Collapse
Affiliation(s)
- Rusong Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanjing Medical University, No.121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, 210011, People's Republic of China.
| | - Zhengcheng Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanjing Medical University, No.121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, 210011, People's Republic of China
| | - Hui Cao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanjing Medical University, No.121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, 210011, People's Republic of China
| | - Ye Shi
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanjing Medical University, No.121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, 210011, People's Republic of China
| |
Collapse
|
33
|
Hashemi M, Hajimazdarany S, Mohan CD, Mohammadi M, Rezaei S, Olyaee Y, Goldoost Y, Ghorbani A, Mirmazloomi SR, Gholinia N, Kakavand A, Salimimoghadam S, Ertas YN, Rangappa KS, Taheriazam A, Entezari M. Long non-coding RNA/epithelial-mesenchymal transition axis in human cancers: Tumorigenesis, chemoresistance, and radioresistance. Pharmacol Res 2022; 186:106535. [DOI: 10.1016/j.phrs.2022.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
|
34
|
Abstract
Prostate cancer is a common male cancer with high morbidity and mortality worldwide. According to current research, the integration of long non-coding RNA (lncRNAs) and microRNA(miRNAs) can be expressed in a variety of cancers and play an important role in diagnosis. Based on this, this study explored the clinical role of lncRNA MAGI2-AS3 (MAGI2-AS3) in prostate cancer. By detecting the expression levels of MAGI2-AS3 and miR-142-3p, the correlation between the MAGI2-AS3 expression and the characteristics of clinical data was analyzed. ROC curve analysis was performed and the area under the ROC curve (AUC) was used to evaluate the diagnostic value of MAGI2-AS3 in distinguishing prostate cancer patients from healthy controls. The function of MAGI2-AS3 in prostate cancer cells was explored through CCK-8 and Transwell assays, and the relationship between MAGI2-AS3 and miR-142-3p was investigated by luciferase activity assay. MAGI2-AS3 has descended expression while miR-142-3p has an ascendant one in prostate cancer serum samples and cells. ROC curve analysis revealed that the AUC was 0.953 for MAGI2-AS3, with a sensitivity of 91.5% and specificity of 84.7%. Overexpression of MAGI2-AS3 in LNCaP and PC3 cells suppressed the biological function of the cell including proliferation capacity, migration level, and invasion. MAGI2-AS3 was considered a diagnostic biomarker for prostate cancer patients and inhibited prostate cancer progression by targeting miR-142-3p.
Collapse
Affiliation(s)
- Renbao Hu
- Department of Urology, The Second People's Hospital of Hefei, Hefei, China
| | - Pei Wu
- Department of Urology, The Second People's Hospital of Hefei, Hefei, China
| | - Jianhui Liu
- Department of Urology, The Second People's Hospital of Hefei, Hefei, China
| |
Collapse
|
35
|
Fu J, Huang Y, Xian L. LncRNA SNHG15 regulates hypoxic-ischemic brain injury via miR-153-3p/SETD7 axis. Histol Histopathol 2022; 37:1113-1125. [PMID: 35791576 DOI: 10.14670/hh-18-489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a leading cause of fatality and morbidity in newborns. Long non-coding RNAs (lncRNAs) Small Nucleolar RNA Host Gene 15 (SNHG15) was elevated in the peripheral blood of patients with acute cerebral ischemia, but its role in HI brain injury remained elusive. Hence, this study aimed to investigate the effect of SNHG15 on HI brain injury and study the precise mechanism of action. In this study, a mouse model of HI brain injury was established through ligating right carotid arteries. The oxygen-glucose deprivation (OGD) model was established in PC12 cells. Results showed that SNHG15 was elevated in brain tissues of mice with HI brain injury, and knockdown of SNHG15 attenuated HI-induced impairment of neurobehavioral function, brain edema, brain injury, and cell apoptosis. Besides, SNHG15 acted as a miR-153-3p sponge. SETD7 was identified to be a target of miR-153-3p. Furthermore, down-regulation of SNHG15 inhibited the OGD-induced increase in SETD7 expression in PC12 cells. Moreover, SNHG15 modulated OGD-induced cell apoptosis and decrease of cell viability through the miR-153-3p/SETD7 axis. In conclusion, knockdown of SNHG15 alleviated HI brain injury through modulating the miR-153-3p/ SETD7 axis. SNHG15 may be a prospective target for HIE therapy.
Collapse
Affiliation(s)
- Jiding Fu
- Department of Intensive Care Unit, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yunbo Huang
- Department of Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lewu Xian
- Department of Intensive Care Unit, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
36
|
Feng YN, Li BY, Wang K, Li XX, Zhang L, Dong XZ. Epithelial-mesenchymal transition-related long noncoding RNAs in gastric carcinoma. Front Mol Biosci 2022; 9:977280. [PMCID: PMC9605205 DOI: 10.3389/fmolb.2022.977280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
As an evolutionarily phenotypic conversion program, the epithelial-mesenchymal transition (EMT) has been implicated in tumour deterioration and has facilitated the metastatic ability of cancer cells via enhancing migration and invasion. Gastric cancer (GC) remains a frequently diagnosed non-skin malignancy globally. Most GC-associated mortality can be attributed to metastasis. Recent studies have shown that EMT-related long non-coding RNAs (lncRNAs) play a critical role in GC progression and GC cell motility. In addition, lncRNAs are associated with EMT-related transcription factors and signalling pathways. In the present review, we comprehensively described the EMT-inducing lncRNA molecular mechanisms and functional perspectives of EMT-inducing lncRNAs in GC progression. Taken together, the statements of this review provided a clinical implementation in identifying lncRNAs as potential therapeutic targets for advanced GC.
Collapse
|
37
|
Qin S, Wang Z, Huang C, Huang P, Li D. Serine protease PRSS23 drives gastric cancer by enhancing tumor associated macrophage infiltration via FGF2. Front Immunol 2022; 13:955841. [PMID: 36189305 PMCID: PMC9520605 DOI: 10.3389/fimmu.2022.955841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Serine proteases has been considered to be closely associated with the inflammatory response and tumor progression. As a novel serine protease, the biological function of PRSS23 is rarely studied in cancers. In this study, the prognostic significance of PRSS23 was analyzed in two-independent gastric cancer (GC) cohorts. PRSS23 overexpression was clinically correlated with poor prognosis and macrophage infiltration of GC patients. Loss-of-function study verified that PRSS23 plays oncogenic role in GC. RNA-seq, qRT-PCR, western blotting and ELISA assay confirmed that serine protease PRSS23 positively regulated FGF2 expression and secretion. Single-cell analysis and gene expression correlation analysis showed that PRSS23 and FGF2 were high expressed in fibroblasts, and highly co-expressed with the biomarkers of tumor associated macrophages (TAMs), cancer-associated fibroblasts (CAFs) and mesenchymal cells. Functional analysis confirmed PRSS23/FGF2 was required for TAM infiltration. Rescue assay further verified that PRSS23 promotes GC progression and TAM infiltration through FGF2. Survival analysis showed that high infiltration of M1-macrophage predicted favorable prognosis, while high infiltration level of M2-macrophage predicted poor prognosis in GC. Our finding highlights that PRSS23 promotes TAM infiltration through regulating FGF2 expression and secretion, thereby resulting in a poor prognosis.
Collapse
Affiliation(s)
- Shanshan Qin
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Zidi Wang
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Congcong Huang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Pan Huang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Dandan Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
38
|
Klicka K, Grzywa TM, Mielniczuk A, Klinke A, Włodarski PK. The role of miR-200 family in the regulation of hallmarks of cancer. Front Oncol 2022; 12:965231. [PMID: 36158660 PMCID: PMC9492973 DOI: 10.3389/fonc.2022.965231] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
MiRNAs are short non-coding RNAs that regulate gene expression post-transcriptionally contributing to the development of different diseases including cancer. The miR-200 family consists of five members, miR-200a, miR-200b, miR-200c, miR-141, and miR-429. Their expression is dysregulated in cancer tissue and their level is altered in the body fluids of cancer patients. Moreover, the levels of miR-200 family members correlate with clinical parameters such as cancer patients' survival which makes them potentially useful as diagnostic and prognostic biomarkers. MiRNAs can act as either oncomiRs or tumor suppressor miRNAs depending on the target genes and their role in the regulation of key oncogenic signaling pathways. In most types of cancer, the miR-200 family acts as tumor suppressor miRNA and regulates all features of cancer. In this review, we summarized the expression pattern of the miR-200 family in different types of cancer and their potential utility as biomarkers. Moreover, we comprehensively described the role of miR-200 family members in the regulation of all hallmarks of cancer proposed by Hanahan and Weinberg with the focus on the epithelial-mesenchymal transition, invasiveness, and metastasis of tumor cells.
Collapse
Affiliation(s)
- Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Alicja Klinke
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
39
|
Peña-Flores JA, Bermúdez M, Ramos-Payán R, Villegas-Mercado CE, Soto-Barreras U, Muela-Campos D, Álvarez-Ramírez A, Pérez-Aguirre B, Larrinua-Pacheco AD, López-Camarillo C, López-Gutiérrez JA, Garnica-Palazuelos J, Estrada-Macías ME, Cota-Quintero JL, Barraza-Gómez AA. Emerging role of lncRNAs in drug resistance mechanisms in head and neck squamous cell carcinoma. Front Oncol 2022; 12:965628. [PMID: 35978835 PMCID: PMC9376329 DOI: 10.3389/fonc.2022.965628] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) originates in the squamous cell lining the mucosal surfaces of the head and neck region, including the oral cavity, nasopharynx, tonsils, oropharynx, larynx, and hypopharynx. The heterogeneity, anatomical, and functional characteristics of the patient make the HNSCC a complex and difficult-to-treat disease, leading to a poor survival rate and a decreased quality of life due to the loss of important physiologic functions and aggressive surgical injury. Alteration of driver-oncogenic and tumor-suppressing lncRNAs has recently been recently in HNSCC to obtain possible biomarkers for diagnostic, prognostic, and therapeutic approaches. This review provides current knowledge about the implication of lncRNAs in drug resistance mechanisms in HNSCC. Chemotherapy resistance is a major therapeutic challenge in HNSCC in which lncRNAs are implicated. Lately, it has been shown that lncRNAs involved in autophagy induced by chemotherapy and epithelial–mesenchymal transition (EMT) can act as mechanisms of resistance to anticancer drugs. Conversely, lncRNAs involved in mesenchymal–epithelial transition (MET) are related to chemosensitivity and inhibition of invasiveness of drug-resistant cells. In this regard, long non-coding RNAs (lncRNAs) play a pivotal role in both processes and are important for cancer detection, progression, diagnosis, therapy response, and prognostic values. As the involvement of more lncRNAs is elucidated in chemoresistance mechanisms, an improvement in diagnostic and prognostic tools could promote an advance in targeted and specific therapies in precision oncology.
Collapse
Affiliation(s)
- José A. Peña-Flores
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | - Mercedes Bermúdez
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
- *Correspondence: Mercedes Bermúdez,
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | - Uriel Soto-Barreras
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | | | | | | | | | | | - Jorge A. López-Gutiérrez
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | | | - Juan L. Cota-Quintero
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Odontology , Autonomous University of Sinaloa, Culiacán, Mexico
| | | |
Collapse
|
40
|
Zhang Y, Qiao X, Liu L, Han W, Liu Q, Wang Y, Xie T, Tang Y, Wang T, Meng J, Ye A, He S, Chen R, Chen C. Long noncoding RNA MAGI2-AS3 regulates the H2O2 level and cell senescence via HSPA8. Redox Biol 2022; 54:102383. [PMID: 35797800 PMCID: PMC9287730 DOI: 10.1016/j.redox.2022.102383] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Yingmin Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lihui Liu
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wensheng Han
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinghua Liu
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanyuan Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiheng Tang
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tiepeng Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiao Meng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Aojun Ye
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shunmin He
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Runsheng Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
41
|
Liu Y, Cheng X, Li H, Hui S, Zhang Z, Xiao Y, Peng W. Non-Coding RNAs as Novel Regulators of Neuroinflammation in Alzheimer's Disease. Front Immunol 2022; 13:908076. [PMID: 35720333 PMCID: PMC9201920 DOI: 10.3389/fimmu.2022.908076] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023] Open
Abstract
Alzheimer’s disease (AD) is one of the most common causes of dementia. Although significant breakthroughs have been made in understanding the progression and pathogenesis of AD, it remains a worldwide problem and a significant public health burden. Thus, more efficient diagnostic and therapeutic strategies are urgently required. The latest research studies have revealed that neuroinflammation is crucial in the pathogenesis of AD. Non-coding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), microRNAs (miRNAs), circular RNAs (circRNAs), PIWI-interacting RNAs (piRNAs), and transfer RNA-derived small RNAs (tsRNAs), have been strongly associated with AD-induced neuroinflammation. Furthermore, several ongoing pre-clinical studies are currently investigating ncRNA as disease biomarkers and therapeutic interventions to provide new perspectives for AD diagnosis and treatment. In this review, the role of different types of ncRNAs in neuroinflammation during AD are summarized in order to improve our understanding of AD etiology and aid in the translation of basic research into clinical practice.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Xin Cheng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Hongli Li
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Shan Hui
- Department of Geratology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China.,Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| |
Collapse
|
42
|
Sun A, Li J, Kong W, Jiang X. Silencing of immunoglobulin superfamily containing leucine-rich repeat inhibits gastric cancer cell growth and metastasis by regulating epithelial-mesenchymal transition. Bioengineered 2022; 13:13544-13554. [PMID: 35653801 PMCID: PMC9276042 DOI: 10.1080/21655979.2022.2079303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study aims to investigate the immunoglobulin superfamily containing leucine-rich repeat (ISLR) expression in gastric cancer (GC) and ISLR’s underlying mechanisms regulation of GC progression. Through The Cancer Genome Atlas (TCGA) cohort datasets, we analyzed the ISLR expression in GC tumor tissues and normal tissues. ISLR expression in GC tissues and cells was determined using quantitative real-time polymerase chain reaction. Cell viability, proliferation, migration, and invasion assays were performed in GC cells transfected with sh-ISLR, ISLR plasmids, or controls. TCGA results showed that ISLR expression was higher in GC tumor tissues compared to normal tissues, and its expression levels were related to lymph node metastasis, tumor size, and clinical stage. ISLR was highly expressed in tumor cells. ISLR knockdown suppressed cell viability, proliferation, migration, and invasion in HGC-27 cells, whereas ISLR overexpression led to opposite effects in AGS cells. Gene Set Enrichment Analysis showed that ISLR could activate the epithelial–mesenchymal transition (EMT) signaling pathway. Silencing of ISLR suppressed EMT in HGC-27 cells and overexpression of ISLR promoted EMT in AGS cells. ISLR was overexpressed in both GC cell lines and tumor tissues, and our study first showed that silencing of ISLR inhibited GC cell growth and metastasis by reversing EMT.
Collapse
Affiliation(s)
- Aitao Sun
- Department of Gastroenterology, Yantaishan Hospital, Yantai, Shandong, P.R. China
| | - JinBo Li
- Department of General Surgery, Gaotang County People's Hospital, Liaocheng, Shandong, P.R. China
| | - Weijing Kong
- Department of Cardiology, Qingdao Eighth People's Hospital, Qingdao, Shandong, P.R. China
| | - Xiaodong Jiang
- Department of Gastrointestinal Surgery, Laizhou People's Hospital, Yantai, Shandong, P.R. China
| |
Collapse
|
43
|
Sun Y, Du R, Shang Y, Liu C, Zheng L, Sun R, Wang Y, Lu G. Rho GTPase-activating protein 35 suppresses gastric cancer metastasis by regulating cytoskeleton reorganization and epithelial-to-mesenchymal transition. Bioengineered 2022; 13:14605-14615. [PMID: 35758029 PMCID: PMC9342288 DOI: 10.1080/21655979.2022.2092677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cytoskeletal reorganization and epithelial-to-mesenchymal transition (EMT) are key processes and typical characteristics of metastatic cancer cells. Rho GTPase‑activating protein 35 (ARHGAP35) is a GTPase-activating protein, which has a significant effect on cell motility. However, the particular function of ARHGAP35 in gastric cancer (GC) remains unknown. In the present study, the role of ARHGAP35 in GC was investigated by in vitro loss-of-function and gain-of-function experiments. Cytoskeletal reorganization in GC cells was evaluated using immunofluorescence staining and the protein expression levels of key molecules and active RhoA were detected by western blot analysis. Additionally, the clinical evaluation of proteins in human GC tissues was assessed by immunohistochemistry. The results showed that ARHGAP35, a tumor suppressor, was downregulated in GC tissues and its decreased expression was associated with the metastatic status of GC. Additionally, Transwell and wound healing assays demonstrated that ARHGAP35 knockdown promoted cell motility in vitro. However, the above effects were abrogated following ectopic ARHGAP35 expression. Furthermore, ARHGAP35 could affect cytoskeletal reorganization via directly regulating RhoA activation. In addition, ARHGAP35 upregulated E-cadherin and attenuated EMT in GC cells. Both ARHGAP35 and E-cadherin were associated with overall survival in patients with GC, while their combination allowed for an even greater capacity for distinguishing GC patients with different prognosis. Overall, the results of the current study suggested that ARHGAP35 could directly regulate cell morphology and motility via affecting cytoskeletal reorganization and EMT via targeting RhoA and E-cadherin, respectively. Targeting the ARHGAP35/RhoA/E-cadherin pathway could be a potential approach for treating GC.
Collapse
Affiliation(s)
- Yi Sun
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, shaanxi, China
| | - Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, shaanxi, China
| | - Yulong Shang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, shaanxi, China
| | - Changhao Liu
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, shaanxi, China
| | - Linhua Zheng
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, shaanxi, China
| | - Ruiqing Sun
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, shaanxi, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, shaanxi, China
| | - Guofang Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, shaanxi, China.,Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
44
|
Mao M, Zhang J, Xiang Y, Gong M, Deng Y, Ye D. Role of exosomal competitive endogenous RNA (ceRNA) in diagnosis and treatment of malignant tumors. Bioengineered 2022; 13:12156-12168. [PMID: 35577352 PMCID: PMC9275901 DOI: 10.1080/21655979.2022.2073130] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Malignant tumors are a threat to human health, thus it is critical to better understand the mechanism of tumor occurrence and development and to find key therapeutic targets. Competitive endogenous RNA (ceRNA) is a type of RNA molecule that includes mRNA of coding-protein, pseudogenes, long non-coding RNA (lncRNA), and circular RNA (circRNA) etc. It is created through a competitive combination of common small RNA (miRNA) and has an inhibitory effect on mRNA translation. ceRNA regulate the post transcriptional expression of genes by competitively binding to common microRNAs (miRNAs).Studies have shown that cernas are involved in tumor cell proliferation, invasion and migration, drug resistance, angiogenesis, as well as tumor immunity, and so on, affecting the progression of tumor development. This article reviews the reported roles of exosomal ceRNA in the diagnosis and treatment of malignant tumors and the mechanisms underlying these.
Collapse
Affiliation(s)
- Mingwen Mao
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, China.,Department of Otorhinolaryngology, NingboNo.6 Hospital Ningbo, China
| | - Jingyu Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University, Shanghai, China
| | - Yizhen Xiang
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, China
| | - Mengdan Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, China
| | - Yongqin Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
45
|
Cai T, Peng B, Hu J, He Y. Long noncoding RNA BBOX1-AS1 promotes the progression of gastric cancer by regulating the miR-361-3p/Mucin 13 signaling axis. Bioengineered 2022; 13:13407-13421. [PMID: 36700475 PMCID: PMC9275992 DOI: 10.1080/21655979.2022.2072629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Gastric cancer (GC) places a heavy burden on global health, and the information on the molecular mechanism of the progression of GC is still inadequate. Long noncoding RNA (LncRNA) has been confirmed to be widely involved in regulating the progression of GC. Our aim in this study was to explore the role and potential regulatory mechanism of lncRNA BBOX1-AS1 in GC. The expression levels of BBOX1-AS1, miR-361-3p, and MUC13 in GC tissues and cells were evaluated using quantitative real-time polymerase chain reaction and western blotting. The silencer of BBOX1 antisense RNA 1 (BBOX1-AS1) and mucin 13 (MUC13), the mimics and inhibitor of miR-361-3p, and their negative controls were used to alter the expression of these genes. Luciferase reporter, pull-down, and RNA immunoprecipitation assays were performed to verify the correlation between miR-361-3p, BBOX1-AS1, and MUC13. GC cell proliferation, invasion, and apoptosis were detected by cell counting kit-8, transwell, and flow cytometry assays, respectively. An in vivo functional experiment was performed to assess the effect of BBOX1-AS1 on GC. The results showed that BBOX1-AS1 was significantly upregulated in GC tissues. Silencing of BBOX1-AS1 inhibited GC cell proliferation and invasion and inhibited tumor growth in vivo, whereas it promoted apoptosis. MiR-361-3p was significantly downregulated in GC and counteracted the inhibitory effects of BBOX1-AS1 on GC progression. MUC13, which is targeted by miR-361-3p, is significantly upregulated in GC. MUC13 silencing inhibited GC progression was aborgated by miR-361-3p inhibitor. Collectively, BBOX1-AS1 silencing inhibits GC progression by regulating the miR-361-3p/MUC13 axis, providing a potential therapeutic biomarker for GC.
Collapse
Affiliation(s)
- Tao Cai
- Department of Gastrointestinal Surgery, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, Hubei, China
| | - Binyu Peng
- Department of Thyroid and Breast Surgery, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, Hubei, China
| | - Jun Hu
- Department of Gastrointestinal Surgery, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, Hubei, China
| | - Yan He
- Department of Thyroid and Breast Surgery, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, Hubei, China,CONTACT Yan He Department of Thyroid and Breast Surgery, Hubei No. 3 People’s Hospital of Jianghan University, No. 26 Zhongshan Avenue, Qiaokou District, Wuhan 430033, Hubei, China
| |
Collapse
|
46
|
He C, Liu Y, Li J, Zheng X, Liang J, Cui G, Chang H. LncRNA RPSAP52 promotes cell proliferation and inhibits cell apoptosis via modulating miR-665/STAT3 in gastric cancer. Bioengineered 2022; 13:8699-8711. [PMID: 35322746 PMCID: PMC9161851 DOI: 10.1080/21655979.2022.2054754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
LncRNA RPSAP52 is a newly identified functional molecular in several cancers, but its role in gastric cancer (GC) is currently unclear. This study aimed to investigate the biofunction of lncRNA RPSAP52 in GC. Quantitative polymerase-chain reaction (RT-qPCR) was employed to analyze the gene level of lncRNA RPSAP52 and miR-665. Cell proliferation capacity was evaluated via CCK-8 and colony formation assay. Flow cytometry was applied to detect cell cycle and cell apoptosis. Hematoxylin-eosin staining was conducted for histopathological analysis. Immunochemical staining was carried out to detect expression level of ki-67. Subcellular fractionation was performed to explore the position of lncRNA RPSAP52. The binding relationship among lncRNA RPSAP52, miR-665 and STAT3 was verified via luciferase reporter assay. RNA pull down experiments were used to verify the binding relationship between lncRNA RPSAP52 and miR-665. The STAT3 level was evaluated via Western blot. LncRNA RPSAP52 is significantly elevated in GC cells. Deletion of lncRNA RPSAP52 restrained cell proliferation and induced G0-G1 phase arrest, while expediting apoptosis in GC cells. Tumor growth in vivo was suppressed following lncRNA RPSAP52 depletion. MiR-665 was verified as the target of lncRNA RPSAP52. A ceRNA-sponge mechanism of lncRNA RPSAP52 on miR-665 was identified. Meanwhile, miR-665 functions as STAT3 sponge. MiR-665 overexpression and STAT3 depletion served the same functions as lncRNA RPSAP52 depletion in GC cells. LncRNA RPSAP52 exerted anti-cancer effects via modulating miR-665/STAT3 in GC.Abbreviations: Gastric cancer (GC); Quantitative polymerase-chain reaction (RT-qPCR); Helicobacter pylori (H. pylori); Roswell Park Memorial Institute 1640 (RPMI 1640); fetal bovine serum (FBS); glyceraldheyde 3-phosphate dehydrogenase (GAPDH); propidium iodide (PI); Cell counting kit-8 (CCK-8); radioimmunoprecipitation assay (RIPA); sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE); polyvinylidene fluoride (PVDF); enhanced chemiluminescence (ECL); Statistical Product and Service Solutions (SPSS); standard deviation (SD).
Collapse
Affiliation(s)
- Chao He
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, JinanChina
- Department of Gastrointestinal Surgery, Taian Central Hospital, TaianChina
| | - Yuanyuan Liu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, TaianChina
| | - Jinhou Li
- Department of Hepatobiliary and Pancreatic, Taian Central Hospital, TaianChina
| | - Xiao Zheng
- Department of Gastrointestinal Surgery, Taian Central Hospital, TaianChina
| | - Jianwei Liang
- Department of Gastrointestinal Surgery, Taian Central Hospital, TaianChina
| | - Gang Cui
- Department of Gastrointestinal Surgery, Taian Central Hospital, TaianChina
| | - Hong Chang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, JinanChina
| |
Collapse
|
47
|
Jiang N, Guo Q, Luo Q. Inhibition of ITGB1-DT expression delays the growth and migration of stomach adenocarcinoma and improves the prognosis of cancer patients using the bioinformatics and cell model analysis. J Gastrointest Oncol 2022; 13:615-629. [PMID: 35557569 PMCID: PMC9086027 DOI: 10.21037/jgo-22-233] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/02/2022] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND The long non-coding RNA, integrin subunit beta 1 (ITGB1) divergent transcript (ITGB1-DT), is known to be involved in cancer progression and associated with the poor prognosis of cancer patients. At present, the role of ITGB1-DT in stomach adenocarcinoma (STAD) has not been reported. METHODS The expression level of ITGB1-DT was detected in normal gastric and STAD tissues from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. A receiver operating characteristic (ROC) analysis was used to evaluate the role of ITGB1-DT in diagnosing STAD. The relationship between ITGB1-DT overexpression and clinicopathological features, prognosis, and immune-infiltrated cells in STAD were explored using correlation, survival, and Cox regression analyses. A cell model of ITGB1-DT interference was constructed to explore the roles of ITGB1-DT on STAD cell proliferation and migration, and the signaling mechanism was investigated using Gene Set Enrichment Analysis (GSEA). RESULTS ITGB1-DT was expressed up-regulated in STAD tissues. ITGB1-DT overexpression was associated with the T stage, therapeutic effect, overall survival, progression-free interval status, and poor prognosis in STAD patients. ITGB1-DT overexpression was valuable in diagnosing STAD and a negative factor affecting the prognosis of STAD patients. Interference with ITGB1-DT expression inhibited STAD cell proliferation, invasion, and migration. GSEA results showed that ITGB1-DT may be involved in STAD progression through the insulin, p53, mechanistic target of rapamycin kinase (MTOR), and other signaling pathways. Overexpression of ITGB1-DT was significantly correlated with the levels of STAD B cells, T cells, T helper cells, CD8 T cells, cytotoxic cells, and other immune cells. CONCLUSIONS ITGB1-DT was overexpressed and associated with poor prognosis in STAD. Interference with ITGB1-DT expression may delay the progression of STAD to improve the prognosis of STAD patients.
Collapse
Affiliation(s)
- Ni Jiang
- Cancer Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qiang Guo
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Luo
- Cancer Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
48
|
Li H, Luo K, Yang Z, Chen M, Yang X, Wang J, Ying Y, Wu D, Wang Q. Berbamine Suppresses the Growth of Gastric Cancer Cells by Inactivating the BRD4/c-MYC Signaling Pathway. Drug Des Devel Ther 2022; 16:129-141. [PMID: 35046638 PMCID: PMC8762520 DOI: 10.2147/dddt.s338881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Berbamine (Ber), a bioactive constituent extracted from a traditional Chinese medicinal herb, has been shown to exhibit broad inhibitory activity on a panel of cancer cell types. However, its effects and the underlying molecular mechanisms on gastric cancer (GC) remain poorly understood. METHODS The anti-growth activity of Ber on two GC cell lines and normal gastric epithelial cell line were evaluated using MTS and clone formation assay. Flow cytometry analysis was employed to evaluate the cell cycle distribution and apoptosis of GC cells. Western blot and quantitative PCR (qPCR) analysis were employed to investigate the anti-GC mechanism of Ber. The inhibitory activity and binding affinity of Ber against BRD4 were evaluated by homogeneous time-resolved fluorescence (HTRF) and surface plasmon resonance (SPR) assay, respectively. Molecular docking and molecular simulations were conducted to predict the interaction mode between BRD4 and Ber. RESULTS The results demonstrated that Ber reduced the proliferation of GC cell lines SGC-7901 and BGC-823 and induced cell cycle arrest and apoptosis. Mechanistically, Ber was identified as a novel natural-derived BRD4 inhibitor through multiple experimental assay, and its anti-GC activity was probably mediated by BRD4 inhibition. Molecular modeling studies suggested that Ber might bind to BRD4 primarily through hydrophobic interactions. CONCLUSION Our study uncovered the underlying anti-GC activity of Ber in vitro and suggested that Ber holds promise as a potential lead compound in the discovery of novel BRD4 inhibitors.
Collapse
Affiliation(s)
- Hongchun Li
- Department of Cadre Health, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Kexue Luo
- Department of Cadre Health, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Zhuying Yang
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Miao Chen
- Department of Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, People's Republic of China
| | - Xiuyun Yang
- Department of Cadre Health, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Jiesheng Wang
- Department of Cadre Health, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yin Ying
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, People's Republic of China
| | - Dengxuan Wu
- Department of Rehabilitation Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Qinxian Wang
- Department of Cadre Health, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, People's Republic of China
| |
Collapse
|
49
|
Hu Y, Luo M. NORAD-sponged miR-378c alleviates malignant behaviors of stomach adenocarcinoma via targeting NRP1. Cancer Cell Int 2022; 22:79. [PMID: 35164743 PMCID: PMC8842946 DOI: 10.1186/s12935-022-02474-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/19/2022] [Indexed: 01/25/2023] Open
Abstract
Background Stomach adenocarcinoma (STAD) is the most common type of gastric cancer (GC), with a high recurrence rate and poor prognosis, but the potential indicators for STAD are insufficient. Methods Herein, we found that MicroRNA-378c (miR-378c) was lowly expressed in STAD, and the low expression of miR-378c was highly correlated with poor overall survival (OS), T stage, Reflux history, DSS events and PFI events of STAD patients. Results In addition, univariate analysis displayed that miR-378c was significantly associated with OS (Hazard ratio 0.735; 95% CI, 0.542–0.995; P = 0.046). Furthermore, it was validated that miR-378c inhibition accelerated STAD cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT), while they were suppressed by miR-378c overexpression. Mechanistically, Neuropilin 1 (NRP1) was confirmed as the target of miR-378c, and Lnc-NORAD was identified as its sponger. More importantly, NORAD-mediated miR-378c inhibited malignant behaviors of STAD both in vitro and in vivo. Conclusions Collectively, these results suggest miR-378c as a promising indicator for the treatment of STAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02474-5.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ming Luo
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
50
|
Xu Z, Chen Z, Peng M, Zhang Z, Luo W, Shi R, Wang L, Hong Y. MicroRNA MiR-490-5p suppresses pancreatic cancer through regulating epithelial-mesenchymal transition via targeting MAGI2 antisense RNA 3. Bioengineered 2022; 13:2673-2685. [PMID: 35043728 PMCID: PMC8974041 DOI: 10.1080/21655979.2021.2024653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer with about 5% five-year overall survival rate remains a challenge. Invasion and migration of pancreatic cancer cells are the main factors leading to poor prognosis. MicroRNA-490-5p (miR-490-5p) has anti-cancer effects in a variety of tumors, but its role in pancreatic cancer has not been reported. The mRNA expressions of miR-490-5p, MAGI2 antisense RNA 3 (MAGI2-AS3), Matrix metalloproteinase (MMP)2, MMP9, N-cadherin, and E-cadherin were detected by quantitative real-time PCR, while the protein expressions of these genes except miR-490-5p were measured by Western blot analysis. The cell viability, apoptosis, migration and invasion were detected by cell counting kit-8 (CCK-8), apoptosis and transwell assays. MiR-490-5p was abnormally low-expressed in pancreatic cancer, whose down-regulation generated enhanced effects on viability, migration and invasion in pancreatic cancer cells, as well as MAGI2-AS3 expression. MiR-490-5p mimic exerted the opposite effect on cells, which also down-regulated MMP2, MMP9, and N-cadherin protein expressions, while up-regulating E-cadherin protein expression. MAGI2-AS3, which was the targeted binding site of miR-490-5p, promoted viability, migration and invasion, and inhibited apoptosis of cancer cells. More importantly, miR-490-5p played an anti-cancer role in pancreatic cancer by targeting MAGI2-AS3 and regulating epithelial-mesenchymal transition (EMT), which was partially offset by MAGI2-AS3.
Collapse
Affiliation(s)
- Zhenglei Xu
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Guangdong, China
| | - Zeming Chen
- The Second Clinical Medical College, Jinan University, Guangdong, China
| | - Minsi Peng
- The Second Clinical Medical College, Jinan University, Guangdong, China
| | - Zhuliang Zhang
- The Second Clinical Medical College, Jinan University, Guangdong, China
| | - Weixiang Luo
- Department of Nursing, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Guangdong, China
| | - Ruiyue Shi
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Guangdong, China
| | - Lisheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Guangdong, China
| | - Yingcai Hong
- Department of Thoracic Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Guangdong, China
- CONTACT Yingcai Hong Department of Thoracic Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Guangdong, China
| |
Collapse
|