1
|
Yang P, Zhu B, Cui H, Yu Y, Yu Q, Kong L, Sun M, Liu Y, Han B, Chen S. KLF13 promotes esophageal cancer progression and regulates triacylglyceride and free fatty acid metabolism through GPIHBP1. Cell Death Dis 2025; 16:425. [PMID: 40450000 DOI: 10.1038/s41419-025-07709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 04/11/2025] [Accepted: 05/01/2025] [Indexed: 06/03/2025]
Abstract
Kruppel-Like Factor 13 (KLF13) has strong effects on cancer occurrence and progression. Nevertheless, the role of KLF13 in oesophagal cancer (EC) remain elusive. In this study, we detected the expression of KLF13 in EC tissues and cells using immunohistochemistry, western blot, and real-time PCR, and found that KLF13 was upregulated in EC tissues and cells compared to normal controls. High expression of KLF13 indicated a poor prognosis for EC patients. Further, function studies in vitro and in vivo were performed to explore the role of KLF13 in EC cell progression. The results revealed that KLF13 knockdown suppressed EC cell proliferation, migration, epithelial-mesenchymal transition, increased cell apoptosis and cell cycle arrest in vivo and inhibited tumour growth in vitro. Conversely, KLF13 overexpression in EC cells had the opposite consequences. Mechanically, differentially expressed genes downstream of KLF13 were identified by RNA-seq and ChIP-seq. We found that there is a positive correlation between triacylglyceride and free fatty acid levels and KLF13 expression levels. A lipid-related gene, Glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1 (GPIHBP1), was identified as a downstream gene of KLF13 using luciferase and chromatin immunoprecipitation assays, whose expression was positively regulated by KLF13. Finally, in vitro and in vivo recovery assays using shRNAs and overexpression plasmids confirmed that KLF13 has an oncogenic role in EC progression through GPIHBP1. Collectively, KLF13 can promote EC progression, triacylglyceride and free fatty acid metabolism through GPIHBP1. Therefore, molecular therapies targeting KLF13 and GPIHBP1 may be effective treatments against EC.
Collapse
Affiliation(s)
- Pengjie Yang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, P.R. China
- Department of Thoracic Surgery, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, P.R. China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, Fujian Province, P.R. China
| | - Benben Zhu
- Department of Pharmacy, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, P.R. China
| | - Hongwei Cui
- Scientific Research Department, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, P.R. China
| | - Yongjun Yu
- Department of Thoracic Surgery, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, P.R. China
- Department of Cardio-Thoracic Surgery, The Second Hospital of Chifeng, Chifeng, Inner Mongolia Autonomous Region, P.R. China
| | - Qin Yu
- Department of Radiotherapy, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, P.R. China
| | - Linghui Kong
- Department of Pathology, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, P.R. China
| | - Mengfei Sun
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, P.R. China
| | - Yuan Liu
- Department of integrated Chinese and Western medicine, Inner Mongolia Mental Health Center, Third Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region, P.R. China
| | - Bateer Han
- Department of Thoracic Surgery, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, P.R. China.
| | - Shuchen Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, P.R. China.
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, Fujian Province, P.R. China.
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian Province, P.R. China.
- Fujian Provincial Key Laboratory of Cardiothoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, P.R. China.
- Department of Operation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, P.R. China.
| |
Collapse
|
2
|
Wang L, Zhang Y, Wang J, Jiang X, Wang G, Wang H, Shu Y, Huiyuan H. Exosomal lncRNA profiles in patients with HFrEF: Evidence for KLF3-AS1 as a novel diagnostic biomarker. Mol Cell Probes 2025; 82:102032. [PMID: 40404068 DOI: 10.1016/j.mcp.2025.102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/25/2025] [Accepted: 05/17/2025] [Indexed: 05/24/2025]
Abstract
BACKGROUND Serum exosomal long noncoding RNAs (lncRNAs) have not been studied extensively as biomarkers in heart failure (HF) with reduced ejection fraction (HFrEF). We compared lncRNA expression in patients with HFrEF hospitalized for acute HF with that in healthy individuals to identify differentially expressed exosomal lncRNAs. Furthermore, we explored the clinical value of exosomal KLF3-AS1 in diagnosing HF and investigated its role in cardiac hypertrophy. METHOD Exosomes were isolated from patients with HFrEF and healthy individuals. We performed microarray analysis of differentially expressed lncRNAs and genes (DELs and DEGs, respectively) associated with HF. Protein-protein interaction (PPI), lncRNA-mRNA-KEGG pathway, and interaction networks between lncRNAs and RNA-binding proteins (RBPs) were developed. Expression patterns were verified using qRT-PCR. The diagnostic applicability of exosomal lncRNAs in HF was quantified by plotting receiver operating characteristic (ROC) curves. The size of the cardiomyocytes was evaluated using α-actinin immunostaining. RESULTS In total, 138 DELs and 1132 DEGs were identified. PPI network analysis identified INS, CTNNB1, and CAT as the most prominent hub genes, whereas MDM2, MYH6, ENAH, and KLF3-AS1 were significantly enriched in the RBP interaction network. In the validation phase, patients with HFrEF exhibited a significant increase in KLF3-AS1 expression compared with healthy individuals. Exosomal KLF3-AS1 had an area under the ROC curve of 0.861. Functionally, KLF3-AS1 overexpression reduced Ang II-induced cardiac hypertrophy in vitro. CONCLUSION Our results elucidated the exact patterns of circulating exosomal mRNAs and lncRNA expression in patients with HFrEF hospitalized for acute HF. Moreover, the high expression of exosomal KLF3-AS1 is a potential diagnostic biomarker for HFrEF.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030001, Shanxi, China
| | - Yanan Zhang
- Department of Critical Medicine, Shanxi Bethune Hospital, Taiyuan, 030001, Shanxi, China
| | - Jiapu Wang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030001, Shanxi, China
| | - Xiao Jiang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030001, Shanxi, China
| | - Gang Wang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030001, Shanxi, China
| | - Haixiong Wang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030001, Shanxi, China
| | - Yan Shu
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030001, Shanxi, China.
| | - Han Huiyuan
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
3
|
Yan Q, Wong W, Gong L, Yang J, Liang D, Chin KY, Dai S, Wang J. Roles of long non‑coding RNAs in esophageal cell squamous carcinoma (Review). Int J Mol Med 2024; 54:72. [PMID: 38963019 PMCID: PMC11232667 DOI: 10.3892/ijmm.2024.5396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent and deadly malignancy of the digestive tract. Recent research has identified long non‑coding RNAs (lncRNAs) as crucial regulators in the pathogenesis of ESCC. These lncRNAs, typically exceeding 200 nucleotides, modulate gene expression through various mechanisms, including the competing endogenous RNA (ceRNA) pathway and RNA‑protein interactions. The current study reviews the multifaceted roles of lncRNAs in ESCC, highlighting their involvement in processes such as proliferation, migration, invasion, epithelial‑mesenchymal transition, cell cycle progression, resistance to radiotherapy and chemotherapy, glycolysis, apoptosis, angiogenesis, autophagy, tumor growth, metastasis and the maintenance of cancer stem cells. Specific lncRNAs like HLA complex P5, LINC00963 and non‑coding repressor of NFAT have been shown to enhance resistance to radio‑ and chemotherapy by modulating pathways such as AKT signaling and microRNA interaction, which promote cell survival and proliferation under therapeutic stress. Furthermore, lncRNAs like family with sequence similarity 83, member A antisense RNA 1, zinc finger NFX1‑type containing 1 antisense RNA 1 and taurine upregulated gene 1 are implicated in enhancing invasive and proliferative capabilities of ESCC cells through the ceRNA mechanism, while interactions with RNA‑binding proteins further influence cancer cell behavior. The comprehensive analysis underscores the potential of lncRNAs as biomarkers for prognosis and therapeutic targets in ESCC, suggesting avenues for future research focused on elucidating the detailed molecular mechanisms and clinical applications of lncRNAs in ESCC management.
Collapse
Affiliation(s)
- Qihang Yan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Esophageal Cancer Institute, Guangzhou, Guangdong 510060, P.R. China
| | - Wingshing Wong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Li Gong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Jie Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Dachuan Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Shuqin Dai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Junye Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Esophageal Cancer Institute, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
4
|
Huang P, Wen F, Li Y, Li Q. The tale of SOX2: Focusing on lncRNA regulation in cancer progression and therapy. Life Sci 2024; 344:122576. [PMID: 38492918 DOI: 10.1016/j.lfs.2024.122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as influential contributors to diverse cellular processes, which regulate gene function and expression via multiple mechanistic pathways. Therefore, it is essential to exploit the structures and interactions of lncRNAs to comprehend their mechanistic functions within cells. A growing body of evidence has revealed that deregulated lncRNAs are involved in multiple regulations of malignant events including cell proliferation, growth, invasion, and metabolism. SRY-related high mobility group box (SOX)2, a well-recognized member of the SOX family, is commonly overexpressed in various types of cancer, contributing to tumor progression and maintenance of stemness. Emerging studies have shown that lncRNAs interact with SOX2 to remarkably contribute to carcinogenesis and disease states. This review elaborates on the crosstalk between the intricate and complicated functions of lncRNAs and SOX2 in the context of malignant diseases. We elucidate distinct molecular mechanisms that contribute to the onset/advancement of cancer, indicating that lncRNAs/SOX2 axes hold immense promise for potential therapeutic targets. Furthermore, we delve into the modalities of emerging feasible treatment options for targeting lncRNAs, highlighting the limitations of such therapies and providing novel insights into further ameliorations of targeted strategies of lncRNAs to promote the clinical implications. Translating current discoveries into clinical applications could ultimately boost improved survival and prognosis of cancer patients.
Collapse
Affiliation(s)
- Peng Huang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Feng Wen
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - YiShan Li
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, West China School of Nursing, Chengdu, Sichuan 610041, China
| | - Qiu Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Qi JH, Huang SL, Jin SZ. Novel milestones for early esophageal carcinoma: From bench to bed. World J Gastrointest Oncol 2024; 16:1104-1118. [PMID: 38660637 PMCID: PMC11037034 DOI: 10.4251/wjgo.v16.i4.1104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/28/2024] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
Esophageal cancer (EC) is the seventh most common cancer worldwide, and esophageal squamous cell carcinoma (ESCC) accounts for the majority of cases of EC. To effectively diagnose and treat ESCC and improve patient prognosis, timely diagnosis in the initial phase of the illness is necessary. This article offers a detailed summary of the latest advancements and emerging technologies in the timely identification of ECs. Molecular biology and epigenetics approaches involve the use of molecular mechanisms combined with fluorescence quantitative polymerase chain reaction (qPCR), high-throughput sequencing technology (next-generation sequencing), and digital PCR technology to study endogenous or exogenous biomolecular changes in the human body and provide a decision-making basis for the diagnosis, treatment, and prognosis of diseases. The investigation of the microbiome is a swiftly progressing area in human cancer research, and microorganisms with complex functions are potential components of the tumor microenvironment. The intratumoral microbiota was also found to be connected to tumor progression. The application of endoscopy as a crucial technique for the early identification of ESCC has been essential, and with ongoing advancements in technology, endoscopy has continuously improved. With the advancement of artificial intelligence (AI) technology, the utilization of AI in the detection of gastrointestinal tumors has become increasingly prevalent. The implementation of AI can effectively resolve the discrepancies among observers, improve the detection rate, assist in predicting the depth of invasion and differentiation status, guide the pericancerous margins, and aid in a more accurate diagnosis of ESCC.
Collapse
Affiliation(s)
- Ji-Han Qi
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Shi-Ling Huang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Shi-Zhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| |
Collapse
|
6
|
Liu D, Zhao X, Zhang Q, Zhou F, Tong X. Bone marrow mesenchymal stem cell-derived exosomes promote osteoblast proliferation, migration and inhibit apoptosis by regulating KLF3-AS1/miR-338-3p. BMC Musculoskelet Disord 2024; 25:122. [PMID: 38336637 PMCID: PMC10854165 DOI: 10.1186/s12891-024-07236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
AIM This study aimed to investigate the effect and mechanism of bone marrow mesenchymal stem cell-derived exosomes on osteoblast function. METHODS The expression of KLF3-AS1 and miR-338-3p in serum of fracture patients was detected by qRT-PCR. Exosomes from BMSCs were isolated by ultrafast centrifugation. MC3T3-E1 cells were cultured in vitro as experimental cells. Intracellular gene expression was regulated by transfection of si-KLF3-AS1 or miR-338-3p inhibitors. MTT assay, Transwell assay and flow cytometry were used to evaluate cell viability, migration, and apoptosis. The luciferase reporter gene was used to verify the targeting relationship between KLF3-AS1 and miR-338-3p. Bioinformatics analysis was used to identify the basic functions and possible enrichment pathways of miR-338-3p target genes. RESULTS The expressions of KLF3-AS1 and miR-338-3p in the serum of fracture patients were down-regulated and up-regulated, respectively. The expression of KLF3-AS1 was increased in MC3T3-E1 cells cultured with BMSCs-Exo, while the viability and migration ability of MC3T3-E1 cells were enhanced, and the apoptosis ability was weakened. Further analysis revealed miR-338-3p was the target gene of KLF3-AS1. The expression of miR-338-3p was downregulated in MC3T3-E1 cells cultured with BMSCs-Exo. Inhibition of miR-338-3p in MC3T3-E1 cells enhanced the viability and migration ability of MC3T3-E1 cells when cultured with BMSCs-Exo, while suppressing apoptosis. Bioinformatics analysis demonstrated that the target genes of miR-338-3p were predominantly localized at the axon's initiation site, involved in biological processes such as development and growth regulation, and mainly enriched in MAPK and ErbB signaling pathways. CONCLUSION In vitro, BMSCs-Exo exhibits the capacity to enhance proliferation and migration while inhibiting apoptosis of MC3T3-E1 cells, potentially achieved through modulation of KLF3-AS1 and miR-338-3p expression in MC3T3-E1 cells.
Collapse
Affiliation(s)
- Dacheng Liu
- Department of Orthopedics, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, 269 University Road, Tongshan District, Xuzhou, 221100, Jiangsu, China
| | - Xuechao Zhao
- Department of Orthopedics, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, 269 University Road, Tongshan District, Xuzhou, 221100, Jiangsu, China
| | - Qiang Zhang
- Department of Orthopedics, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, 269 University Road, Tongshan District, Xuzhou, 221100, Jiangsu, China
| | - Fei Zhou
- Operating Room, Xuzhou Central Hospital, Xuzhou, 221006, China
| | - Xiangyang Tong
- Department of Orthopedics, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, 269 University Road, Tongshan District, Xuzhou, 221100, Jiangsu, China.
| |
Collapse
|
7
|
Shen W, Yuan L, Hao B, Xiang J, Cheng F, Wu Z, Li X. KLF3 promotes colorectal cancer growth by activating WNT1. Aging (Albany NY) 2024; 16:2475-2493. [PMID: 38305787 PMCID: PMC10911342 DOI: 10.18632/aging.205494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024]
Abstract
OBJECTIVE The function of Kruppel-like factor 3 (KLF3) remains largely unexplored in colorectal cancer (CRC). METHODS KLF3 expression in CRC was assessed through qPCR, western blotting, immunohistochemical assays, and The Cancer Genome Atlas (TCGA) database. The tumor-promoting capacity of KLF3 was explored by performing in vitro functional experiments using CRC cells. A subcutaneous nude mouse tumor assay was employed to evaluate tumor growth. To further elucidate the interaction between KLF3 and other factors, luciferase reporter assay, agarose gel electrophoresis, and ChIP analysis were performed. RESULTS KLF3 was downregulated in CRC tissue and cells. Silencing of KLF3 increased the potential of CRC cells for proliferation, migration, and invasion, while its activation decreased these processes. Downregulated KLF3 was associated with accelerated tumor growth in vivo. Mechanistically, KLF3 was discovered to target the promoter sequence of WNT1. Consequently, the diminished expression of KLF3 led to the buildup of WNT1 and the WNT/β-catenin pathway activation, consequently stimulating the progression of CRC. CONCLUSIONS This investigation suggests that the involvement of KLF3/WNT1 regulatory pathway contributes to the progression of CRC, thereby emphasizing its promise as an important focus for future therapies aimed at treating CRC.
Collapse
Affiliation(s)
- Wei Shen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lebin Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Boyu Hao
- General Medicine, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jiajia Xiang
- Laboratory of Molecular Center, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Fei Cheng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zhao Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Xiaodong Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
8
|
Sun Y, Chu S, Wang R, Xia R, Sun M, Gao Z, Xia Z, Zhang Y, Dong S, Wang T. Non-coding RNAs modulate pyroptosis in myocardial ischemia-reperfusion injury: A comprehensive review. Int J Biol Macromol 2024; 257:128558. [PMID: 38048927 DOI: 10.1016/j.ijbiomac.2023.128558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
Reperfusion therapy is the most effective treatment for acute myocardial infarction. However, reperfusion itself can also cause cardiomyocytes damage. Pyroptosis has been shown to be an important mode of myocardial cell death during ischemia-reperfusion. Non-coding RNAs (ncRNAs) play critical roles in regulating pyroptosis. The regulation of pyroptosis by microRNAs, long ncRNAs, and circular RNAs may represent a new mechanism of myocardial ischemia-reperfusion injury. This review summarizes the currently known regulatory roles of ncRNAs in myocardial ischemia-reperfusion injury and interactions between ncRNAs. Potential therapeutic strategies using ncRNA modulation are also discussed.
Collapse
Affiliation(s)
- Yi Sun
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shujuan Chu
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Rong Wang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Rui Xia
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Meng Sun
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Zhixiong Gao
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yan Zhang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Siwei Dong
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| | - Tingting Wang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
9
|
Liu X, Zhang L. microRNA-92b-3p augments colon cancer development through inhibiting KLF3. J Biochem Mol Toxicol 2023; 37:e23488. [PMID: 37597242 DOI: 10.1002/jbt.23488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/05/2023] [Accepted: 07/31/2023] [Indexed: 08/21/2023]
Abstract
Colon cancer (CC) is a tumor of the large intestine. miR-92b-3p is often deregulated in the tumorigensis. Here, the role of miR-92b-3p in the development of CC was investigated. miR-92b-3p and Kruppel-like factor 3 (KLF3) expression was examined in CC tissues and cells. miR-92b-3p inhibitor or KLF3 overexpression vector was transfected into CC cells, respectively to observe its role in CC cell proliferation, invasion, migration, and apoptosis. The targeting relationship between miR-92b-3p and KLF3 was validated. Meanwhile, rescue experiments were performed by co-transfection of miR-92b-3p inhibitor and KLF3 siRNA, followed by determining CC cell proliferation, invasion, migration, and apoptosis. Higher miR-92b-3p and lower KLF3 expression levels were observed in CC tissues and cells. miR-92b-3p inhibition or KLF3 overexpression reduced proliferation, invasion, and migration whereas induced apoptosis of CC cells. KLF3 was validated to be the target gene of miR-92b-3p. Depletion of KLF3 could reverse the antitumor role of miR-92b-3p inhibition in CC cells. miR-92b-3p augments CC development through inhibiting KLF3, which may confers a novel way to develop future treatment target.
Collapse
Affiliation(s)
- Xuezhong Liu
- Department of Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Lei Zhang
- Department of General Surgery, Liaocheng Dongchangfu People's Hospital, Liaocheng, Shandong, China
| |
Collapse
|
10
|
Liu Y, Shen Z, Wei X, Gu L, Zheng M, Zhang Y, Cheng X, Fu Y, Lu W. CircSLC39A8 attenuates paclitaxel resistance in ovarian cancer by regulating the miR‑185‑5p/BMF axis. Transl Oncol 2023; 36:101746. [PMID: 37499410 PMCID: PMC10413200 DOI: 10.1016/j.tranon.2023.101746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Chemoresistance to paclitaxel (PTX) is one of the main reasons for treatment failure and poor prognosis in patients with advanced ovarian cancer. Therefore, it is imperative to explore the mechanisms related to chemotherapy resistance in ovarian cancer to find potential therapeutic targets. Circular RNAs (circRNAs) play important roles in cancer development and progression. However, their biological functions and clinical significance in ovarian cancer have not been fully elucidated. Therefore, in this study, we aimed to investigate the function and underlying mechanism of hsa_circ_0002782 (circSLC39A8), identified by circRNA sequencing, in regulating PTX resistance. The effects of circSLC39A8 on PTX resistance was assessed by cell viability, colony formation, flow cytometry assays and an in vivo subcutaneous xenografted tumor mouse model. RNA immunoprecipitation and dual-luciferase reporter assays were performed to verify the interaction between circSLC39A8 and the miR-185-5p/BMF signal axis. We found that circSLC39A8 was downregulated in PTX-resistant ovarian cancer cells and tissues, and its low expression was associated with poor prognosis. Biologically, circSLC39A8 knockdown promoted PTX resistance in vitro and in vivo, while circSLC39A8 overexpression showed the opposite effect. Mechanistically, circSLC39A8, acting as an endogenous sponge for miR-185-5p, could relieve the inhibition of miR-185-5p on the expression of its downstream target, BMF; thus enhancing the sensitivity of ovarian cancer to PTX. Our findings demonstrate that circSLC39A8 can promote PTX sensitivity by regulating the miR-185-5p/BMF axis. This may be a valuable prognostic biomarker and a promising therapeutic target for patients with ovarian cancer.
Collapse
Affiliation(s)
- Yuwan Liu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Zhangjin Shen
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Xinyi Wei
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Lingkai Gu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Mengxia Zheng
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Yanan Zhang
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Xiaodong Cheng
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yunfeng Fu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China; Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China.
| | - Weiguo Lu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China; Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China; Zhejiang Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Hangzhou, Zhejiang 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
11
|
Pordel S, Khorrami M, Saadatpour F, Rezaee D, Cho WC, Jahani S, Aghaei-Zarch SM, Hashemi E, Najafi S. The role of microRNA-185 in the pathogenesis of human diseases: A focus on cancer. Pathol Res Pract 2023; 249:154729. [PMID: 37639952 DOI: 10.1016/j.prp.2023.154729] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/29/2023] [Indexed: 08/31/2023]
Abstract
MicroRNAs (miRNAs) are a widely-studied class of non-coding RNAs characterized by their short length (18-25 nucleotides). The precise functions of miRNAs are not well-elucidated; however, an increasing number of studies suggest their involvement in various physiologic processes and deregulation in pathologic conditions. miRNA-185 (miR-185) is among the mostly-studied miRNAs in human diseases, which is found to play putative roles in conditions like metabolic disorders, asthma, frailty, schizophrenia, and hepatitis. Notably, many cancer studies report the downregulation of miR-185 in cell lines, tumor tissues, and plasma specimens of patients, while it demonstrates a suppressing role on the malignant properties of cancer cells in vitro and in vivo. Accordingly, miR-185 can be considered a tumor suppressor miRNA in human malignancies, while a few studies also report inconsistent findings. Being suggested as a prognostic/diagnostic biomarker, mi-185 is also found to offer clinical potentials, particularly for early diagnosis and prediction of the prognosis of cancer patients. In this review, we have outlined the studies that have evaluated the functions and clinical significance of miR-185 in different human diseases with a particular focus on cancer.
Collapse
Affiliation(s)
- Safoora Pordel
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology and Allergy, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Motahare Khorrami
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Saadatpour
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| | | | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Hashemi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Jin C, Yuan S, Piao L, Ren M, Liu Q. Propofol synergizes with circAPBB2 to protect against hypoxia/reoxygenation-induced oxidative stress, inflammation, and apoptosis of human cardiomyocytes. Immun Inflamm Dis 2023; 11:e952. [PMID: 37647434 PMCID: PMC10408373 DOI: 10.1002/iid3.952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Myocardial injury is the main manifestation of cardiovascular diseases, and previous studies have shown that propofol (PPF) regulates myocardial injury. However, the mechanism of PPF in regulating myocardial injury remains to be further explored. This work aims to analyze the effects of PPF on human cardiomyocyte injury and the underlying mechanism. METHODS The regulatory and functional role of PPF and circAPBB2 in human cardiomyocyte injury were analyzed using an in vitro hypoxia/reoxygenation (H/R) cell model, which was established by treating human cardiomyocytes (AC16 cells) with H/R. The study evaluated AC16 cell injury by analyzing cytotoxicity, oxidative stress, inflammation and apoptosis of H/R-induced AC16 cells. Quantitative real-time polymerase chain reaction was performed to detect circAPBB2, miR-18a-5p and dual specificity phosphatase 14 (DUSP14) expression. Protein expression was analyzed by Western blot analysis assay. Dual-luciferase reporter assay, RNA pull-down assay and RNA immunoprecipitation assay were performed to identify the associations among circAPBB2, miR-18a-5p and DUSP14. Cytotoxicity was investigated by cell counting kit-8 assay and lactate dehydrogenase activity detection kit. Oxidative stress was evaluated by cellular reactive oxygen species assay kit and superoxide dismutase activity assay kit. The production of tumor necrosis factor-α and interleukin-1β was evaluated by enzyme-linked immunosorbent assays. RESULTS The expression of circAPBB2 and DUSP14 was significantly decreased, while miR-18a-5p was increased in H/R-induced AC16 cells when compared with controls. H/R treatment-induced cytotoxicity, oxidative stress, inflammation and cell apoptosis were attenuated after circAPBB2 overexpression or PPF treatment, whereas these effects were restored by increasing miR-18a-5p expression. PPF treatment improved the inhibitory effect of ectopic circAPBB2 expression on H/R-induced cell injury. MiR-18a-5p silencing ameliorated H/R-induced AC16 damage by interacting with DUSP14. Mechanically, circAPBB2 acted as a miR-18a-5p sponge, and miR-18a-5p targeted DUSP14 in AC16 cells. CONCLUSION PPF synergized with circAPBB2 to protect AC16 cells against H/R-induced oxidative stress, inflammation and apoptosis through the miR-18a-5p/DUSP14 pathway.
Collapse
Affiliation(s)
- Chenghao Jin
- Department of AnesthesiologyBeijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Shunnv Yuan
- Laboratory MedicineThe Affiliated Hospital of Yanbian UniversityJilinChina
| | - Longyi Piao
- Department of OncologyJilin Central Hospital of Jilin UniversityJilinChina
| | - Mingcheng Ren
- Department of OncologyDandong Central Hospital DandongLiaoningChina
| | - Qiang Liu
- Department of AnesthesiologyBeijing Tongren Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
13
|
Salamini-Montemurri M, Lamas-Maceiras M, Lorenzo-Catoira L, Vizoso-Vázquez Á, Barreiro-Alonso A, Rodríguez-Belmonte E, Quindós-Varela M, Cerdán ME. Identification of lncRNAs Deregulated in Epithelial Ovarian Cancer Based on a Gene Expression Profiling Meta-Analysis. Int J Mol Sci 2023; 24:10798. [PMID: 37445988 PMCID: PMC10341812 DOI: 10.3390/ijms241310798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the deadliest gynecological cancers worldwide, mainly because of its initially asymptomatic nature and consequently late diagnosis. Long non-coding RNAs (lncRNA) are non-coding transcripts of more than 200 nucleotides, whose deregulation is involved in pathologies such as EOC, and are therefore envisaged as future biomarkers. We present a meta-analysis of available gene expression profiling (microarray and RNA sequencing) studies from EOC patients to identify lncRNA genes with diagnostic and prognostic value. In this meta-analysis, we include 46 independent cohorts, along with available expression profiling data from EOC cell lines. Differential expression analyses were conducted to identify those lncRNAs that are deregulated in (i) EOC versus healthy ovary tissue, (ii) unfavorable versus more favorable prognosis, (iii) metastatic versus primary tumors, (iv) chemoresistant versus chemosensitive EOC, and (v) correlation to specific histological subtypes of EOC. From the results of this meta-analysis, we established a panel of lncRNAs that are highly correlated with EOC. The panel includes several lncRNAs that are already known and even functionally characterized in EOC, but also lncRNAs that have not been previously correlated with this cancer, and which are discussed in relation to their putative role in EOC and their potential use as clinically relevant tools.
Collapse
Affiliation(s)
- Martín Salamini-Montemurri
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Mónica Lamas-Maceiras
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Lidia Lorenzo-Catoira
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Ángel Vizoso-Vázquez
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Aida Barreiro-Alonso
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Esther Rodríguez-Belmonte
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - María Quindós-Varela
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - M Esperanza Cerdán
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| |
Collapse
|
14
|
Chen S, Zhuang Q, Li P, Zeng J, Peng Y, Ding Z, Cao H, Zheng R, Wang W. The long non-coding RNA KLF3-AS1/miR-10a-3p/ZBTB20 axis improves the degenerative changes in human nucleus pulposus cells. Cell Tissue Res 2023:10.1007/s00441-023-03751-z. [PMID: 37052702 DOI: 10.1007/s00441-023-03751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 01/26/2023] [Indexed: 04/14/2023]
Abstract
Excessive apoptosis of intervertebral disc cells, namely nucleus pulposus (NP) cells, results in decreased cell density and extracellular matrix (ECM) catabolism, hence leading to intervertebral disc degeneration (IVDD). As a cell model in the present study, a commercially available human NP cell line was utilized. Long noncoding RNAs and microRNAs may regulate the proliferation or apoptosis of human NP cells, hence exerting a significant influence on the occurrence of IVDD. KLF3-AS1 was discovered to be abnormally downregulated in IVDD tissues. Overexpression of KLF3-AS1 enhanced NP cell viability, prevented cell apoptosis, boosted ECM synthesis, and lowered MMP-13 and ADAMTS4 levels. ZBTB20 and KLF3-AS1 were co-expressed in IVDD; ZBTB20 overexpression had similar effects on NP cells, ECM production, and MMP-13 and ADAMTS4 levels as KLF3-AS1 overexpression. miR-10a-3p may target KLF3-AS1 and ZBTB20 and inhibit the expression of ZBTB20. Inhibition of miR-10a-3p enhanced NP cell viability, reduced apoptosis, and enhanced ECM synthesis. KLF3-AS1 overexpression increased ZBTB20 expression, whereas miR-10a-3p overexpression decreased ZBTB20 expression; miR-10a-3p overexpression reduced the effects of KLF3-AS1 on ZBTB20. Overexpression of miR-10a-3p consistently decreased the effects of KLF3-AS1 overexpression on NP cell survival, apoptosis, and ECM synthesis. In conclusion, KLF3-AS1 overexpression may ameliorate degenerative NP cell alterations through the miR-10a-3p/ZBTB20 axis.
Collapse
Affiliation(s)
- Shijie Chen
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Quan Zhuang
- Transplantation Center, the Third Xiangya Hospital of Central South University, Hunan, 410013, China
| | - Pinghuang Li
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Jin Zeng
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Yi Peng
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Zhiyu Ding
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Hongqing Cao
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Ruping Zheng
- School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Weiguo Wang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China.
| |
Collapse
|
15
|
Lin Y, Zhang Y, Tuo Z, Gao L, Ding D, Bi L, Yu D, Lv Z, Wang J, Chen X. ORC6, a novel prognostic biomarker, correlates with T regulatory cell infiltration in prostate adenocarcinoma: a pan-cancer analysis. BMC Cancer 2023; 23:285. [PMID: 36978046 PMCID: PMC10053432 DOI: 10.1186/s12885-023-10763-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The origin recognition complex (ORC), a six-subunit DNA-binding complex, participates in DNA replication in cancer cells. Specifically in prostate cancers, ORC participates the androgen receptor (AR) regulated genomic amplification and tumor proliferation throughout the entire cell cycle. Of note, ORC6, the smallest subunit of ORC, has been reported to be dysregulated in some types of cancers (including prostate cancer), however, its prognostic and immunological significances remain yet to be elucidated. METHODS In the current study, we comprehensively investigated the potential prognostic and immunological role of ORC6 in 33 human tumors using multiple databases, such as TCGA, Genotype-Tissue Expression, CCLE, UCSC Xena, cBioPortal, Human Protein Atlas, GeneCards, STRING, MSigDB, TISIDB, and TIMER2 databases. RESULTS ORC6 expression was significantly upregulated in 29 types of cancers compared to the corresponding normal adjacent tissues. ORC6 overexpression correlated with higher stage and worse prognostic outcomes in most cancer types analyzed. Additionally, ORC6 was involved in the cell cycle pathway, DNA replication, and mismatch repair pathways in most tumor types. A negative correlation was observed between the tumor endothelial cell infiltration and ORC6 expression in almost all tumors, whereas the immune infiltration of T regulatory cell was noted to be statistically positively correlated with the expression of ORC6 in prostate cancer tissues. Furthermore, in most tumor types, immunosuppression-related genes, especially TGFBR1 and PD-L1 (CD274), exhibited a specific correlation with the expression of ORC6. CONCLUSIONS This comprehensive pan-cancer analysis revealed that ORC6 expression serves as a prognostic biomarker and that ORC6 is involved in the regulation of various biological pathways, the tumor microenvironment, and the immunosuppression status in several human cancers, suggesting its potential diagnostic, prognostic, and therapeutic value in pan-cancer, especially in prostate adenocarcinoma.
Collapse
Affiliation(s)
- Yuan Lin
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liang Gao
- Center for Clinical Medicine, Huatuo Institute of Medical Innovation (HTIMI), Berlin, Germany
| | - Demao Ding
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liangkuan Bi
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhengmei Lv
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Anhui, China
| | - Jiani Wang
- School of Health Administration, Anhui Medical University, Hefei, China
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health, Institute for Social Medicine, Epidemiology and Health Economics, Berlin, Germany
| | - Xin Chen
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
16
|
Cheng W, Yang F, Ma Y. lncRNA TPT1-AS1 promotes cell migration and invasion in esophageal squamous-cell carcinomas by regulating the miR-26a/HMGA1 axis. Open Med (Wars) 2023; 18:20220533. [PMID: 36820066 PMCID: PMC9938642 DOI: 10.1515/med-2022-0533] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 02/16/2023] Open
Abstract
lncRNA TPT1-AS1 plays an oncogenic role in ovarian and cervical cancers. However, its involvement in the pathological progress of esophageal squamous-cell carcinomas (ESCCs) is unclear. lncRNA TPT1-AS1 was mainly localized in the cytoplasm of ESCC cells and interacted with miR-26a. In ESCC tissues, lncRNA TPT1-AS1 level was obviously increased, while miR-26a level was decreased. Interestingly, lncRNA TPT1-AS1 level was not significantly correlated with miR-26a level but was positively correlated with HMGA1 mRNA, a target of miR-26a. In ESCC cell lines KYSE510 and KYSE-30, lncRNA TPT1-AS1 overexpression enhanced HMGA1 expression, while it had no effect on miR-26a expression. Cell migration and proliferation assays indicated that lncRNA TPT1-AS1 and HMGA1 overexpression promoted ESCC cell migration and invasion, while their effects were alleviated by miR-26a overexpression. The migration and invasion of ESCC cells were suppressed by lncRNA TPT1-AS1 knockdown. In conclusion, lncRNA TPT1-AS1 plays an oncogenic role in ESCC and might function by upregulating HMGA1 via sponging miR-26a.
Collapse
Affiliation(s)
- Wenhua Cheng
- The 3rd Department of Digestion, Shanxi Province Cancer Hospital, Shanxi Hospital Affifiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affifiliated to Shanxi Medical University, Taiyuan City, Shanxi Province, 030013, P. R. China
| | - Fang Yang
- Radiotherapy Head and Neck Department, Shanxi Province Cancer Hospital, Shanxi Hospital Affifiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affifiliated to Shanxi Medical University, Taiyuan City, Shanxi Province, 030013, P. R. China
| | - Yong Ma
- The 2nd Department of Chest Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affifiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affifiliated to Shanxi Medical University, No. 3 Workers Xin Jie, Xinghualing District, Taiyuan City, Shanxi Province, 030013, P. R. China
| |
Collapse
|
17
|
Kim J, Lee J, Nam K, Lee S. Investigation of genetic variants and causal biomarkers associated with brain aging. Sci Rep 2023; 13:1526. [PMID: 36707530 PMCID: PMC9883521 DOI: 10.1038/s41598-023-27903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/10/2023] [Indexed: 01/29/2023] Open
Abstract
Delta age is a biomarker of brain aging that captures differences between the chronological age and the predicted biological brain age. Using multimodal data of brain MRI, genomics, and blood-based biomarkers and metabolomics in UK Biobank, this study investigates an explainable and causal basis of high delta age. A visual saliency map of brain regions showed that lower volumes in the fornix and the lower part of the thalamus are key predictors of high delta age. Genome-wide association analysis of the delta age using the SNP array data identified associated variants in gene regions such as KLF3-AS1 and STX1. GWAS was also performed on the volumes in the fornix and the lower part of the thalamus, showing a high genetic correlation with delta age, indicating that they share a genetic basis. Mendelian randomization (MR) for all metabolomic biomarkers and blood-related phenotypes showed that immune-related phenotypes have a causal impact on increasing delta age. Our analysis revealed regions in the brain that are susceptible to the aging process and provided evidence of the causal and genetic connections between immune responses and brain aging.
Collapse
Affiliation(s)
- Jangho Kim
- Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea
| | - Junhyeong Lee
- Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea
| | - Kisung Nam
- Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea
| | - Seunggeun Lee
- Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Pan X, Wang Q, Yu Y, Wu W, Chen L, Wang W, Li Z. Antisense lncRNA NNT-AS1 promoted esophageal squamous cell carcinoma progression by regulating its sense gene NNT expression. Cell Death Discov 2022; 8:424. [PMID: 36270987 PMCID: PMC9586939 DOI: 10.1038/s41420-022-01216-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
Antisense lncRNAs were endogenous productions from the antisense strand of coding genes and were transcribed in the reverse direction of the sense gene. The purpose of this study was to evaluate the roles and functions of antisense lncRNAs in esophageal squamous cell carcinoma (ESCC). Differentially expressed antisense lncRNAs were initially screened based on transcriptome data of 119 paired ESCC samples in GSE53624 and were further validated in 6 paired ESCC samples from our institution. Log-rank test was adopted to identify ESCC prognosis-associated lncRNAs. Finally, functional assays were performed to reveal the functions of our identified antisense lncRNAs. In total, 174 antisense lncRNAs were differentially expressed in both GSE53624 and JSPH databases. Five of them were significantly associated with ESCC prognosis (NNT-AS1, NKILA, CCDC18-AS1, SLCO4A1-AS1, and AC110619.1). Of note, NNT-AS1 showed the most significant association with ESCC prognosis. The upregulation of NNT-AS1 was further confirmed in ESCC cells. Knockdown of NNT-AS1 inhibited ESCC cell proliferation, migration, promoted ESCC cells apoptosis, and induced cell cycle arrest in the G2/M stage. NNT-AS1 expression significantly correlated with its sense gene NNT. As expected, NNT-AS1 knockdown suppressed NNT expression. Inhibition of NNT repressed ESCC cell proliferation and migration, and accelerated ESCC cell apoptosis. Overexpression of NNT could rescue the suppressed proliferation and migration of ESCC cells induced by the silencing of NNT-AS1. In terms of mechanism, NNT-AS1 served as a competing endogenous RNA to sponge the miR-382-5p, which could inhibit NNT expression. Pathway enrichment analysis and western blot assay indicated that NNT-AS1 and NNT could regulate the cell cycle pathway. In conclusion, antisense lncRNA NNT-AS1 facilitated ECSS progression by targeting its sense gene NNT through sponging miR-382-5p. This study provided us with a deeper insight into the roles of antisense lncRNAs in ESCC and identified novel potential therapeutic targets.
Collapse
Affiliation(s)
- Xianglong Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weibing Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Zhihua Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
19
|
Chen C, Liu L. Silencing of lncRNA KLF3-AS1 represses cell growth in osteosarcoma via miR-338-3p/MEF2C axis. J Clin Lab Anal 2022; 36:e24698. [PMID: 36250223 DOI: 10.1002/jcla.24698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a highly recurrent malignancy occurring among adolescents. The goal of this research was to scrutinize the role and action mechanism of KLF3-AS1 in OS. METHODS Western blotting and quantitative reverse transcription real-time PCR were conducted to ascertain the mRNA expressions of miR-338-3p, KLF3-AS1, and MEF2C in OS cell lines and tissue samples. Colony formation and CCK-8 experiments were done to evaluate the proliferative capacity of the cells. Western blotting was also executed to measure the relative expressions of the proteins Bcl-2 and Bax. RNA immunoprecipitation and dual luciferase reporter experiments were carried out to validate the target relationships among MEF2C, KLF3-AS1, and miR-338-3p. Mouse xenograft models were created to assess the influences of KLF3-AS1 on the growth of tumors in vivo. RESULTS Elevated levels of KLF3-AS1 and MEF2C and reduced amounts of miR-338-3p were identified in OS. KLF3-AS1 targeted miR-338-3p, and miR-338-3p further targeted MEF2C. Silencing KLF3-AS1 induced apoptosis and attenuated proliferation in vitro and repressed the tumor growth in vivo. Inhibiting miR-338-3p inverted the cancer-suppressing effects of KLF3-AS1 silencing. Meanwhile, loss of MEF2C partially eliminated the effects brought about by miR-338-3p downregulation, namely the stimulation of cell growth and suppression of apoptosis. CONCLUSIONS Silencing of KLF3-AS1 could repress the growth of cells and induce apoptosis by regulating miR-338-3p/MEF2C in OS. This suggests that the regulatory axis KLF3-AS1/miR-338-3p/MEF2C is a prospective target for OS treatment.
Collapse
Affiliation(s)
- Chunfa Chen
- Department of Emergency Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Liang Liu
- Department of Spinal Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| |
Collapse
|
20
|
Chang J, Li H, Zhu Z, Mei P, Hu W, Xiong X, Tao J. microRNA-21-5p from M2 macrophage-derived extracellular vesicles promotes the differentiation and activity of pancreatic cancer stem cells by mediating KLF3. Cell Biol Toxicol 2022; 38:577-590. [PMID: 33728488 PMCID: PMC9343318 DOI: 10.1007/s10565-021-09597-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
AIM Given the fact that tumor-associated macrophage-derived extracellular vesicles (EVs) are attributable to tumor aggressiveness, this research intends to decode the mechanism of M2 macrophage-derived EVs in the differentiation and activities of pancreatic cancer (PaCa) stem cells via delivering microRNA (miR)-21-5p. METHODS Polarized M2 macrophages were induced, from which EVs were collected and identified. miR-21-5p expression in M2 macrophage-derived EVs was tested. After cell sorting, CD24+CD44+EpCAM+ stem cells were co-cultured with M2 macrophages, in which miR-21-5p was upregulated or downregulated. The effects of M2 macrophage-derived EVs and miR-21-5p on Nanog/octamer-binding transcription factor 4 (Oct4) expression, sphere formation, colony formation, invasion and migration capacities, apoptosis, and in vivo tumorigenic ability were examined. Krüppel-like factor 3 (KLF3) expression and its interaction with miR-21-5p were determined. RESULTS M2 macrophage-derived EVs promoted PaCa stem cell differentiation and activities. miR-21a-5p was upregulated in M2 macrophage-derived EVs. miR-21a-5p downregulation in M2 macrophage-derived EVs inhibited Nanog/Oct4 expression and impaired sphere-forming, colony-forming, invasion, migration, and anti-apoptosis abilities of PaCa stem cells in vitro and tumorigenic ability in vivo. miR-21-5p targeted KLF3 to mediate the differentiation and activities of PaCa stem cells, and KLF3 was downregulated in PaCa stem cells. CONCLUSION This work explains that M2 macrophage-derived exosomal miR-21a-5p stimulates differentiation and activity of PaCa stem cells via targeting KLF3, paving a novel way for attenuating PaCa stemness.
Collapse
Affiliation(s)
- Jian Chang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Hanjun Li
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Zhongchao Zhu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Pei Mei
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Weimin Hu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Xingcheng Xiong
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China.
| | - Jing Tao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China.
| |
Collapse
|
21
|
Qiang G, Yu Q, Su K, Guo Y, Liu D, Liang C. E2F1-activated LINC01224 drives esophageal squamous cell carcinoma cell malignant behaviors via targeting miR-6884-5p/DVL3 axis and activating Wnt/β-catenin signaling pathway. Pathol Res Pract 2022; 235:153873. [PMID: 35576835 DOI: 10.1016/j.prp.2022.153873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022]
Abstract
Current evidence has unveiled that long non-coding RNAs (lncRNAs) are pivotal regulators in the development of cancers. This study aimed to investigate the potential mechanisms of LINC01224 in esophageal squamous cell carcinoma (ESCC) cells. RT-qPCR analysis was done to test LINC01224 expression in ESCC cells. Functional assays were conducted to assess the influences of LINC01224 on ESCC cell functions. Mechanism assays were carried out to detect the regulatory mechanisms of LINC01224 at post-transcriptional and transcriptional levels. Briefly, LINC01224 expression was remarkably high in ESCC cells. LINC01224 silence restricted the proliferative, migratory, and invasive capabilities of ESCC cells. Moreover, LINC01224 could combine with miR-6884-5p by acting as a ceRNA. Further, DVL3 was proved to be targeted by miR-6884-5p. Importantly, LINC01224 could switch on Wnt/β-catenin signaling pathway by via enhancing DVL3 expression. Additionally, E2F1 could serve as a transcription factor to stimulate LINC01224 transcription. In summary, our study elucidated that E2F1-activated LINC01224 regulated miR-6884-5p/DVL3 to actuate the Wnt/β-catenin signaling pathway, which facilitates multiple phenotype of ESCC cells, including proliferation, migration, and invasion. Our findings might offer potential therapeutic targets for ESCC treatment.
Collapse
Affiliation(s)
- Guangliang Qiang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qiduo Yu
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Kunsong Su
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yongqing Guo
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Deruo Liu
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Chaoyang Liang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
22
|
Extracellular vesicles derived from bone marrow mesenchymal stem cells alleviate neurological deficit and endothelial cell dysfunction after subarachnoid hemorrhage via the KLF3-AS1/miR-83-5p/TCF7L2 axis. Exp Neurol 2022; 356:114151. [PMID: 35738418 DOI: 10.1016/j.expneurol.2022.114151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND New data are accumulating on the effects of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in cerebrovascular diseases. We explored the potential role of KLF3-AS1-containing bone marrow MSC-EVs (BMSC-EVs) in a rat model of subarachnoid hemorrhage (SAH). METHODS A rat model of SAH was established by endovascular perforation method, into which KLF3-AS1-containing EVs from BMSCs or miR-183-5p mimic were injected. Further, brain microvascular endothelial cells (BMECs) were induced by oxyhemoglobin (OxyHb) to simulate in vitro setting, which were co-cultured with KLF3-AS1-containing EVs from BMSCs. Effects of KLF3-AS1 on neurological deficits in vivo and endothelial cell dysfunction in vitro were investigated. We also performed bioinformatics analysis to predict downstream factors miR-183-5p and TCF7L2, which were verified by RIP, RNA pull-down and luciferase activity assays. RESULTS BMSC-EVs was demonstrated to alleviate neurological deficits in SAH rats and endothelial cell dysfunction in OxyHb-induced BMECs. In addition, BMSC-EVs were shown to deliver KLF3-AS1 to BMECs, where KLF3-AS1 bound to miR-183-5p and miR-183-5p targeted TCF7L2. In vivo results confirmed that BMSC-EVs regulated the KLF3-AS1/miR-183-5p/TCF7L2 signaling axis to attenuate neurological deficit and endothelial dysfunction after SAH. CONCLUSION Overall, KLF3-AS1 delivered by BMSC-EVs upregulate TCF7L2 expression by binding to miR-138-5p, thus attenuating neurological deficits and endothelial dysfunction after SAH.
Collapse
|
23
|
LncRNA JPX Promotes Esophageal Squamous Cell Carcinoma Progression by Targeting miR-516b-5p/VEGFA Axis. Cancers (Basel) 2022; 14:cancers14112713. [PMID: 35681693 PMCID: PMC9179376 DOI: 10.3390/cancers14112713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary LncRNA JPX acts as an oncogenic regulator in various types of cancer. Here, we present insights into the mechanistic evidence for the function of JPX in ESCC progression. To clarify the potential role of JPX in ESCC, JPX was upregulated or downregulated in ESCC cells, and in a xenograft model. We showed that JPX promoted ESCC cell proliferation, migration, and invasion via the miR-516b-5p/VEGFA pathway. Our study revealed the importance of JPX as a promising biomarker for ESCC diagnosis and therapeutic target for ESCC in clinic. Abstract Long non-coding RNAs (lncRNAs) are reported act as important regulators in various types of cancer. LncRNA JPX was identified as an oncogenic regulator in lung cancer. However, the function of JPX in the progression of esophageal squamous cell carcinoma (ESCC) remains unclear. In the present study, we found JPX was highly expressed in esophageal tissue from ESCC patients. Functional assays demonstrated that JPX promoted ESCC cell proliferation, migration, and invasion in vitro, and accelerated tumor growth in vivo. Mechanistically, the results showed that JPX functioned as a sponge of miR-516b-5p, which targeted vascular endothelial growth factor A (VEGFA) in ESCC cells. Interactions between miR-516b-5p and JPX or VEGFA were confirmed by luciferase reporter assays. Inhibition of JPX significantly attenuated the cell growth and mobility ability of ESCC cells in vitro. In addition, overexpression of miR-516b-5p abrogated JPX-enhanced proliferation, migration, invasion, and angiogenesis of ESCC cells. Our study demonstrated that JPX played an important role in promoting ESCC progression via the miR-516b-5p/VEGFA pathway, which might serve as a promising novel diagnostic biomarker and therapeutic target for ESCC in clinic.
Collapse
|
24
|
Li J, Ji Y, Chen N, Wang H, Fang C, Yin X, Jiang Z, Dong Z, Zhu D, Fu J, Zhou W, Jiang R, He L, Hantao Z, Shi G, Cheng L, Su X, Dai L, Deng H. A specific upregulated lncRNA in colorectal cancer promotes cancer progression. JCI Insight 2022; 7:158855. [PMID: 35617032 PMCID: PMC9462503 DOI: 10.1172/jci.insight.158855] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Long non-coding RNA (lncRNA) plays a crucial role in the pathogenesis of various diseases, including colorectal cancer (CRC). The gene mutations of Adenomatous polyposis coli (APC) were found in most colorectal cancer patients. They are functioned as an important inducer of tumorigenesis. Based on our microarray results, we identified a specific upregulated lncRNA in colorectal cancer (SURC). Further analysis showed that high SURC expression correlated with poorer disease-free survival and overall survival in patients with colorectal cancer. Besides, we found that mutated APC genes can promote the transcription of SURC by reducing the degradation of β-catenin protein in colorectal cancer. Functional assays revealed that knockdown of SURC impaired CRC cell proliferation, colony formation, cell cycle and tumor growth. Additionally, SURC can promote CCND2 expression by inhibiting the expression of miR-185-5p in CRC cells. In conclusion, we demonstrate that SURC is a specific upregulated lncRNA in CRC and the SURC/miR-185-5p/CCND2 axis may be targetable for CRC diagnosis and therapy.
Collapse
Affiliation(s)
- Junshu Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhong Ji
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Na Chen
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Huiling Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Fang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaonan Yin
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyuan Jiang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhexu Dong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiamei Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wencheng Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruiyi Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ling He
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhang Hantao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Jiang Q, Wang H, Yuan D, Qian X, Ma X, Yan M, Xing W. Circular_0086414 induces SPARC like 1 ( SPARCL1) production to inhibit esophageal cancer cell proliferation, invasion and glycolysis and induce cell apoptosis by sponging miR-1290. Bioengineered 2022; 13:12099-12114. [PMID: 35549806 PMCID: PMC9275914 DOI: 10.1080/21655979.2022.2073114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Circular RNA (circRNA) plays an important role in cancer progression. Here, we investigated the function of circ_0086414 in the malignant progression of esophageal cancer (EC). RNA expression of circ_0086414, microRNA-1290 (miR-1290), and SPARC like 1 (SPARCL1) was detected by quantitative real-time polymerase chain reaction. The protein levels of N-cadherin, E-cadherin, and SPARCL1 were checked by Western blotting analysis. Cell proliferation was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 5-Ethynyl-29-deoxyuridine (EdU), and cell colony formation assays. Cell invasion and apoptosis were analyzed by transwell invasion assay and flow cytometry analysis, respectively. Glycolysis was evaluated by analyzing glucose consumption and lactate production. In an xenograft mouse model, the effect of circ_0086414 on tumor tumorigenesis was investigated. The interactions among circ_0086414, miR-1290, and SPARCL1 were identified by dual-luciferase reporter and RNA pull-down assays. Results showed that circ_0086414 and SPARCL1 expression were significantly downregulated, while miR-1290 was upregulated in EC tissues and cells. EC patients with low circ_0086414 expression had a poor prognosis. Increasing circ_0086414 expression led to decreased EC cell proliferation, invasion and glycolysis and increased cell apoptosis, accompanied by a decrease of N-cadherin expression and an increase of E-cadherin expression. Also, the enforced expression of circ_0086414 delayed tumor tumorigenesis. Besides, circ_0086414 acted as a miR-1290 sponge and regulated EC cell processes by binding to the miRNA. MiR-1290 also participated in EC malignant progression through SPARCL1. Further, circ_0086414 stimulated SPARCL1 production by negatively regulating miR-1290. Thus, circ_0086414 inhibited EC cell malignancy through the miR-1290/SPARCL1 pathway, providing a reliable target for the therapy of EC.
Collapse
Affiliation(s)
- Qingfeng Jiang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haoran Wang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongfeng Yuan
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Qian
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaochao Ma
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ming Yan
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenqun Xing
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
26
|
A Pleiotropic Role of Long Non-Coding RNAs in the Modulation of Wnt/β-Catenin and PI3K/Akt/mTOR Signaling Pathways in Esophageal Squamous Cell Carcinoma: Implication in Chemotherapeutic Drug Response. Curr Oncol 2022; 29:2326-2349. [PMID: 35448163 PMCID: PMC9031703 DOI: 10.3390/curroncol29040189] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the availability of modern techniques for the treatment of esophageal squamous cell carcinoma (ESCC), tumor recurrence and metastasis are significant challenges in clinical management. Thus, ESCC possesses a poor prognosis and low five-year overall survival rate. Notably, the origin and recurrence of the cancer phenotype are under the control of complex cancer-related signaling pathways. In this review, we provide comprehensive knowledge about long non-coding RNAs (lncRNAs) related to Wnt/β-catenin and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway in ESCC and its implications in hindering the efficacy of chemotherapeutic drugs. We observed that a pool of lncRNAs, such as HERES, TUG1, and UCA1, associated with ESCC, directly or indirectly targets various molecules of the Wnt/β-catenin pathway and facilitates the manifestation of multiple cancer phenotypes, including proliferation, metastasis, relapse, and resistance to anticancer treatment. Additionally, several lncRNAs, such as HCP5 and PTCSC1, modulate PI3K/Akt/mTOR pathways during the ESCC pathogenesis. Furthermore, a few lncRNAs, such as AFAP1-AS1 and LINC01014, block the efficiency of chemotherapeutic drugs, including cisplatin, 5-fluorouracil, paclitaxel, and gefitinib, used for ESCC treatment. Therefore, this review may help in designing a better therapeutic strategy for ESCC patients.
Collapse
|
27
|
Xue ST, Zheng B, Cao SQ, Ding JC, Hu GS, Liu W, Chen C. Long non-coding RNA LINC00680 functions as a ceRNA to promote esophageal squamous cell carcinoma progression through the miR-423-5p/PAK6 axis. Mol Cancer 2022; 21:69. [PMID: 35255921 PMCID: PMC8900330 DOI: 10.1186/s12943-022-01539-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a common invasive malignancy worldwide with poor clinical outcomes. Increasing amount of long non-coding RNAs (lncRNAs) have been reported to be involved in cancer development. However, lncRNAs that are functional in ESCC and the underlying molecular mechanisms remain largely unknown. Methods Transcriptomic analysis was performed to identify dysregulated lncRNAs in ESCC tissue samples. The high expression of LINC00680 in ESCC was validated by RT-qPCR, and the oncogenic functions of LINC00680 was investigated by cell proliferation, colony formation, migration and invasion assays in ESCC cells in vitro and xenografts derived from ESCC cells in mice. RNA-seq, competitive endogenous RNA (ceRNA) network analysis, and luciferase reporter assays were carried out to identify LINC00680 target genes and the microRNAs (miRNAs) bound to LINC00680. Antisense oligonucleotides (ASOs) were used for in vivo treatment. Results Transcriptome profiling revealed that a large number of lncRNAs was dysregulated in ESCC tissues. Notably, LINC00680 was highly expressed, and upregulation of LINC00680 was associated with large tumor size, advanced tumor stage, and poor prognosis. Functionally, knockdown of LINC00680 restrained ESCC cell proliferation, colony formation, migration, and invasion in vitro and inhibited tumor growth in vivo. Mechanistically, LINC00680 was found to act as a ceRNA by sponging miR-423-5p to regulate PAK6 (p21-activated kinase 6) expression in ESCC cells. The cell viability and motility inhibition induced by LINC00680 knockdown was significantly reversed upon PAK6 restoration and miR-423-5p inhibition. Furthermore, ASO targeting LINC00680 substantially suppressed ESCC both in vitro and in vivo. Conclusions An oncogenic lncRNA, LINC00680, was identified in ESCC, which functions as a ceRNA by sponging miR-423-5p to promote PAK6 expression and ESCC. LINC00680/miR-423-5p/PAK6 axis may serve as promising diagnostic and prognostic biomarkers and therapeutic targets for ESCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01539-3.
Collapse
|
28
|
Ding L, Yang X, Xia X, Li Y, Wang Y, Li C, Sun Y, Gao G, Zhao S, Sheng S, Liu J, Zheng JC. Exosomes Mediate APP Dysregulation via APP-miR-185-5p Axis. Front Cell Dev Biol 2022; 10:793388. [PMID: 35223832 PMCID: PMC8873530 DOI: 10.3389/fcell.2022.793388] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/18/2022] [Indexed: 12/25/2022] Open
Abstract
APP misexpression plays a crucial role in triggering a complex pathological cascade, leading to Alzheimer’s disease (AD). But how the expression of APP is regulated in pathological conditions remains poorly understood. In this study, we found that the exosomes isolated from AD mouse brain promoted APP expression in neuronal N2a cells. Moreover, exosomes derived from N2a cells with ectopic expression of APP (APP-EXO) also induced APP dysregulation in normal N2a cells. Surprisingly, the effects of APP-EXO on APP expression in recipient cells were not mediated by the direct transferring of APP gene products. Instead, the effects of APP-EXO were highly likely mediated by the reduction of the expression levels of exosomal miR-185-5p. We found that the 3′UTR of APP transcripts binds to miR-185-5p, therefore inhibiting the sorting of miR-185-5p to exosomes. N2a cell-derived exosomes with less amount of miR-185-5p exert similar roles in APP expression to APP-EXO. Lastly, we demonstrated a significant decline of serum exosomal miR-185-5p in AD patients and AD mice, versus the corresponding controls. Together, our results demonstrate a novel mechanism in the exosome-dependent regulation of APP, implying exosomes and exosomal miRNAs as potential therapeutic targets and biomarkers for AD treatment and diagnosis, respectively.
Collapse
Affiliation(s)
- Lu Ding
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xiaoyu Yang
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xiaohuan Xia
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai 10th People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- *Correspondence: Xiaohuan Xia, ; Jianhui Liu, ; Jialin C. Zheng,
| | - Yunxia Li
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai 10th People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Chunhong Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yiyan Sun
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Ge Gao
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Shu Zhao
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Shiyang Sheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jianhui Liu
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- *Correspondence: Xiaohuan Xia, ; Jianhui Liu, ; Jialin C. Zheng,
| | - Jialin C. Zheng
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai 10th People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
- *Correspondence: Xiaohuan Xia, ; Jianhui Liu, ; Jialin C. Zheng,
| |
Collapse
|
29
|
Wen C, Lin L, Zou R, Lin F, Liu Y. Mesenchymal stem cell-derived exosome mediated long non-coding RNA KLF3-AS1 represses autophagy and apoptosis of chondrocytes in osteoarthritis. Cell Cycle 2022; 21:289-303. [PMID: 34964696 PMCID: PMC8855872 DOI: 10.1080/15384101.2021.2019411] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Osteoarthritis is a degenerative joint disease and a leading cause of adult disability. Our previous study has reported that mesenchymal stem cell-derived exosomes (MSC-Exo) mediated long non-coding RNA KLF3-AS1 improves osteoarthritis. This study aims to investigate the molecular mechanism of KLF3-AS1 in osteoarthritis. Chondrocytes were treated with IL-1β to induce chondrocyte injury, followed by MSC-Exo treatment. We found that MSC-Exo enhanced KLF3-AS1 expression in IL-1β-treated chondrocytes. IL-1β treatment reduced cell viability and enhanced apoptosis in chondrocytes. MSC-Exo-mediated KLF3-AS1 promoted cell viability and repressed apoptosis of IL-1β-treated chondrocytes. Rapamycin (autophagy activator) promoted cell viability and suppressed apoptosis of chondrocytes by activating autophagy. Moreover, KLF3-AS1 interacted with YBX1 in chondrocytes. MSC-Exo-mediated KLF3-AS1 activated PI3K/Akt/mTOR signaling pathway, which was abrogated by YBX1 silencing. MSC-Exo-mediated KLF3-AS1 repressed autophagy and apoptosis of chondrocytes by activating PI3K/Akt/mTOR signaling pathway. In conclusion, our data demonstrate that MSC-Exo-mediated KLF3-AS1 inhibits autophagy and apoptosis of IL-1β-treated chondrocyte through PI3K/Akt/mTOR signaling pathway. KLF3-AS1 activates PI3K/Akt/mTOR signaling pathway by targeting YBX1 to improve the progression of osteoarthritis. Thus, this work suggests that MSC-Exo-mediated KLF3-AS1 may be a potential therapeutic target for osteoarthritis.
Collapse
Affiliation(s)
- Chuanyang Wen
- Department of Orthopaedics, Luhe People’s Hospital of Nanjing, Nanjing, Jiangsu, China
| | - Lupan Lin
- Department of Orthopaedics, Luhe People’s Hospital of Nanjing, Nanjing, Jiangsu, China
| | - Rui Zou
- Department of Orthopaedics, Luhe People’s Hospital of Nanjing, Nanjing, Jiangsu, China
| | - Fuqing Lin
- Department of Orthopaedics, Luhe People’s Hospital of Nanjing, Nanjing, Jiangsu, China
| | - Yubao Liu
- Department of Orthopaedics, Luhe People’s Hospital of Nanjing, Nanjing, Jiangsu, China,CONTACT Yubao Liu Luhe People’s Hospital of Nanjing, Nanjing, Jiangsu, China
| |
Collapse
|
30
|
Guan Y, Yang W, Zhang F, Zhang L, Wang L. CircPOSTN competes with KIF1B for miR-185-5p binding sites to promote the tumorigenesis of glioma. Brain Res Bull 2021; 180:86-96. [PMID: 34974134 DOI: 10.1016/j.brainresbull.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/24/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The involvement of certain circular RNAs (circRNAs) in the development of glioma has been revealed. CircRNA periostin (circPOSTN) was validated to be positively associated with glioma cell growth and metastasis. However, the mechanism underlying circPOSTN in glioma tumorigenesis remain vague. METHODS The expression of circPOSTN, KIF1B (Kinesin Family Member 1B) and miR-185-5p was detected using quantitative real-time polymerase chain reaction and Western blot. In vitro assays were conducted using cell counting kit-8 assay, colony formation assay, EdU assay, flow cytometry, Western blot, and transwell assay, respectively. The direct interactions between miR-185-5p and circPOSTN or KIF1B was confirmed by using dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. RESULTS CircPOSTN was highly expressed in glioma tissues and cells. Knockdown of circPOSTN restrained glioma cell proliferation, migration and invasion in vitro, as well as hindered glioma xenograft growth in vivo. Mechanistically, circPOSTN acted as miR-185-5p sponge to up-regulate the expression of its target KIF1B. Moreover, miR-185-5p inhibition reversed the anticancer effects of circPOSTN knockdown on glioma tumorigenesis, and miR-185-5p re-expression suppressed the malignant phenotype of glioma cells via targeting KIF1B. CONCLUSION CircPOSTN acted as an oncogene to expedite glioma tumorigenesis via targeting miR-185-5p/KIF1B axis, indicating a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Yongchang Guan
- Department of Neurosurgery, the Fourth Affiliated Hospital of China Medical University.
| | - Wenjin Yang
- Department of Neurosurgery, Pudong New Area People's Hospital
| | - Feng Zhang
- Department of Neurosurgery, the Fourth Affiliated Hospital of China Medical University
| | - Liming Zhang
- Department of Neurosurgery, the Fourth Affiliated Hospital of China Medical University
| | - Liang Wang
- Department of Neurosurgery, the Fourth Affiliated Hospital of China Medical University
| |
Collapse
|
31
|
Jiang H, Hu K, Xia Y, Liang L, Zhu X. Long Noncoding RNA KLF3-AS1 Acts as an Endogenous RNA of miR-223 to Attenuate Gastric Cancer Progression and Chemoresistance. Front Oncol 2021; 11:704339. [PMID: 34745937 PMCID: PMC8567101 DOI: 10.3389/fonc.2021.704339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/15/2021] [Indexed: 12/31/2022] Open
Abstract
Gastric cancer is a deadly disease, and the low rate of early diagnosis and chemoresistance largely contributed to the poor prognosis of gastric cancer. LncRNAs have been extensively reported for their roles in regulating cancer progression. In this study, we found that KLF3-AS1 was down-regulated in gastric cancer cells. Overexpression of KLF3-AS1 repressed gastric cancer cell proliferation, growth. In addition, KLF3-AS1 overexpression also exerted inhibitory effects on the gastric cancer cell invasion, migration and EMT, but promoted chemosensitivity of gastric cancer cells to cisplatin. The mechanistic studies showed that KLF3-AS1 could act as the “sponge” for miR-223 and to repress miR-223 expression in gastric cancer cells. Overexpression of miR-223 reversed the inhibitory effects of KLF3-AS1 overexpression on gastric cancer cell proliferation, invasion, migration and EMT, and attenuated the enhanced effects of KLF3-AS1 overexpression on gastric cancer cell chemosensitivity to cisplatin. The in vivo studies showed that KLF3-AS1 overexpression suppressed the tumor growth of SGC-7901 in the nude mice. In conclusion, our results for the first time demonstrated that KLF3-AS1 was down-regulated in gastric cancer cells and repressed gastric cancer cell proliferation, invasion, migration and EMT, and enhanced chemosensitivity to cisplatin. Further mechanistic results indicated that KLF3-AS1 exerted its biological function in gastric cancer cells by inhibiting miR-223 expression. Future studies are still required to decipher the detailed molecular mechanisms of KLF3-AS1 in gastric cancer.
Collapse
Affiliation(s)
- Houxiang Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - KaiFeng Hu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Yabing Xia
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Linhu Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Xiaoli Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| |
Collapse
|
32
|
He S, Xu J, Liu X, Zhen Y. Advances and challenges in the treatment of esophageal cancer. Acta Pharm Sin B 2021; 11:3379-3392. [PMID: 34900524 PMCID: PMC8642427 DOI: 10.1016/j.apsb.2021.03.008] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/24/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
Esophageal cancer (EC) is one of the most common cancers with high morbidity and mortality rates. EC includes two histological subtypes, namely esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). ESCC primarily occurs in East Asia, whereas EAC occurs in Western countries. The currently available treatment strategies for EC include surgery, chemotherapy, radiation therapy, molecular targeted therapy, and combinations thereof. However, the prognosis remains poor, and the overall five-year survival rate is very low. Therefore, achieving the goal of effective treatment remains challenging. In this review, we discuss the latest developments in chemotherapy and molecular targeted therapy for EC, and comprehensively analyze the application prospects and existing problems of immunotherapy. Collectively, this review aims to provide a better understanding of the currently available drugs through in-depth analysis, promote the development of new therapeutic agents, and eventually improve the treatment outcomes of patients with EC.
Collapse
Affiliation(s)
- Shiming He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Jian Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Xiujun Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Yongsu Zhen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
33
|
Chen G, Yue A, Wang M, Ruan Z, Zhu L. The Exosomal lncRNA KLF3-AS1 From Ischemic Cardiomyocytes Mediates IGF-1 Secretion by MSCs to Rescue Myocardial Ischemia-Reperfusion Injury. Front Cardiovasc Med 2021; 8:671610. [PMID: 34621793 PMCID: PMC8490635 DOI: 10.3389/fcvm.2021.671610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/03/2021] [Indexed: 01/01/2023] Open
Abstract
The purpose of the study was to explore the mechanism by which myocardial ischemia-reperfusion (I/R) injury-induced exosomes modulate mesenchymal stem cells (MSCs) to regulate myocardial injury. In this study, we established an I/R injury model in vivo and a hypoxia-reoxygenation (H/R) model in vitro. Then, exosomes isolated from H/R-exposed H9c2 cells were characterized using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot analysis. CCK-8 assays and flow cytometry were performed to assess cell injury. ELISA was applied to determine the level of insulin-like growth factor 1 (IGF-1). Echocardiography was used to assess cardiac function in vivo. HE staining and TUNEL assays were conducted to analyze myocardial injury in vivo. In the present study, H/R-exposed H9c2 cells induced IGF-1 secretion from MSCs to inhibit cell myocardial injury. Moreover, exosomes derived from H/R-exposed H9c2 cells were introduced to MSCs to increase IGF-1 levels. The lncRNA KLF3-AS1 was dramatically upregulated in exosomes derived from H/R-treated H9c2 cells. Functional experiments showed that the exosomal lncRNA KLF3-AS1 promoted IGF-1 secretion from MSCs and increased H9c2 cell viability. In addition, miR-23c contains potential binding sites for both KLF3-AS1 and STAT5B, and miR-23c directly bound to the 3'-UTRs of KLF3-AS1 and STAT5B. Furthermore, the lncRNA KLF3-AS1 promoted IGF-1 secretion from MSCs and rescued myocardial cell injury in vivo and in vitro by upregulating STAT5B expression. The lncRNA KLF3-AS1 may serve as a new direction for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Gecai Chen
- Department of Cardiology, Taizhou People's Hospital, Taizhou, China
| | - Aihuan Yue
- Taizhou Mabtech Pharmaceutical Co., Ltd., Taizhou, China
| | - Meixiang Wang
- Department of Cardiology, Taizhou People's Hospital, Taizhou, China
| | - Zhongbao Ruan
- Department of Cardiology, Taizhou People's Hospital, Taizhou, China
| | - Li Zhu
- Department of Cardiology, Taizhou People's Hospital, Taizhou, China
| |
Collapse
|
34
|
Long noncoding RNA LINC00958 suppresses apoptosis and radiosensitivity of colorectal cancer through targeting miR-422a. Cancer Cell Int 2021; 21:477. [PMID: 34496838 PMCID: PMC8425007 DOI: 10.1186/s12935-021-02188-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/31/2021] [Indexed: 01/19/2023] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have been elucidated to participate in the development and progression of various cancers. In this study, we aimed to explore the underlying functions and mechanisms of LINC00958 in colorectal cancer. Methods LINC00958 expression in colorectal cancer tissues was examined by qRT-PCR. The correlations between LINC00958 expression and clinical characteristics and prognosis were evaluated. The biological functions of LINC00958 were detected by CCK-8, MTT, colony formation and flow cytometric analyses. RNA pulldown, RIP and luciferase reporter assays were used to confirm the regulatory effects of LINC00958 on miR-422a. Rescue experiments were performed to detect the effects of miR-422a on the roles of LINC00958. Results LINC00958 was upregulated in colorectal cancer tissues and cell lines. High LINC00958 levels were positively associated with T stage and predicted poor prognosis. Cell experiments showed that LINC00958 promoted cell proliferation and suppressed apoptosis and sensitivity to radiotherapy in vitro and promoted tumor growth in vivo. Bioinformatics analysis predicted the binding site of miR-422a on LINC00958. Mechanistically, RNA pulldown, RIP and luciferase reporter assays demonstrated that LINC00958 specifically targeted miR-422a. In addition, we found that miR-422a suppressed MAPK1 expression by directly binding to the 3’-UTR of MAPK1, thereby inhibiting cell proliferation and enhancing cell apoptosis and radiosensitivity. Furthermore, miR-422a rescued the roles of LINC00958 in promoting MAPK1 expression and cell proliferation and decreasing cell apoptosis and radiosensitivity. Conclusions LINC00958 promoted MAPK1 expression and cell proliferation and suppressed cell apoptosis and radiosensitivity by targeting miR-422a, which suggests that it is a potential biomarker for the prognosis and treatment of colorectal cancer.
Collapse
|
35
|
Long noncoding RNA DGCR5 involves in tumorigenesis of esophageal squamous cell carcinoma via SRSF1-mediated alternative splicing of Mcl-1. Cell Death Dis 2021; 12:587. [PMID: 34099633 PMCID: PMC8184765 DOI: 10.1038/s41419-021-03858-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) emerge as essential roles in the regulation of alternative splicing (AS) in various malignancies. Serine- and arginine-rich splicing factor 1 (SRSF1)-mediated AS events are the most important molecular hallmarks in cancer. Nevertheless, the biological mechanism underlying tumorigenesis of lncRNAs correlated with SRSF1 in esophageal squamous cell carcinoma (ESCC) remains elusive. In this study, we found that lncRNA DiGeorge syndrome critical region gene 5 (DGCR5) was upregulated in ESCC clinical samples, which associated with poor prognosis. Through RNA interference and overexpression approaches, we confirmed that DGCR5 contributed to promote ESCC cell proliferation, migration, and invasion while inhibited apoptosis in vitro. Mechanistically, DGCR5 could directly bind with SRSF1 to increase its stability and thus stimulate alternative splicing events. Furthermore, we clarified that SRSF1 regulated the aberrant splicing of myeloid cell leukemia-1 (Mcl-1) and initiated a significant Mcl-1L (antiapoptotic) isoform switch, which contributed to the expression of the full length of Mcl-1. Moreover, the cell-derived xenograft (CDX) model was validated that DGCR5 could facilitate the tumorigenesis of ESCC in vivo. Collectively, our findings identified that the key biological role of lncRNA DGCR5 in alternative splicing regulation and emphasized DGCR5 as a potential biomarker and therapeutic target for ESCC.
Collapse
|
36
|
Yu X, Huang M, Yang G. Long non‑coding RNA BANCR promotes proliferation, invasion and migration in esophageal squamous cell carcinoma cells via the Raf/MEK/ERK signaling pathway. Mol Med Rep 2021; 23:465. [PMID: 33880577 PMCID: PMC8097753 DOI: 10.3892/mmr.2021.12104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a major histological type of esophageal cancer, identified as a leading cause of tumor-associated death worldwide. In addition, long non-coding RNA (lncRNA) BRAF-activated non-coding RNA (BANCR) expression is increased in the plasma of patients with ESCC, which can be reversed by tumor resection. Thus, the aim of the present study was to investigate the underlying mechanism of BANCR in ESCC progression. The relative mRNA expression of BANCR was determined via reverse transcription-quantitative PCR. The cell behaviors of Eca-109 cells were detected using Cell Counting Kit-8, colony formation, wound healing and Transwell chamber assays. Finally, the expression levels of proteins involved in the Raf/MEK/ERK signaling pathway and cell metastasis were analyzed with western blotting. The results revealed that lncRNA BANCR was highly expressed in ESCC cells compared with in normal esophageal cells. BANCR overexpression enhanced proliferation, migration and invasion of ESCC cells, and BANCR silencing exerted opposite effects. Moreover, BANCR overexpression induced activation of the Raf/MEK/ERK signaling pathway in ESCC cells. Notably, U0126, a specific MEK inhibitor, decreased MEK and ERK expression, and blocked the promotive effects of BANCR overexpression on the proliferation, migration and invasion of ESCC cells. Overall, lncRNA BANCR facilitated the proliferation, migration and invasion of ESCC cells via the Raf/MEK/ERK signaling pathway. Thus, lncRNA BANCR may be a promising target for inhibiting ESCC growth and metastasis.
Collapse
Affiliation(s)
- Xiaogang Yu
- Department of Gastroenterology and Hepatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Meng Huang
- Department of Radiology, Suining Municipal Hospital of TCM, Suining, Sichuan 629000, P.R. China
| | - Guodong Yang
- Department of Gastroenterology and Hepatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
37
|
Liu Z, Yang S, Chen X, Dong S, Zhou S, Xu S. LncRNA LINC00467 acted as an oncogene in esophageal squamous cell carcinoma by accelerating cell proliferation and preventing cell apoptosis via the miR-485-5p/DPAGT1 axis. J Gastroenterol Hepatol 2021; 36:721-730. [PMID: 32720371 DOI: 10.1111/jgh.15201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Esophageal carcinoma has been regarded as one of the top 10 common malignancies globally. Esophageal squamous cell carcinoma (ESCC) is an important subtype of esophageal carcinoma with approximately 20% survival rate. Long noncoding RNAs were documented to regulate the occurrence or progression of several tumors. However, neither the biological role nor the molecular mechanism of LINC00467 has been explored. This research is aimed to investigating the regulatory mechanism of LINC00467 in ESCC. METHODS In this study, a series of experiments including reverse transcription-quantitative polymerase chain reaction, Cell Counting Kit-8, luciferase reporter, western blot, and RNA immunoprecipitation were designed and conducted to explore the potential function and mechanism of LINC00467 in ESCC. RESULTS According to experimental results, we found out upregulated LINC00467 improved cell proliferation, but hindered cell apoptosis. In mechanism, miR-485-5p was predicted, screened out, and validated to combine with LINC00467, which displayed lower expression in ESCC. Additionally, miR-485-5p negatively regulated and directly targeted DPAGT1. Rescue assays suggested that DPAGT1 amplification was able to recover the influence of LINC00467 deficiency on cell proliferation and apoptosis. Furthermore, knockdown of LINC00467 suppressed tumor growth in vivo. CONCLUSION We proved that LINC00467 acted as an oncogene in ESCC by accelerating cell proliferation and preventing cell apoptosis via miR-485-5p/DPAGT1 axis. This may provide a potential diagnostic marker for ESCC treatment.
Collapse
Affiliation(s)
- Zhenghua Liu
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shize Yang
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xitao Chen
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Siyuan Dong
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Siyu Zhou
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shun Xu
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
38
|
Li M, Qi L, Li Y, Zhang S, Lin L, Zhou L, Han W, Qu X, Cai J, Ye M, Shi K. Association of Pericardiac Adipose Tissue With Coronary Artery Disease. Front Endocrinol (Lausanne) 2021; 12:724859. [PMID: 34552562 PMCID: PMC8451419 DOI: 10.3389/fendo.2021.724859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIM Coronary artery disease (CAD) poses a worldwide health threat. Compelling evidence shows that pericardial adipose tissue (PAT), a brown-like adipose adjacent to the external surface of the pericardium, is associated with CAD. However, the specific molecular mechanisms of PAT in CAD are elusive. This study aims to characterize human PAT and explore its association with CAD. METHODS We acquired samples of PAT from 31 elective cardiac surgery patients (17 CAD patients and 14 controls). The transcriptome characteristics were assessed in 5 CAD patients and 4 controls via RNA-sequencing. Cluster profile R package, String database, Cytoscape were applied to analyze the potential pathways and PPI-network key to DEGS, whereas the hubgenes were predicted via Metascape, Cytohubba, and MCODE. We use Cibersort, ENCORI, and DGIDB to predict immunoinfiltration, mRNA-miRNA target gene network, and search potential drugs targeting key DEGs. The predictable hubgenes and infiltrating inflammatory cells were validated in 22 patients (12 CAD samples and 10 control samples) through RT-qPCR and immunohistochemistry. RESULTS A total of 147 different genes (104 up-regulated genes and 43 down-regulated genes) were identified in CAD patients. These different genes were associated with immunity and inflammatory dysfunction. Cibersort analysis showed monocytes and macrophages were the most common subsets in immune cells, whereas immunohistochemical results revealed there were more macrophages and higher proportion of M1 subtype cells in PAT of CAD patients. The PPI network and module analysis uncovered several crucial genes, defined as candidate genes, including Jun, ATF3, CXCR4, FOSB, CCl4, which were validated through RT-qPCR. The miRNA-mRNA network implicated hsa-miR-185-5p as diagnostic targets and drug-gene network showed colchicine, fenofibrate as potential therapeutic drugs, respectively. CONCLUSION This study demonstrates that PAT is mainly associated with the occurrence of CAD following the dysfunction of immune and inflammatory processes. The identified hubgenes, predicted drugs and miRNAs are promising biomarkers and therapeutic targets for CAD.
Collapse
Affiliation(s)
- Mingxuan Li
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Lin Qi
- Department of Computed Tomography, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yanglei Li
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Shuyi Zhang
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Lei Lin
- Department of Cardiovascular Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Lijin Zhou
- Department of Cardiovascular Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Wanlin Han
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xinkai Qu
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- *Correspondence: Kailei Shi, ; Maoqing Ye, ; Junfeng Cai, ; Xinkai Qu,
| | - Junfeng Cai
- Department of Cardiovascular Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- *Correspondence: Kailei Shi, ; Maoqing Ye, ; Junfeng Cai, ; Xinkai Qu,
| | - Maoqing Ye
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- *Correspondence: Kailei Shi, ; Maoqing Ye, ; Junfeng Cai, ; Xinkai Qu,
| | - Kailei Shi
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- *Correspondence: Kailei Shi, ; Maoqing Ye, ; Junfeng Cai, ; Xinkai Qu,
| |
Collapse
|
39
|
Wang B, Hao X, Li X, Liang Y, Li F, Yang K, Chen H, Lv F, Gao Y. Long noncoding RNA HEIH depletion depresses esophageal carcinoma cell progression by upregulating microRNA-185 and downregulating KLK5. Cell Death Dis 2020; 11:1002. [PMID: 33223519 PMCID: PMC7680792 DOI: 10.1038/s41419-020-03170-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022]
Abstract
Numerous studies have reported the association of long non-coding RNAs (lncRNAs) in cancers, yet the function of lncRNA high expressed in hepatocellular carcinoma (HEIH) in esophageal carcinoma (EC) has seldom been explored. Here, we aimed to explore the mechanism of HEIH on EC via microRNA-185 (miR-185)/kallikrein-related peptidase 5 (KLK5) modulation. Cancer and non-tumoral tissues were collected, in which HEIH, miR-185 and KLK5 expression were detected, as well as their correlations. Also, the relation between the prognosis of EC patients and HEIH/miR-185/KLK5 expression was clarified. EC cells (KYSE-30 and TE-1) were screened for subsequent gain- and loss-of-function assays and their biological functions were further monitored. Tumor volume and weight in EC mice were also measured. Results from this study indicated that HEIH and KLK5 were elevated and miR-185 was declined in EC. The positive correlation was seen in HEIH and KLK5 expression, while the negative correlation was observed in HEIH or KLK5 and miR-185 expression. High HEIH and KLK5 indicated worse prognosis and high miR-185 suggested better prognosis of EC patients. Depleting HEIH or restoring miR-185 suppressed the malignant phenotypes of EC cells, and delayed tumor growth in EC mice. HEIH was found to bind with miR-185 to regulate KLK5 expression. Overexpressing KLK5 alone promoted EC cell progression while up-regulating miR-185 reversed such effects on EC cells. Collectively, we reveal that HEIH depletion dampens EC progression by upregulating miR-185 and downregulating KLK5, which provides novel treatments for EC.
Collapse
Affiliation(s)
- Bing Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xuezhi Hao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xingkai Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yicheng Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Fang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Kun Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Hengqi Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Fang Lv
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| |
Collapse
|
40
|
Sun Y, Gao J, Jing Z, Zhao Y, Sun Y, Zhao X. PURα Promotes the Transcriptional Activation of PCK2 in Oesophageal Squamous Cell Carcinoma Cells. Genes (Basel) 2020; 11:genes11111301. [PMID: 33142842 PMCID: PMC7692967 DOI: 10.3390/genes11111301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/15/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most lethal gastrointestinal malignancies due to its characteristics of local invasion and distant metastasis. Purine element binding protein α (PURα) is a DNA and RNA binding protein, and recent studies have showed that abnormal expression of PURα is associated with the progression of some tumors, but its oncogenic function, especially in ESCC progression, has not been determined. Based on the bioinformatic analysis of RNA-seq and ChIP-seq data, we found that PURα affected metabolic pathways, including oxidative phosphorylation and fatty acid metabolism, and we observed that it has binding peaks in the promoter of mitochondrial phosphoenolpyruvate carboxykinase (PCK2). Meanwhile, PURα significantly increased the activity of the PCK2 gene promoter by binding to the GGGAGGCGGA motif, as determined though luciferase assay and ChIP-PCR/qPCR. The results of Western blotting and qRT-PCR analysis showed that PURα overexpression enhances the protein and mRNA levels of PCK2 in KYSE510 cells, whereas PURα knockdown inhibits the protein and mRNA levels of PCK2 in KYSE170 cells. In addition, measurements of the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) indicated that PURα promoted the metabolism of ESCC cells. Taken together, our results help to elucidate the molecular mechanism by which PURα activates the transcription and expression of PCK2, which contributes to the development of a new therapeutic target for ESCC.
Collapse
|
41
|
PD-1/PD-L1 axis regulation in cancer therapy: The role of long non-coding RNAs and microRNAs. Life Sci 2020; 256:117899. [DOI: 10.1016/j.lfs.2020.117899] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023]
|