1
|
Del Arco J, Acosta J, Fernández-Lucas J. Biotechnological applications of purine and pyrimidine deaminases. Biotechnol Adv 2024; 77:108473. [PMID: 39505057 DOI: 10.1016/j.biotechadv.2024.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/21/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Deaminases, ubiquitous enzymes found in all living organisms from bacteria to humans, serve diverse and crucial functions. Notably, purine and pyrimidine deaminases, while biologically essential for regulating nucleotide pools, exhibit exceptional versatility in biotechnology. This review systematically consolidates current knowledge on deaminases, showcasing their potential uses and relevance in the field of biotechnology. Thus, their transformative impact on pharmaceutical manufacturing is highlighted as catalysts for the synthesis of nucleic acid derivatives. Additionally, the role of deaminases in food bioprocessing and production is also explored, particularly in purine content reduction and caffeine production, showcasing their versatility in this field. The review also delves into most promising biomedical applications including deaminase-based GDEPT and genome and transcriptome editing by deaminase-based systems. All in all, illustrated with practical examples, we underscore the role of purine and pyrimidine deaminases in advancing sustainable and efficient biotechnological practices. Finally, the review highlights future challenges and prospects in deaminase-based biotechnological processes, encompassing both industrial and medical perspectives.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia; Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
2
|
Buso G, Corvini F, Fusco EM, Messina M, Cherubini F, Laera N, Paini A, Salvetti M, De Ciuceis C, Ritelli M, Venturini M, Chiarelli N, Colombi M, Muiesan ML. Current Evidence and Future Perspectives in the Medical Management of Vascular Ehlers-Danlos Syndrome: Focus on Vascular Prevention. J Clin Med 2024; 13:4255. [PMID: 39064294 PMCID: PMC11278074 DOI: 10.3390/jcm13144255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Vascular Ehlers-Danlos syndrome (vEDS) is a rare autosomal dominant connective tissue disease resulting from pathogenic variants in the collagen type III alpha 1 chain (COL3A1) gene, encoding type III procollagen. Patients with vEDS present with severe tissue fragility that can result in arterial aneurysm, dissection, or rupture, especially of medium-caliber vessels. Although early reports have indicated a very high mortality rate in affected patients, with an estimated median survival of around 50 years, recent times have seen a remarkable improvement in outcomes in this population. This shift could be related to greater awareness of the disease among patients and physicians, with improved management both in terms of follow-up and treatment of complications. Increasing use of drugs acting on the cardiovascular system may also have contributed to this improvement. In particular, celiprolol, a β1 cardio-selective blocker with a β2-agonist vasodilator effect, has been shown to reduce rates of vascular events in patients with vEDS. However, the evidence on the true benefits and possible mechanisms responsible for the protective effect of celiprolol in this specific setting remains limited. Drugs targeting the extracellular matrix organization and autophagy-lysosome pathways are currently under investigation and could play a role in the future. This narrative review aims to summarize current evidence and future perspectives on vEDS medical treatment, with a specific focus on vascular prevention.
Collapse
Affiliation(s)
- Giacomo Buso
- Department of Clinical and Experimental Sciences, Division of Internal Medicine, ASST Spedali Civili Brescia, University of Brescia, 25123 Brescia, Italy
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Federica Corvini
- Department of Clinical and Experimental Sciences, Division of Internal Medicine, ASST Spedali Civili Brescia, University of Brescia, 25123 Brescia, Italy
| | - Elena Maria Fusco
- Department of Clinical and Experimental Sciences, Division of Internal Medicine, ASST Spedali Civili Brescia, University of Brescia, 25123 Brescia, Italy
| | - Massimiliano Messina
- Department of Clinical and Experimental Sciences, Division of Internal Medicine, ASST Spedali Civili Brescia, University of Brescia, 25123 Brescia, Italy
| | - Fabio Cherubini
- Department of Clinical and Experimental Sciences, Division of Internal Medicine, ASST Spedali Civili Brescia, University of Brescia, 25123 Brescia, Italy
| | - Nicola Laera
- Department of Clinical and Experimental Sciences, Division of Internal Medicine, ASST Spedali Civili Brescia, University of Brescia, 25123 Brescia, Italy
| | - Anna Paini
- Department of Clinical and Experimental Sciences, Division of Internal Medicine, ASST Spedali Civili Brescia, University of Brescia, 25123 Brescia, Italy
| | - Massimo Salvetti
- Department of Clinical and Experimental Sciences, Division of Internal Medicine, ASST Spedali Civili Brescia, University of Brescia, 25123 Brescia, Italy
| | - Carolina De Ciuceis
- Department of Clinical and Experimental Sciences, Division of Internal Medicine, ASST Spedali Civili Brescia, University of Brescia, 25123 Brescia, Italy
| | - Marco Ritelli
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy (N.C.)
| | - Marina Venturini
- Department of Clinical and Experimental Sciences, Division of Dermatology, ASST Spedali Civili Brescia, University of Brescia, 25123 Brescia, Italy
| | - Nicola Chiarelli
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy (N.C.)
| | - Marina Colombi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy (N.C.)
| | - Maria Lorenza Muiesan
- Department of Clinical and Experimental Sciences, Division of Internal Medicine, ASST Spedali Civili Brescia, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
3
|
Wang J, Gao G, Wang D. Developing AAV-delivered nonsense suppressor tRNAs for neurological disorders. Neurotherapeutics 2024; 21:e00391. [PMID: 38959711 PMCID: PMC11269797 DOI: 10.1016/j.neurot.2024.e00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
Adeno-associated virus (AAV)-based gene therapy is a clinical stage therapeutic modality for neurological disorders. A common genetic defect in myriad monogenic neurological disorders is nonsense mutations that account for about 11% of all human pathogenic mutations. Stop codon readthrough by suppressor transfer RNA (sup-tRNA) has long been sought as a potential gene therapy approach to target nonsense mutations, but hindered by inefficient in vivo delivery. The rapid advances in AAV delivery technology have not only powered gene therapy development but also enabled in vivo preclinical assessment of a range of nucleic acid therapeutics, such as sup-tRNA. Compared with conventional AAV gene therapy that delivers a transgene to produce therapeutic proteins, AAV-delivered sup-tRNA has several advantages, such as small gene sizes and operating within the endogenous gene expression regulation, which are important considerations for treating some neurological disorders. This review will first examine sup-tRNA designs and delivery by AAV vectors. We will then analyze how AAV-delivered sup-tRNA can potentially address some neurological disorders that are challenging to conventional gene therapy, followed by discussing available mouse models of neurological diseases for in vivo preclinical testing. Potential challenges for AAV-delivered sup-tRNA to achieve therapeutic efficacy and safety will also be discussed.
Collapse
Affiliation(s)
- Jiaming Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
4
|
Zhang D, Zhu L, Gao Y, Wang Y, Li P. RNA editing enzymes: structure, biological functions and applications. Cell Biosci 2024; 14:34. [PMID: 38493171 PMCID: PMC10944622 DOI: 10.1186/s13578-024-01216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
With the advancement of sequencing technologies and bioinformatics, over than 170 different RNA modifications have been identified. However, only a few of these modifications can lead to base pair changes, which are called RNA editing. RNA editing is a ubiquitous modification in mammalian transcriptomes and is an important co/posttranscriptional modification that plays a crucial role in various cellular processes. There are two main types of RNA editing events: adenosine to inosine (A-to-I) editing, catalyzed by ADARs on double-stranded RNA or ADATs on tRNA, and cytosine to uridine (C-to-U) editing catalyzed by APOBECs. This article provides an overview of the structure, function, and applications of RNA editing enzymes. We discuss the structural characteristics of three RNA editing enzyme families and their catalytic mechanisms in RNA editing. We also explain the biological role of RNA editing, particularly in innate immunity, cancer biogenesis, and antiviral activity. Additionally, this article describes RNA editing tools for manipulating RNA to correct disease-causing mutations, as well as the potential applications of RNA editing enzymes in the field of biotechnology and therapy.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Budzko L, Hoffa-Sobiech K, Jackowiak P, Figlerowicz M. Engineered deaminases as a key component of DNA and RNA editing tools. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102062. [PMID: 38028200 PMCID: PMC10661471 DOI: 10.1016/j.omtn.2023.102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Over recent years, zinc-dependent deaminases have attracted increasing interest as key components of nucleic acid editing tools that can generate point mutations at specific sites in either DNA or RNA by combining a targeting module (such as a catalytically impaired CRISPR-Cas component) and an effector module (most often a deaminase). Deaminase-based molecular tools are already being utilized in a wide spectrum of therapeutic and research applications; however, their medical and biotechnological potential seems to be much greater. Recent reports indicate that the further development of nucleic acid editing systems depends largely on our ability to engineer the substrate specificity and catalytic activity of the editors themselves. In this review, we summarize the current trends and achievements in deaminase engineering. The presented data indicate that the potential of these enzymes has not yet been fully revealed or understood. Several examples show that even relatively minor changes in the structure of deaminases can give them completely new and unique properties.
Collapse
Affiliation(s)
- Lucyna Budzko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Karolina Hoffa-Sobiech
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
6
|
Zambrano-Mila MS, Witzenberger M, Rosenwasser Z, Uzonyi A, Nir R, Ben-Aroya S, Levanon EY, Schwartz S. Dissecting the basis for differential substrate specificity of ADAR1 and ADAR2. Nat Commun 2023; 14:8212. [PMID: 38081817 PMCID: PMC10713624 DOI: 10.1038/s41467-023-43633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Millions of adenosines are deaminated throughout the transcriptome by ADAR1 and/or ADAR2 at varying levels, raising the question of what are the determinants guiding substrate specificity and how these differ between the two enzymes. We monitor how secondary structure modulates ADAR2 vs ADAR1 substrate selectivity, on the basis of systematic probing of thousands of synthetic sequences transfected into cell lines expressing exclusively ADAR1 or ADAR2. Both enzymes induce symmetric, strand-specific editing, yet with distinct offsets with respect to structural disruptions: -26 nt for ADAR2 and -35 nt for ADAR1. We unravel the basis for these differences in offsets through mutants, domain-swaps, and ADAR homologs, and find it to be encoded by the differential RNA binding domain (RBD) architecture. Finally, we demonstrate that this offset-enhanced editing can allow an improved design of ADAR2-recruiting therapeutics, with proof-of-concept experiments demonstrating increased on-target and potentially decreased off-target editing.
Collapse
Affiliation(s)
- Marlon S Zambrano-Mila
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | - Monika Witzenberger
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | - Zohar Rosenwasser
- Faculty of Life Sciences, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Anna Uzonyi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | - Ronit Nir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | - Shay Ben-Aroya
- Faculty of Life Sciences, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Erez Y Levanon
- Faculty of Life Sciences, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel.
| |
Collapse
|
7
|
Chiavetta RF, Titoli S, Barra V, Cancemi P, Melfi R, Di Leonardo A. Site-Specific RNA Editing of Stop Mutations in the CFTR mRNA of Human Bronchial Cultured Cells. Int J Mol Sci 2023; 24:10940. [PMID: 37446121 DOI: 10.3390/ijms241310940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
It is reported that about 10% of cystic fibrosis (CF) patients worldwide have nonsense (stop) mutations in the CFTR gene, which cause the premature termination of CFTR protein synthesis, leading to a truncated and non-functional protein. To address this issue, we investigated the possibility of rescuing the CFTR nonsense mutation (UGA) by sequence-specific RNA editing in CFTR mutant CFF-16HBEge, W1282X, and G542X human bronchial cells. We used two different base editor tools that take advantage of ADAR enzymes (adenosine deaminase acting on RNA) to edit adenosine to inosine (A-to-I) within the mRNA: the REPAIRv2 (RNA Editing for Programmable A to I Replacement, version 2) and the minixABE (A to I Base Editor). Immunofluorescence experiments show that both approaches were able to recover the CFTR protein in the CFTR mutant cells. In addition, RT-qPCR confirmed the rescue of the CFTR full transcript. These findings suggest that site-specific RNA editing may efficiently correct the UGA premature stop codon in the CFTR transcript in CFF-16HBEge, W1282X, and G542X cells. Thus, this approach, which is safer than acting directly on the mutated DNA, opens up new therapeutic possibilities for CF patients with nonsense mutations.
Collapse
Affiliation(s)
- Roberta F Chiavetta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Simona Titoli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Patrizia Cancemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
- Centro di Oncobiologia Sperimentale (C.O.B.S.), Viale Delle Scienze, 90128 Palermo, Italy
| | - Raffaella Melfi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Aldo Di Leonardo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
- Centro di Oncobiologia Sperimentale (C.O.B.S.), Viale Delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
8
|
Ai X, Zhou S, Chen M, Du F, Yuan Y, Cui X, Dong J, Huang X, Tang Z. Leveraging Small Molecule-Induced Aptazyme Cleavage for Directed A-to-I RNA Editing. ACS Synth Biol 2023. [PMID: 37384927 DOI: 10.1021/acssynbio.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
As a promising therapeutic approach for the correction of pathogenic mutations, the RNA editing process is reversible and tunable without permanently altering the genome. RNA editing mediated by human ADAR proteins offers distinct advantages, including high specificity and low propensity to cause immunogenicity. Herein, we describe a small molecule-inducible RNA editing strategy by incorporating aptazymes into the guide RNA of ADAR-based RNA editing technology. Once small molecules are added or removed, aptazymes trigger self-cleavage to release the guide RNA, achieving small molecule-controlled RNA editing. To satisfy different RNA editing applications, both turn-on and turn-off A-to-I RNA editing of target mRNA have been realized by using on/off-switch aptazymes. Theoretically speaking, this strategy can be applied to various ADAR-based editing systems, which could improve the safety and potential clinical applications of RNA editing technology.
Collapse
Affiliation(s)
- Xilei Ai
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shan Zhou
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Meiyi Chen
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Feng Du
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| | - Yi Yuan
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| | - Juan Dong
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| | - Xin Huang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| |
Collapse
|
9
|
Abstract
Cardiovascular disease still remains the leading cause of morbidity and mortality worldwide. Current pharmacological or interventional treatments help to tackle symptoms and even reduce mortality, but cardiovascular disease cases continue to rise. The emergence of novel therapeutic strategies that precisely and efficiently combat cardiovascular disease is therefore deemed more essential than ever. RNA editing, the cell-intrinsic deamination of adenosine or cytidine RNA residues, changes the molecular identity of edited nucleotides, severely altering the fate of RNA molecules involved in key biological processes. The most common type of RNA editing is the deamination of adenosine residue to inosine (A-to-I), which is catalysed by adenosine deaminases acting on RNA (ADARs). Recent efforts have convincingly liaised RNA editing-based mechanisms to the pathophysiology of the cardiovascular system. In this review, we will briefly introduce the basic concepts of the RNA editing field of research. We will particularly focus our discussion on the therapeutic exploitation of RNA editing as a novel therapeutic tool as well as the future perspectives for its use in cardiovascular disease treatment.
Collapse
|
10
|
Lei Z, Meng H, Zhuang Y, Zhu Q, Yi C. Chemical and Biological Approaches to Interrogate off-Target Effects of Genome Editing Tools. ACS Chem Biol 2023; 18:205-217. [PMID: 36731114 DOI: 10.1021/acschembio.2c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Various genome editing tools have been developed for programmable genome manipulation at specified genomic loci. However, it is crucial to comprehensively interrogate the off-target effect induced by these genome editing tools, especially when apply them onto the therapeutic applications. Here, we outlined the off-target effect that has been observed for various genome editing tools. We also reviewed detection methods to determine or evaluate the off-target editing, and we have discussed their advantages and limitations. Additionally, we have summarized current RNA editing tools for RNA therapy and medicine that may serve as alternative approaches for genome editing tools in both research and clinical applications.
Collapse
Affiliation(s)
- Zhixin Lei
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Haowei Meng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing100871, China
| | - Yuan Zhuang
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing100871, China
| | - Qingguo Zhu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Chengqi Yi
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing100871, China.,Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China.,Peking University Genome Editing Research Center, Peking University, Beijing100871, China
| |
Collapse
|
11
|
RNA-targeting strategies as a platform for ocular gene therapy. Prog Retin Eye Res 2023; 92:101110. [PMID: 35840489 DOI: 10.1016/j.preteyeres.2022.101110] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023]
Abstract
Genetic medicine is offering hope as new therapies are emerging for many previously untreatable diseases. The eye is at the forefront of these advances, as exemplified by the approval of Luxturna® by the United States Food and Drug Administration (US FDA) in 2017 for the treatment of one form of Leber Congenital Amaurosis (LCA), an inherited blindness. Luxturna® was also the first in vivo human gene therapy to gain US FDA approval. Numerous gene therapy clinical trials are ongoing for other eye diseases, and novel delivery systems, discovery of new drug targets and emerging technologies are currently driving the field forward. Targeting RNA, in particular, is an attractive therapeutic strategy for genetic disease that may have safety advantages over alternative approaches by avoiding permanent changes in the genome. In this regard, antisense oligonucleotides (ASO) and RNA interference (RNAi) are the currently popular strategies for developing RNA-targeted therapeutics. Enthusiasm has been further fuelled by the emergence of clustered regularly interspersed short palindromic repeats (CRISPR)-CRISPR associated (Cas) systems that allow targeted manipulation of nucleic acids. RNA-targeting CRISPR-Cas systems now provide a novel way to develop RNA-targeted therapeutics and may provide superior efficiency and specificity to existing technologies. In addition, RNA base editing technologies using CRISPR-Cas and other modalities also enable precise alteration of single nucleotides. In this review, we showcase advances made by RNA-targeting systems for ocular disease, discuss applications of ASO and RNAi technologies, highlight emerging CRISPR-Cas systems and consider the implications of RNA-targeting therapeutics in the development of future drugs to treat eye disease.
Collapse
|
12
|
Noncoding RNAs Emerging as Drugs or Drug Targets: Their Chemical Modification, Bio-Conjugation and Intracellular Regulation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196717. [PMID: 36235253 PMCID: PMC9573214 DOI: 10.3390/molecules27196717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
With the increasing understanding of various disease-related noncoding RNAs, ncRNAs are emerging as novel drugs and drug targets. Nucleic acid drugs based on different types of noncoding RNAs have been designed and tested. Chemical modification has been applied to noncoding RNAs such as siRNA or miRNA to increase the resistance to degradation with minimum influence on their biological function. Chemical biological methods have also been developed to regulate relevant noncoding RNAs in the occurrence of various diseases. New strategies such as designing ribonuclease targeting chimeras to degrade endogenous noncoding RNAs are emerging as promising approaches to regulate gene expressions, serving as next-generation drugs. This review summarized the current state of noncoding RNA-based theranostics, major chemical modifications of noncoding RNAs to develop nucleic acid drugs, conjugation of RNA with different functional biomolecules as well as design and screening of potential molecules to regulate the expression or activity of endogenous noncoding RNAs for drug development. Finally, strategies of improving the delivery of noncoding RNAs are discussed.
Collapse
|
13
|
Qian Y, Li J, Zhao S, Matthews EA, Adoff M, Zhong W, An X, Yeo M, Park C, Yang X, Wang BS, Southwell DG, Huang ZJ. Programmable RNA sensing for cell monitoring and manipulation. Nature 2022; 610:713-721. [PMID: 36198803 PMCID: PMC10348343 DOI: 10.1038/s41586-022-05280-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 08/26/2022] [Indexed: 12/22/2022]
Abstract
RNA is a central and universal mediator of genetic information underlying the diversity of cell types and cell states, which together shape tissue organization and organismal function across species and lifespans. Despite numerous advances in RNA sequencing technologies and the massive accumulation of transcriptome datasets across the life sciences1,2, the dearth of technologies that use RNAs to observe and manipulate cell types remains a bottleneck in biology and medicine. Here we describe CellREADR (Cell access through RNA sensing by Endogenous ADAR), a programmable RNA-sensing technology that leverages RNA editing mediated by ADAR to couple the detection of cell-defining RNAs with the translation of effector proteins. Viral delivery of CellREADR conferred specific cell-type access in mouse and rat brains and in ex vivo human brain tissues. Furthermore, CellREADR enabled the recording and control of specific types of neurons in behaving mice. CellREADR thus highlights the potential for RNA-based monitoring and editing of animal cells in ways that are specific, versatile, simple and generalizable across organ systems and species, with wide applications in biology, biotechnology and programmable RNA medicine.
Collapse
Affiliation(s)
- Yongjun Qian
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Jiayun Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Elizabeth A Matthews
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Michael Adoff
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Weixin Zhong
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Xu An
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Michele Yeo
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Christine Park
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Xiaolu Yang
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Bor-Shuen Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Derek G Southwell
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Z Josh Huang
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA.
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC, USA.
| |
Collapse
|
14
|
RNA modifications: importance in immune cell biology and related diseases. Signal Transduct Target Ther 2022; 7:334. [PMID: 36138023 PMCID: PMC9499983 DOI: 10.1038/s41392-022-01175-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
RNA modifications have become hot topics recently. By influencing RNA processes, including generation, transportation, function, and metabolization, they act as critical regulators of cell biology. The immune cell abnormality in human diseases is also a research focus and progressing rapidly these years. Studies have demonstrated that RNA modifications participate in the multiple biological processes of immune cells, including development, differentiation, activation, migration, and polarization, thereby modulating the immune responses and are involved in some immune related diseases. In this review, we present existing knowledge of the biological functions and underlying mechanisms of RNA modifications, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), N7-methylguanosine (m7G), N4-acetylcytosine (ac4C), pseudouridine (Ψ), uridylation, and adenosine-to-inosine (A-to-I) RNA editing, and summarize their critical roles in immune cell biology. Via regulating the biological processes of immune cells, RNA modifications can participate in the pathogenesis of immune related diseases, such as cancers, infection, inflammatory and autoimmune diseases. We further highlight the challenges and future directions based on the existing knowledge. All in all, this review will provide helpful knowledge as well as novel ideas for the researchers in this area.
Collapse
|
15
|
U-to-C RNA editing by synthetic PPR-DYW proteins in bacteria and human culture cells. Commun Biol 2022; 5:968. [PMID: 36109586 PMCID: PMC9478123 DOI: 10.1038/s42003-022-03927-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Programmable RNA editing offers significant therapeutic potential for a wide range of genetic diseases. Currently, several deaminase enzymes, including ADAR and APOBEC, can perform programmable adenosine-to-inosine or cytidine-to-uridine RNA correction. However, enzymes to perform guanosine-to-adenosine and uridine-to-cytidine (U-to-C) editing are still lacking to complete the set of transition reactions. It is believed that the DYW:KP proteins, specific to seedless plants, catalyze the U-to-C reactions in mitochondria and chloroplasts. In this study, we designed seven DYW:KP domains based on consensus sequences and fused them to a designer RNA-binding pentatricopeptide repeat (PPR) domain. We show that three of these PPR-DYW:KP proteins edit targeted uridine to cytidine in bacteria and human cells. In addition, we show that these proteins have a 5′ but not apparent 3′ preference for neighboring nucleotides. Our results establish the DYW:KP aminase domain as a potential candidate for the development of a U-to-C editing tool in human cells. DYW:KP domains, designed on proteins found in the mitochondria and chloroplasts of seedless plants, are fused to a designer RNA-binding pentatricopeptide repeat (PPR) domain to edit targeted uridine to cytidine in bacteria and human cells.
Collapse
|
16
|
Zhai J, Koh JH, Soong TW. RNA editing of ion channels and receptors in physiology and neurological disorders. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac010. [PMID: 38596706 PMCID: PMC11003377 DOI: 10.1093/oons/kvac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/14/2022] [Accepted: 05/15/2022] [Indexed: 04/11/2024]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a post-transcriptional modification that diversifies protein functions by recoding RNA or alters protein quantity by regulating mRNA level. A-to-I editing is catalyzed by adenosine deaminases that act on RNA. Millions of editing sites have been reported, but they are mostly found in non-coding sequences. However, there are also several recoding editing sites in transcripts coding for ion channels or transporters that have been shown to play important roles in physiology and changes in editing level are associated with neurological diseases. These editing sites are not only found to be evolutionary conserved across species, but they are also dynamically regulated spatially, developmentally and by environmental factors. In this review, we discuss the current knowledge of A-to-I RNA editing of ion channels and receptors in the context of their roles in physiology and pathological disease. We also discuss the regulation of editing events and site-directed RNA editing approaches for functional study that offer a therapeutic pathway for clinical applications.
Collapse
Affiliation(s)
- Jing Zhai
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Joanne Huifen Koh
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Tuck Wah Soong
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore,
Singapore 117456, Singapore
| |
Collapse
|
17
|
Next RNA Therapeutics: The Mine of Non-Coding. Int J Mol Sci 2022; 23:ijms23137471. [PMID: 35806476 PMCID: PMC9267739 DOI: 10.3390/ijms23137471] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 12/26/2022] Open
Abstract
The growing knowledge on several classes of non-coding RNAs (ncRNAs) and their different functional roles has aroused great interest in the scientific community. Beyond the Central Dogma of Biology, it is clearly known that not all RNAs code for protein products, and they exert a broader repertoire of biological functions. As described in this review, ncRNAs participate in gene expression regulation both at transcriptional and post-transcriptional levels and represent critical elements driving and controlling pathophysiological processes in multicellular organisms. For this reason, in recent years, a great boost was given to ncRNA-based strategies with potential therapeutic abilities, and nowadays, the use of RNA molecules is experimentally validated and actually exploited in clinics to counteract several diseases. In this review, we summarize the principal classes of therapeutic ncRNA molecules that are potentially implied in disease onset and progression, which are already used in clinics or under clinical trials, highlighting the advantages and the need for a targeted therapeutic strategy design. Furthermore, we discuss the benefits and the limits of RNA therapeutics and the ongoing development of delivery strategies to limit the off-target effects and to increase the translational application.
Collapse
|
18
|
Abstract
RNA-based gene therapy requires therapeutic RNA to function inside target cells without eliciting unwanted immune responses. RNA can be ferried into cells using non-viral drug delivery systems, which circumvent the limitations of viral delivery vectors. Here, we review the growing number of RNA therapeutic classes, their molecular mechanisms of action, and the design considerations for their respective delivery platforms. We describe polymer-based, lipid-based, and conjugate-based drug delivery systems, differentiating between those that passively and those that actively target specific cell types. Finally, we describe the path from preclinical drug delivery research to clinical approval, highlighting opportunities to improve the efficiency with which new drug delivery systems are discovered.
Collapse
Affiliation(s)
- Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
19
|
Zhu H, Huang L, Liu S, Dai Z, Songyang Z, Weng Z, Xiong Y. REIA: A database for cancer A-to-I RNA editing with interactive analysis. Int J Biol Sci 2022; 18:2472-2483. [PMID: 35414795 PMCID: PMC8990463 DOI: 10.7150/ijbs.69458] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/28/2022] [Indexed: 11/05/2022] Open
Abstract
Epitranscriptomic changes caused by adenosine-to-inosine (A-to-I) RNA editing contribute to the pathogenesis of human cancers; however, only a small fraction of the millions editing sites detected so far has clear functionality. To facilitate more in-depth studies on the editing, this paper offers REIA (http://bioinfo-sysu.com/reia), an interactive web server that analyses and visualizes the association between human cancers and A-to-I RNA editing sites (RESs). As a comprehensive database, REIA curates not only 8,447,588 RESs from 9,895 patients across 34 cancers, where 33 are from TCGA and 1 from GEO, but also 13 different types of multi-omic data for the cancers. As an interactive server, REIA provides various options for the user to specify the interested sites, to browse their annotation/editing level/profile in cancer, and to compare the difference in multi-omic features between editing and non-editing groups. From the editing profiles, REIA further detects 658 peptides that are supported by mass spectrum data but not yet covered in any prior works.
Collapse
Affiliation(s)
- Huimin Zhu
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Songbin Liu
- School of Automation, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhiming Dai
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhihui Weng
- Faculty of Health Sciences, University of Macau, Macau, 999078, China
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
20
|
Dutta N, Deb I, Sarzynska J, Lahiri A. Inosine and its methyl derivatives: Occurrence, biogenesis, and function in RNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 169-170:21-52. [PMID: 35065168 DOI: 10.1016/j.pbiomolbio.2022.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 05/21/2023]
Abstract
Inosine is one of the most common post-transcriptional modifications. Since its discovery, it has been noted for its ability to contribute to non-Watson-Crick interactions within RNA. Rapidly accumulating evidence points to the widespread generation of inosine through hydrolytic deamination of adenosine to inosine by different classes of adenosine deaminases. Three naturally occurring methyl derivatives of inosine, i.e., 1-methylinosine, 2'-O-methylinosine and 1,2'-O-dimethylinosine are currently reported in RNA modification databases. These modifications are expected to lead to changes in the structure, folding, dynamics, stability and functions of RNA. The importance of the modifications is indicated by the strong conservation of the modifying enzymes across organisms. The structure, binding and catalytic mechanism of the adenosine deaminases have been well-studied, but the underlying mechanism of the catalytic reaction is not very clear yet. Here we extensively review the existing data on the occurrence, biogenesis and functions of inosine and its methyl derivatives in RNA. We also included the structural and thermodynamic aspects of these modifications in our review to provide a detailed and integrated discussion on the consequences of A-to-I editing in RNA and the contribution of different structural and thermodynamic studies in understanding its role in RNA. We also highlight the importance of further studies for a better understanding of the mechanisms of the different classes of deamination reactions. Further investigation of the structural and thermodynamic consequences and functions of these modifications in RNA should provide more useful information about their role in different diseases.
Collapse
Affiliation(s)
- Nivedita Dutta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Indrajit Deb
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India.
| |
Collapse
|
21
|
Khosravi HM, Jantsch MF. Site-directed RNA editing: recent advances and open challenges. RNA Biol 2021; 18:41-50. [PMID: 34569891 PMCID: PMC8677011 DOI: 10.1080/15476286.2021.1983288] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/25/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
RNA editing by cytosine and adenosine deaminases changes the identity of the edited bases. While cytosines are converted to uracils, adenines are converted to inosines. If coding regions of mRNAs are affected, the coding potential of the RNA can be changed, depending on the codon affected. The recoding potential of nucleotide deaminases has recently gained attention for their ability to correct genetic mutations by either reverting the mutation itself or by manipulating processing steps such as RNA splicing. In contrast to CRISPR-based DNA-editing approaches, RNA editing events are transient in nature, therefore reducing the risk of long-lasting inadvertent side-effects. Moreover, some RNA-based therapeutics are already FDA approved and their use in targeting multiple cells or organs to restore genetic function has already been shown. In this review, we provide an overview on the current status and technical differences of site-directed RNA-editing approaches. We also discuss advantages and challenges of individual approaches.
Collapse
Affiliation(s)
- Hamid Mansouri Khosravi
- Center of Anatomy & Cell Biology Division of Cell & Developmental Biology Medical, Unviersity of Vienna SchwarzspanierstrasseVienna, Austria
| | - Michael F. Jantsch
- Center of Anatomy & Cell Biology Division of Cell & Developmental Biology Medical, Unviersity of Vienna SchwarzspanierstrasseVienna, Austria
| |
Collapse
|
22
|
Aquino-Jarquin G. Current advances in overcoming obstacles of CRISPR/Cas9 off-target genome editing. Mol Genet Metab 2021; 134:77-86. [PMID: 34391646 DOI: 10.1016/j.ymgme.2021.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
CRISPR/Cas9-based technology has revolutionized biomedical research by providing a high-fidelity gene-editing method, foreshadowing a significant impact on the therapeutics of many human genetic disorders previously considered untreatable. However, off-target events represent a critical hurdle before genome editing can be fully established in clinical practice. This mini-review recapitulates some recent advances for detecting and overcoming off-target effects mediated by the CRISPR/Cas9 system that could increase the likelihood of clinical success of the CRISPR-based approaches.
Collapse
Affiliation(s)
- Guillermo Aquino-Jarquin
- Laboratorio de Investigación en Genómica, Genética y Bioinformática, Hospital Infantil de México, Federico Gómez, Ciudad de México, Mexico; Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma Metropolitana, Ciudad de México, Mexico.
| |
Collapse
|
23
|
Ojha N, Diaz Quiroz JF, Rosenthal JJC. In vitro and in cellula site-directed RNA editing using the λNDD-BoxB system. Methods Enzymol 2021; 658:335-358. [PMID: 34517953 DOI: 10.1016/bs.mie.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Site-directed RNA editing (SDRE) exploits the enzymatic activity of Adenosine Deaminases Acting on RNAs (ADAR) to program changes in genetic information as it passes through RNA. ADARs convert adenosine (A) to inosine (I) through a hydrolytic deamination and since I can be read as guanosine (G) during translation, this change can regulate gene function and correct G→A genetic mutations. In SDRE, ADARs are redirected to convert user-defined A's to I's. SDRE also has certain advantages over genome editing because the changes in RNA are reversible and thus safer. In addition, ADARs are endogenously expressed in humans and therefore unlikely to provoke immunological complications when administered. Recently, a variety of systems for SDRE have been developed. Some rely on harnessing endogenously expressed ADARs and other deliver engineered versions of ADAR's catalytic domain. All systems are currently under refinement, and there are still challenges associated with raising their efficiency and specificity to levels that are adequate for therapeutics. This chapter provides a detailed protocol for in vitro and in cellula editing assays using the λNDD-BoxB system, one of the first systems developed for SDRE. The λNDD-BoxB system relies on gRNAs that are linked to the catalytic domain of human ADAR2 through a small RNA binding protein-RNA stem/loop interaction. We provide step-by-step protocols for (a) the construction of guide RNAs and editing enzyme plasmids, and (b) their use in vitro and in cellula for editing assays using a fluorescent protein-based reporter system containing a premature termination codon that can be corrected by editing.
Collapse
Affiliation(s)
- Namrata Ojha
- The Eugene Bell Center, The Marine Biological Laboratory, Woods Hole, MA, United States
| | | | - Joshua J C Rosenthal
- The Eugene Bell Center, The Marine Biological Laboratory, Woods Hole, MA, United States.
| |
Collapse
|
24
|
Croze RH, Kotterman M, Burns CH, Schmitt CE, Quezada M, Schaffer D, Kirn D, Francis P. Viral Vector Technologies and Strategies: Improving on Nature. Int Ophthalmol Clin 2021; 61:59-89. [PMID: 34196318 PMCID: PMC8253506 DOI: 10.1097/iio.0000000000000361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Bire S, Buhan CL, Palazzoli F. The CRISPR Patent Landscape: Focus on Chinese Researchers. CRISPR J 2021; 4:339-349. [PMID: 34152217 DOI: 10.1089/crispr.2021.0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite the strong presence of Chinese scientists in genome-editing research, little attention has been paid to the legal, economic, and scientific development of patented CRISPR technologies in China. In this study, we focus on CRISPR patent documents from academic and industrial Chinese players to assess their positioning on this breakthrough technology. We review the fields of application and the CRISPR components claimed in the relevant patent documents. Our results show different profiles observed for academic or industrial assignees. Most of the patent families in our data set cover applications in genome editing and nucleic-acid detection for human therapeutic and diagnostic purposes. Trends in the patent data since 2014 confirm that China' R&D has rapidly developed a significant CRISPR patent landscape of its own, covering a diverse range of systems and applications. These recent developments deserve closer scrutiny from the international CRISPR community.
Collapse
|
26
|
Uzonyi A, Nir R, Shliefer O, Stern-Ginossar N, Antebi Y, Stelzer Y, Levanon EY, Schwartz S. Deciphering the principles of the RNA editing code via large-scale systematic probing. Mol Cell 2021; 81:2374-2387.e3. [PMID: 33905683 DOI: 10.1016/j.molcel.2021.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/31/2021] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
Adenosine-to-inosine editing is catalyzed by ADAR1 at thousands of sites transcriptome-wide. Despite intense interest in ADAR1 from physiological, bioengineering, and therapeutic perspectives, the rules of ADAR1 substrate selection are poorly understood. Here, we used large-scale systematic probing of ∼2,000 synthetic constructs to explore the structure and sequence context determining editability. We uncover two structural layers determining the formation and propagation of A-to-I editing, independent of sequence. First, editing is robustly induced at fixed intervals of 35 bp upstream and 30 bp downstream of structural disruptions. Second, editing is symmetrically introduced on opposite sites on a double-stranded structure. Our findings suggest a recursive model for RNA editing, whereby the structural alteration induced by the editing at one site iteratively gives rise to the formation of an additional editing site at a fixed periodicity, serving as a basis for the propagation of editing along and across both strands of double-stranded RNA structures.
Collapse
Affiliation(s)
- Anna Uzonyi
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ronit Nir
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ofir Shliefer
- Faculty of Life Sciences, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yaron Antebi
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yonatan Stelzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Erez Y Levanon
- Faculty of Life Sciences, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
27
|
Wang H, Chen S, Wei J, Song G, Zhao Y. A-to-I RNA Editing in Cancer: From Evaluating the Editing Level to Exploring the Editing Effects. Front Oncol 2021; 10:632187. [PMID: 33643923 PMCID: PMC7905090 DOI: 10.3389/fonc.2020.632187] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
As an important regulatory mechanism at the posttranscriptional level in metazoans, adenosine deaminase acting on RNA (ADAR)-induced A-to-I RNA editing modification of double-stranded RNA has been widely detected and reported. Editing may lead to non-synonymous amino acid mutations, RNA secondary structure alterations, pre-mRNA processing changes, and microRNA-mRNA redirection, thereby affecting multiple cellular processes and functions. In recent years, researchers have successfully developed several bioinformatics software tools and pipelines to identify RNA editing sites. However, there are still no widely accepted editing site standards due to the variety of parallel optimization and RNA high-seq protocols and programs. It is also challenging to identify RNA editing by normal protocols in tumor samples due to the high DNA mutation rate. Numerous RNA editing sites have been reported to be located in non-coding regions and can affect the biosynthesis of ncRNAs, including miRNAs and circular RNAs. Predicting the function of RNA editing sites located in non-coding regions and ncRNAs is significantly difficult. In this review, we aim to provide a better understanding of bioinformatics strategies for human cancer A-to-I RNA editing identification and briefly discuss recent advances in related areas, such as the oncogenic and tumor suppressive effects of RNA editing.
Collapse
Affiliation(s)
- Heming Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Sinuo Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Jiayi Wei
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Guangqi Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Yicheng Zhao
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
28
|
Tong B, Dong H, Cui Y, Jiang P, Jin Z, Zhang D. The Versatile Type V CRISPR Effectors and Their Application Prospects. Front Cell Dev Biol 2021; 8:622103. [PMID: 33614630 PMCID: PMC7889808 DOI: 10.3389/fcell.2020.622103] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
The class II clustered regularly interspaced short palindromic repeats (CRISPR)–Cas systems, characterized by a single effector protein, can be further subdivided into types II, V, and VI. The application of the type II CRISPR effector protein Cas9 as a sequence-specific nuclease in gene editing has revolutionized this field. Similarly, Cas13 as the effector protein of type VI provides a convenient tool for RNA manipulation. Additionally, the type V CRISPR–Cas system is another valuable resource with many subtypes and diverse functions. In this review, we summarize all the subtypes of the type V family that have been identified so far. According to the functions currently displayed by the type V family, we attempt to introduce the functional principle, current application status, and development prospects in biotechnology for all major members.
Collapse
Affiliation(s)
- Baisong Tong
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Huina Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yali Cui
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Pingtao Jiang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhaoxia Jin
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Görücü Yilmaz S. Genome editing technologies: CRISPR, LEAPER, RESTORE, ARCUT, SATI, and RESCUE. EXCLI JOURNAL 2021; 20:19-45. [PMID: 33510590 PMCID: PMC7838830 DOI: 10.17179/excli2020-3070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022]
Abstract
Genome editing technologies include techniques used for desired genetic modifications and allow the insertion, modification or deletion of specific DNA fragments. Recent advances in genome biology offer unprecedented promise for interdisciplinary collaboration and applications in gene editing. New genome editing technologies enable specific and efficient genome modifications. The sources that inspire these modifications and already exist in the genome are DNA degradation enzymes and DNA repair pathways. Six of these recent technologies are the clustered regularly interspaced short palindromic repeats (CRISPR), leveraging endogenous ADAR for programmable editing of RNA (LEAPER), recruiting endogenous ADAR to specific transcripts for oligonucleotide-mediated RNA editing (RESTORE), chemistry-based artificial restriction DNA cutter (ARCUT), single homology arm donor mediated intron-targeting integration (SATI), RNA editing for specific C-to-U exchange (RESCUE). These technologies are widely used from various biomedical researches to clinics, agriculture, and allow you to rearrange genomic sequences, create cell lines and animal models to solve human diseases. This review emphasizes the characteristics, superiority, limitations, also whether each technology can be used in different biological systems and the potential application of these systems in the treatment of several human diseases.
Collapse
Affiliation(s)
- Senay Görücü Yilmaz
- Department of Nutrition and Dietetics, Gaziantep University, Gaziantep, Turkey 27310
| |
Collapse
|
30
|
Erdmann EA, Mahapatra A, Mukherjee P, Yang B, Hundley HA. To protect and modify double-stranded RNA - the critical roles of ADARs in development, immunity and oncogenesis. Crit Rev Biochem Mol Biol 2020; 56:54-87. [PMID: 33356612 DOI: 10.1080/10409238.2020.1856768] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adenosine deaminases that act on RNA (ADARs) are present in all animals and function to both bind double-stranded RNA (dsRNA) and catalyze the deamination of adenosine (A) to inosine (I). As inosine is a biological mimic of guanosine, deamination by ADARs changes the genetic information in the RNA sequence and is commonly referred to as RNA editing. Millions of A-to-I editing events have been reported for metazoan transcriptomes, indicating that RNA editing is a widespread mechanism used to generate molecular and phenotypic diversity. Loss of ADARs results in lethality in mice and behavioral phenotypes in worm and fly model systems. Furthermore, alterations in RNA editing occur in over 35 human pathologies, including several neurological disorders, metabolic diseases, and cancers. In this review, a basic introduction to ADAR structure and target recognition will be provided before summarizing how ADARs affect the fate of cellular RNAs and how researchers are using this knowledge to engineer ADARs for personalized medicine. In addition, we will highlight the important roles of ADARs and RNA editing in innate immunity and cancer biology.
Collapse
Affiliation(s)
- Emily A Erdmann
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Priyanka Mukherjee
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| | - Boyoon Yang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| |
Collapse
|
31
|
Lau CH, Tin C, Suh Y. CRISPR-based strategies for targeted transgene knock-in and gene correction. Fac Rev 2020; 9:20. [PMID: 33659952 PMCID: PMC7886068 DOI: 10.12703/r/9-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The last few years have seen tremendous advances in CRISPR-mediated genome editing. Great efforts have been made to improve the efficiency, specificity, editing window, and targeting scope of CRISPR/Cas9-mediated transgene knock-in and gene correction. In this article, we comprehensively review recent progress in CRISPR-based strategies for targeted transgene knock-in and gene correction in both homology-dependent and homology-independent approaches. We cover homology-directed repair (HDR), synthesis-dependent strand annealing (SDSA), microhomology-mediated end joining (MMEJ), and homology-mediated end joining (HMEJ) pathways for a homology-dependent strategy and alternative DNA repair pathways such as non-homologous end joining (NHEJ), base excision repair (BER), and mismatch repair (MMR) for a homology-independent strategy. We also discuss base editing and prime editing that enable direct conversion of nucleotides in genomic DNA without damaging the DNA or requiring donor DNA. Notably, we illustrate the key mechanisms and design principles for each strategy, providing design guidelines for multiplex, flexible, scarless gene insertion and replacement at high efficiency and specificity. In addition, we highlight next-generation base editors that provide higher editing efficiency, fewer undesired by-products, and broader targeting scope.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biomedical Engineering, Academic 1, 83 Tat Chee Avenue, City University of Hong Kong, Hong Kong
| | - Chung Tin
- Department of Biomedical Engineering, Academic 1, 83 Tat Chee Avenue, City University of Hong Kong, Hong Kong
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
32
|
Investigating REPAIRv2 as a Tool to Edit CFTR mRNA with Premature Stop Codons. Int J Mol Sci 2020; 21:ijms21134781. [PMID: 32640650 PMCID: PMC7369808 DOI: 10.3390/ijms21134781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene encoding the transmembrane conductance regulator (CFTR) protein. Some CF patients are compound heterozygous or homozygous for nonsense mutations in the CFTR gene. This implies the presence in the transcript of premature termination codons (PTCs) responsible for a truncated CFTR protein and a more severe form of the disease. Aminoglycoside and PTC124 derivatives have been used for the read-through of PTCs to restore the full-length CFTR protein. However, in a precision medicine framework, the CRISPR/dCas13b-based molecular tool “REPAIRv2” (RNA Editing for Programmable A to I Replacement, version 2) could be a good alternative to restore the full-length CFTR protein. This RNA editing approach is based on the targeting of the deaminase domain of the hADAR2 enzyme fused to the dCas13b protein to a specific adenosine to be edited to inosine in the mutant mRNA. Targeting specificity is allowed by a guide RNA (gRNA) complementarily to the target region and recognized by the dCas13b protein. Here, we used the REPAIRv2 platform to edit the UGA PTC to UGG in different cell types, namely IB3-1 cells, HeLa, and FRT cells engineered to express H2BGFPopal and CFTRW1282X, respectively.
Collapse
|