1
|
Zhang P, Pei R, Shen Q. circ_0075048 silencing regulates LCP1 to improve IL-1β-induced chondrocyte injury by binding with miR-663b. J Orthop Surg Res 2025; 20:24. [PMID: 39780251 PMCID: PMC11715223 DOI: 10.1186/s13018-025-05449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a common type of degenerative arthropathy. Previous studies have demonstrated that circular RNAs (circRNAs) are involved in the progression of OA. This study aimed to investigate the role and associated mechanism of circ_0075048 in OA. METHODS The expression of circ_0075048 was analyzed based on the Gene Expression Omnibus dataset GSE178724. Human chondrocytes were stimulated with IL-1β to establish an in vitro OA model. Bioinformatic analysis was performed to identify target genes of circ_0075048. The expression of circ_0075048, miR-663b, and LCP1 was detected by quantitative reverse transcription-polymerase chain reaction. The cell viability and apoptosis of C28/I2 cells were determined using Cell Counting Kit-8 assay and flow cytometry. Protein expression was detected using western blotting. RESULTS The expression of circ_0075048 was up-regulated in IL-1β-induced chondrocytes. circ_0075048 silencing promoted the viability of and inhibited the apoptosis of and extracellular matrix (ECM) production of chondrocytes. circ_0075048 was found to be a sponge of miR-663b and LCP1 was found to be a target of miR-663b. circ_0075048 silencing increased miR-663b expression but decreased LCP1 expression levels in chondrocytes. An miR-663b inhibitor eliminated the protective effect of a circ_0075048 small interfering RNA (siRNA) on chondrocytes. However, an LCP1 siRNA abolished the effect of the miR-663b inhibitor on chondrocytes. CONCLUSION circ_0075048 silencing inhibited the apoptosis of and ECM degradation in IL-1β-induced chondrocytes by regulating miR-663b/LCP1 axis.
Collapse
Affiliation(s)
- Pin Zhang
- Department of Orthopedics, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, Jiangsu, China
| | - Ru Pei
- Department of Orthopedics, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, Jiangsu, China
| | - Quanhu Shen
- Department of Orthopedics, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, Jiangsu, China.
| |
Collapse
|
2
|
Gai M, Zhao L, Li H, Jin G, Li W, Wang F, Liu M. LCP1 promotes ovarian cancer cell resistance to olaparib by activating the JAK2/STAT3 signalling pathway. Cancer Biol Ther 2024; 25:2432117. [PMID: 39588922 PMCID: PMC11601053 DOI: 10.1080/15384047.2024.2432117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/16/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Resistance to poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) remain a major challenge in ovarian cancer (OC) treatment. However, the underlying mechanism of PARPi resistance is still poorly characterized. Increasing evidence has proven that lymphocyte cytosolic protein 1 (LCP1) promotes tumor progression. The JAK2/STAT3 signaling pathway plays an important role in increasing tumor metastatic ability and chemoresistance in cancer by promoting epithelial - mesenchymal transition (EMT). METHODS We established an olaparib-resistant OC cell line and studied its toxicologic effects through cell survival, Transwell, colony formation, western blotting and flow cytometry assays. RNA sequencing and screening were then performed to identify genes associated with olaparib resistance. Lymphocyte cytosolic protein 1 (LCP1) was found to be overexpressed in olaparib-resistant OC cells. RESULTS The inhibition of cell survival and promotion of cell apoptosis induced by olaparib in parental cells were significantly attenuated in olaparib-resistant cells. LCP1 was upregulated in olaparib-resistant cells compared with parental OC cells. Moreover, we found that the protein levels of JAK2/STAT3 signaling pathway components and EMT markers were increased in olaparib-resistant cells. Overexpression of LCP1 increased olaparib resistance in OC cells, and knockdown of LCP1 attenuated olaparib resistance. The changes in the protein levels of JAK2/STAT3 signaling pathway members and EMT markers between the cell types were similar to the changes in the levels of LCP1. CONCLUSIONS These findings indicate that LCP1 expression may play an important role in the resistance of OC to olaparib by activating the JAK2/STAT3 signaling pathway and EMT. LCP1 could be a potential therapeutic target for patients with OC who are resistant to olaparib. Our study provides a new mechanism of olaparib resistance.
Collapse
Affiliation(s)
- Minxue Gai
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
| | - Lanlan Zhao
- Department of Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Hongqi Li
- Department of Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Guoyu Jin
- Department of Gynecology, Shandong Traditional Chinese Medicine University, Jinan, Shandong, China
| | - Wei Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fei Wang
- Department of Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Ming Liu
- Department of Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Huang Y, Li G, Chen Z, Chen M, Zhai W, Li D, Xu Q. Exosomal Drug Delivery Systems: A Novel Therapy Targeting PD-1 in Septic-ALI. Stem Cell Rev Rep 2024; 20:2253-2267. [PMID: 39235552 DOI: 10.1007/s12015-024-10784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND The cytokine storm triggered by sepsis can lead to the development of acute lung injury (ALI). Human umbilical cord Mesenchymal stem cells derived exosomes (HucMSCs-EXOs) have been demonstrated to possess immunosuppressive and anti-inflammatory properties. Programmed cell death receptor 1 (PD-1) plays a crucial role in maintaining the inflammatory immune homeostasis. The aim of this study is to investigate the synergistic therapeutic effect of EXOs loaded with anti-PD-1 peptide on septic-ALI. METHODS This study prepares a novel EXOs-based drug, named MEP, by engineering modification of HucMSCs-EXOs, which are non-immunogenic extracellular vesicles, loaded with anti-PD-1 peptide. The therapeutic effect and potential mechanism of MEP on septic-ALI are elucidated through in vivo and in vitro experiments, providing experimental evidence for the treatment of septic acute lung injury with MEP. RESULTS We found that, compared to individual components (anti-PD-1 peptide or EXOs), MEP treatment can more effectively improve the lung injury index of septic-ALI mice, significantly reduce the expression levels of inflammatory markers CRP and PCT, as well as pro-inflammatory cytokines TNF-α and IL-1β in serum, decrease lung cell apoptosis, and significantly increase the expression of anti-inflammatory cytokine IL-10 and CD68+ macrophages. In vitro, MEP co-culture promotes the proliferation of CD206+ macrophages, increases the M2/M1 macrophage ratio, and attenuates the inflammatory response. GEO data analysis and qRT-PCR validation show that MEP reduces the expression of inflammasome-related genes and M1 macrophage marker iNOS. CONCLUSION In both in vitro and in vivo settings, MEP demonstrates superior therapeutic efficacy compared to individual components in the context of septic-ALI.
Collapse
Affiliation(s)
- Yuanlan Huang
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Gang Li
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Zeqi Chen
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Mengying Chen
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Weibin Zhai
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Dan Li
- Special Food Equipment Research Laboratory, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China.
| | - Qingqiang Xu
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, People's Republic of China.
- Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
4
|
Zhongyu X, Wei X, Hongmei Z, Xiaodong G, Xiaojing Y, Yuanpei L, Li Z, Zhenmin F, Jianda X. Review of pre-metastatic niches induced by osteosarcoma-derived extracellular vesicles in lung metastasis: A potential opportunity for diagnosis and intervention. Biomed Pharmacother 2024; 178:117203. [PMID: 39067163 DOI: 10.1016/j.biopha.2024.117203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Osteosarcoma (OS) has a high propensity for lung metastasis, which is the leading cause of OS-related death and treatment failure. Intercellular communication between OS cells and distant lung host cells is required for the successful lung metastasis of OS cells to the lung. Before OS cells infiltrate the lung, in situ OS cells secrete extracellular vesicles (EVs) that act as mediators of cell-to-cell communication. In recent years, EVs have been confirmed to act as bridges and key drivers between in situ tumors and metastatic lesions by regulating the formation of a pre-metastatic niche (PMN), defined as a microenvironment suitable for disseminated tumor cell engraftment and colonization, in distant target organs. This review summarizes the current knowledge about the underlying mechanisms of PMN formation induced by OS-derived EVs and the potential roles of EVs as targets or drug carriers in regulating PMN formation in the lung. We also provide an overview of their potential EV-based therapeutic strategies for hindering PMN formation in the context of OS lung metastasis.
Collapse
Affiliation(s)
- Xia Zhongyu
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China
| | - Xu Wei
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Zhang Hongmei
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ge Xiaodong
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Yan Xiaojing
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China
| | - Lian Yuanpei
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China
| | - Zhu Li
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China
| | - Fan Zhenmin
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou Jiangsu, China.
| | - Xu Jianda
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China.
| |
Collapse
|
5
|
Pankova V, Krasny L, Kerrison W, Tam YB, Chadha M, Burns J, Wilding CP, Chen L, Chowdhury A, Perkins E, Lee AT, Howell L, Guljar N, Sisley K, Fisher C, Chudasama P, Thway K, Jones RL, Huang PH. Clinical Implications and Molecular Features of Extracellular Matrix Networks in Soft Tissue Sarcomas. Clin Cancer Res 2024; 30:3229-3242. [PMID: 38810090 PMCID: PMC11292195 DOI: 10.1158/1078-0432.ccr-23-3960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/25/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE The landscape of extracellular matrix (ECM) alterations in soft tissue sarcomas (STS) remains poorly characterized. We aimed to investigate the tumor ECM and adhesion signaling networks present in STS and their clinical implications. EXPERIMENTAL DESIGN Proteomic and clinical data from 321 patients across 11 histological subtypes were analyzed to define ECM and integrin adhesion networks. Subgroup analysis was performed in leiomyosarcomas (LMS), dedifferentiated liposarcomas (DDLPS), and undifferentiated pleomorphic sarcomas (UPS). RESULTS This analysis defined subtype-specific ECM profiles including enrichment of basement membrane proteins in LMS and ECM proteases in UPS. Across the cohort, we identified three distinct coregulated ECM networks which are associated with tumor malignancy grade and histological subtype. Comparative analysis of LMS cell line and patient proteomic data identified the lymphocyte cytosolic protein 1 cytoskeletal protein as a prognostic factor in LMS. Characterization of ECM network events in DDLPS revealed three subtypes with distinct oncogenic signaling pathways and survival outcomes. Evaluation of the DDLPS subtype with the poorest prognosis nominates ECM remodeling proteins as candidate antistromal therapeutic targets. Finally, we define a proteoglycan signature that is an independent prognostic factor for overall survival in DDLPS and UPS. CONCLUSIONS STS comprise heterogeneous ECM signaling networks and matrix-specific features that have utility for risk stratification and therapy selection, which could in future guide precision medicine in these rare cancers.
Collapse
Affiliation(s)
- Valeriya Pankova
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Lukas Krasny
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - William Kerrison
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Yuen B. Tam
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Madhumeeta Chadha
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Jessica Burns
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Christopher P. Wilding
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Liang Chen
- Precision Sarcoma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- National Center for Tumor Diseases, Heidelberg, Germany.
| | - Avirup Chowdhury
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Emma Perkins
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | | | - Louise Howell
- Light Microscopy Facility, The Institute of Cancer Research, London, United Kingdom.
| | - Nafia Guljar
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Karen Sisley
- Division of Clinical Medicine, The Medical School, University of Sheffield, Sheffield, United Kingdom.
| | - Cyril Fisher
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.
| | - Priya Chudasama
- Precision Sarcoma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- National Center for Tumor Diseases, Heidelberg, Germany.
| | - Khin Thway
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
- The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| | - Robin L. Jones
- The Royal Marsden NHS Foundation Trust, London, United Kingdom.
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom.
| | - Paul H. Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
6
|
Ma Q, Li X, Wang H, Xu S, Que Y, He P, Yang R, Wang Q, Hu Y. HOXB5 promotes the progression and metastasis of osteosarcoma cells by activating the JAK2/STAT3 signalling pathway. Heliyon 2024; 10:e30445. [PMID: 38737261 PMCID: PMC11088325 DOI: 10.1016/j.heliyon.2024.e30445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
Objective To investigate the involvement of the homeobox gene B5 (HOXB5) in the progression and metastasis of osteosarcoma. Methods The expression of HOXB5 in human osteosarcoma tissues and its correlation with clinical indicators were investigated using bioinformatics analysis and immunohistochemical labelling. Human osteosarcoma cells (HOS, MG63, U2OS, and Saos-2) and normal human osteoblasts (hFOB1.19) were cultivated. The expression of HOXB5 in these cells was detected using western blotting (WB) and RT‒PCR. Two cell lines exhibiting elevated HOXB5 expression were chosen and divided into three groups: the blank group (mock), control group (control) and transfection group (shHOXB5). The transfection group was infected with lentivirus expressing shRNAs targeting HOXB5. The transfection efficiency was detected by WB. Cell proliferation suppression was measured by CCK-8 and 5-ethynyl-2'-deoxyuridine (EdU) assays; the percentage of apoptotic cells was determined by flow cytometry; and cell migration and invasion were detected via the Transwell chamber test. WB was utilized to determine the protein expression of genes linked to metastasis (MMP2, MMP9), apoptosis (Bax, Bcl-2), and the JAK2/STAT3 pathway (JAK2, p-JAK2, STAT3, p-STAT3). Results In osteosarcoma tissues, HOXB5 expression was elevated and strongly correlated with distant metastasis. Silencing HOXB5 reduced the proliferation, migration and invasion of osteosarcoma cells; prevented the progression and metastasis of tumours in tumour-bearing nude mice; and reduced the activation of key proteins in the JAK2/STAT3 signalling pathway. Conclusion Through the JAK2/STAT3 signalling pathway, HOXB5 plays a crucial role in the malignant progression of osteosarcoma and is a promising target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Qiming Ma
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Xingxing Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Department of Orthopedics, Lu 'an Hospital of Anhui Medical University, Lu'an, 237008, Anhui, China
| | - Huming Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Shenglin Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Yukang Que
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Peng He
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Rui Yang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Qiwei Wang
- Department of Orthopedics, Lu 'an Hospital of Anhui Medical University, Lu'an, 237008, Anhui, China
| | - Yong Hu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| |
Collapse
|
7
|
Hu Y, Li J, Liu C, Zhang X, Wang Y, Lin J, Peng Z, Zhu L. MiR362-3p Alleviates Osteosarcoma by Regulating the IL6ST/JAK2/STAT3 Pathway in Vivo and in Vitro. Technol Cancer Res Treat 2024; 23:15330338241261616. [PMID: 39051528 PMCID: PMC11273602 DOI: 10.1177/15330338241261616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024] Open
Abstract
Objectives: To investigate the effects and the related signaling pathway of miR-362-3p on OS. Methods: The bioinformatics analysis approaches were employed to investigate the target pathway of miR-362-3p. After the 143B and U2OS cells and nu/nu male mice were randomly divided into blank control (BC) group, normal control (NC) group, and overexpression group (OG), the CCK-8, EdU staining, wound healing assay, Transwell assay, and TUNEL staining were adopted to respectively determine the effects of overexpressed miR-362-3p on the cell viability, proliferation, migration, invasion, and apoptosis of 143B and U2OS cells in vitro, tumor area assay and hematoxylin and eosin staining were employed to respectively determine the effects of overexpressed miR-362-3p on the growth and pathological injury of OS tissue in vivo. The qRT-PCR, Western blot, and immunohistochemical staining were applied to respectively investigate the effects of overexpressed miR-362-3p on the IL6ST/JAK2/STAT3 pathway in OS in vivo and in vitro. Results: The bioinformatics analysis approaches combined qRT-PCR indicated that the IL6ST/JAK2/STAT3 is one of the target pathways of miR-362-3p. Compared with NC, the cell viability, proliferation, migration, and invasion of 143B and U2OS cells were dramatically (P < 0.01) inhibited but the apoptosis was prominently (P <0 .0001) promoted in OG. Compared with NC, the growth of OS tissue was significantly (P < 0.05) suppressed and the pathological injury of OS tissue was substantially aggravated in OG. The gene expression levels of IL6ST, JAK2, and STAT3 and the protein expression levels of IL6ST, JAK2, p-JAK2, STAT3, and p-STAT3 in 143B and U2OS cells were memorably (P < 0.0001) lower in OG than those in NC. In addition, the positively stained areas of proteins of IL6ST, JAK2, p-JAK2, STAT3, and p-STAT3 of OS tissue in OG were markedly (P < 0.01) reduced compared with those in NC. Conclusion: The overexpression of miR362-3p alleviates OS by inhibiting the IL6ST/JAK2/STAT3 pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Yunteng Hu
- Department of Spine Surgery, Zhujiang Hosptial, Southern Medical University, Guangzhou, China
| | - Jianjun Li
- Department of Spine Surgery, Zhujiang Hosptial, Southern Medical University, Guangzhou, China
| | - Chun Liu
- Department of Spine Surgery, Zhujiang Hosptial, Southern Medical University, Guangzhou, China
| | - Xue Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Gannan Medical College, Ganzhou, China
| | - Yihan Wang
- Department of Spine Surgery, Zhujiang Hosptial, Southern Medical University, Guangzhou, China
| | - Jiezhao Lin
- Department of Spine Surgery, Zhujiang Hosptial, Southern Medical University, Guangzhou, China
| | - Ziyue Peng
- Department of Spine Surgery, Zhujiang Hosptial, Southern Medical University, Guangzhou, China
| | - Lixin Zhu
- Department of Spine Surgery, Zhujiang Hosptial, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Chen CC, Benavente CA. Exploring the Impact of Exosomal Cargos on Osteosarcoma Progression: Insights into Therapeutic Potential. Int J Mol Sci 2024; 25:568. [PMID: 38203737 PMCID: PMC10779183 DOI: 10.3390/ijms25010568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor with high metastasis. Poor prognosis highlights a clinical need for novel therapeutic strategies. Exosomes, also known as extracellular vesicles, have been identified as essential players in the modulation of cancer. Recent studies have suggested that OS-derived exosomes can drive pro-tumorigenic or anti-tumorigenic phenotypes by transferring specific cargos, including proteins, nucleic acids, and metabolites, to neighboring cells, significantly impacting the regulation of cellular processes. This review discusses the advancement of exosomes and their cargos in OS. We examine how these exosomes contribute to the modulation of cellular phenotypes associated with tumor progression and metastasis. Furthermore, we explore the potential of exosomes as valuable biomarkers for diagnostics and prognostic purposes and their role in shaping innovative therapeutic strategies in OS treatment development.
Collapse
Affiliation(s)
- Claire C. Chen
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA;
| | - Claudia A. Benavente
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA;
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
| |
Collapse
|
9
|
Liao Y, Yi Q, He J, Huang D, Xiong J, Sun W, Sun W. Extracellular vesicles in tumorigenesis, metastasis, chemotherapy resistance and intercellular communication in osteosarcoma. Bioengineered 2023; 14:113-128. [PMID: 37377390 DOI: 10.1080/21655979.2022.2161711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/29/2023] Open
Abstract
HIGHLIGHTS Extracellular vehicles play crucial function in osteosarcoma tumorigenesis.Extracellular vehicles mediated the intercellular communication of osteosarcoma cells with other types cells in tumor microenvironment.Extracellular vehicles have potential utility in osteosarcoma diagnosis and treatment.
Collapse
Affiliation(s)
- Yi Liao
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, Chongqing, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
- The Central Laboratory, Affiliated Hospital of Putian University, Putian, Fujian, China
| | - Jinglong He
- Department of Orthopaedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Dixi Huang
- Guangzhou Medical University, Guangzhou, China
| | - Jianyi Xiong
- Department of Orthopaedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Wei Sun
- Department of Orthopaedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Weichao Sun
- Department of Orthopaedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| |
Collapse
|
10
|
Todosenko N, Khlusov I, Yurova K, Khaziakhmatova O, Litvinova L. Signal Pathways and microRNAs in Osteosarcoma Growth and the Dual Role of Mesenchymal Stem Cells in Oncogenesis. Int J Mol Sci 2023; 24:ijms24108993. [PMID: 37240338 DOI: 10.3390/ijms24108993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The major challenges in Osteosarcoma (OS) therapy are its heterogeneity and drug resistance. The development of new therapeutic approaches to overcome the major growth mechanisms of OS is urgently needed. The search for specific molecular targets and promising innovative approaches in OS therapy, including drug delivery methods, is an urgent problem. Modern regenerative medicine focuses on harnessing the potential of mesenchymal stem cells (MSCs) because they have low immunogenicity. MSCs are important cells that have received considerable attention in cancer research. Currently, new cell-based methods for using MSCs in medicine are being actively investigated and tested, especially as carriers for chemotherapeutics, nanoparticles, and photosensitizers. However, despite the inexhaustible regenerative potential and known anticancer properties of MSCs, they may trigger the development and progression of bone tumors. A better understanding of the complex cellular and molecular mechanisms of OS pathogenesis is essential to identify novel molecular effectors involved in oncogenesis. The current review focuses on signaling pathways and miRNAs involved in the development of OS and describes the role of MSCs in oncogenesis and their potential for antitumor cell-based therapy.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| |
Collapse
|
11
|
Amiryaghoubi N, Fathi M, Barar J, Omidian H, Omidi Y. Advanced nanoscale drug delivery systems for bone cancer therapy. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166739. [PMID: 37146918 DOI: 10.1016/j.bbadis.2023.166739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Bone tumors are relatively rare, which are complex cancers and mostly involve the long bones and pelvis. Bone cancer is mainly categorized into osteosarcoma (OS), chondrosarcoma, and Ewing sarcoma. Of these, OS is the most intimidating cancer of the bone tissue, which is mostly found in the log bones in young children and older adults. Conspicuously, the current chemotherapy modalities used for the treatment of OS often fail mainly due to (i) the non-specific detrimental effects on normal healthy cells/tissues, (ii) the possible emergence of drug resistance mechanisms by cancer cells, and (iii) difficulty in the efficient delivery of anticancer drugs to the target cells. To impose the maximal therapeutic impacts on cancerous cells, it is of paramount necessity to specifically deliver chemotherapeutic agents to the tumor site and target the diseased cells using advanced nanoscale multifunctional drug delivery systems (DDSs) developed using organic and inorganic nanosystems. In this review, we provide deep insights into the development of various DDSs applied in targeting and eradicating OS. We elaborate on different DDSs developed using biomaterials, including chitosan, collagen, poly(lactic acid), poly(lactic-co-glycolic acid), polycaprolactone, poly(ethylene glycol), polyvinyl alcohol, polyethyleneimine, quantum dots, polypeptide, lipid NPs, and exosomes. We also discuss DDSs established using inorganic nanoscale materials such as magnetic NPs, gold, zinc, titanium NPs, ceramic materials, silica, silver NPs, and platinum NPs. We further highlight anticancer drugs' role in bone cancer therapy and the biocompatibility of nanocarriers for OS treatment.
Collapse
Affiliation(s)
- Nazanin Amiryaghoubi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
12
|
Chen B, Ning K, Sun ML, Zhang XA. Regulation and therapy, the role of JAK2/STAT3 signaling pathway in OA: a systematic review. Cell Commun Signal 2023; 21:67. [PMID: 37013568 PMCID: PMC10071628 DOI: 10.1186/s12964-023-01094-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/26/2023] [Indexed: 04/05/2023] Open
Abstract
Osteoarthritis (OA) is a multifactorial chronic disease primarily characterized by the degeneration of articular cartilage. Currently, there is a lack of effective treatments for OA other than surgery. The exploration of the mechanisms of occurrence is important in exploring other new and effective treatments for OA. The current evidence shows that the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway plays a vital role in cytogenesis and is involved in OA progression. The terms "JAK2", "STAT3", and "Osteoarthritis"were used in a comprehensive literature search in PubMed to further investigate the relationship between the JAK2/STAT3 signaling pathway and OA. This review focuses on the role and mechanism of JAK2/STAT3 signaling in cartilage degradation, subchondral bone dysfunction, and synovial inflammation. In addition, this review summarizes recent evidence of therapeutic approaches to treat OA by targeting the JAK2/STAT3 pathway to accelerate the translation of evidence into the progression of strategies for OA treatment. Video abstract.
Collapse
Affiliation(s)
- Bo Chen
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Ke Ning
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Ming-Li Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China.
| |
Collapse
|
13
|
Gong H, Tao Y, Xiao S, Li X, Fang K, Wen J, He P, Zeng M. LncRNA KIAA0087 suppresses the progression of osteosarcoma by mediating the SOCS1/JAK2/STAT3 signaling pathway. Exp Mol Med 2023; 55:831-843. [PMID: 37009803 PMCID: PMC10167219 DOI: 10.1038/s12276-023-00972-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 04/04/2023] Open
Abstract
Long noncoding RNAs (lncRNAs), widely expressed in mammalian cells, play pivotal roles in osteosarcoma (OS) progression. Nevertheless, the detailed molecular mechanisms of lncRNA KIAA0087 in OS remain obscure. Here, the roles of KIAA0087 in OS tumorigenesis were investigated. KIAA0087 and miR-411-3p levels were detected by RT-qPCR. Malignant properties were assessed by CCK-8, colony formation, flow cytometry, wound healing, and transwell assays. SOCS1, EMT, and JAK2/STAT3 pathway-related protein levels were measured by western blotting. Direct binding between miR-411-3p and KIAA0087/SOCS1 was validated by a dual-luciferase reporter, RIP, and FISH assays. In vivo growth and lung metastasis were evaluated in nude mice. The expression levels of SOCS1, Ki-67, E-cadherin, and N-cadherin in tumor tissues were measured by immunohistochemical staining. Downregulation of KIAA0087 and SOCS1 and upregulation of miR-411-3p were found in OS tissues and cells. Low expression of KIAA0087 was associated with a poor survival rate. Forced expression of KIAA0087 or miR-411-3p inhibition repressed the growth, migration, invasion, EMT, and activation of the JAK2/STAT3 pathway and triggered apoptosis of OS cells. However, the opposite results were found with KIAA0087 knockdown or miR-411-3p overexpression. Mechanistic experiments indicated that KIAA0087 enhanced SOCS1 expression to inactivate the JAK2/STAT3 pathway by sponging miR-411-3p. Rescue experiments revealed that the antitumor effects of KIAA0087 overexpression or miR-411-3p suppression were counteracted by miR-411-3p mimics or SOCS1 inhibition, respectively. Finally, in vivo tumor growth and lung metastasis were inhibited in KIAA0087-overexpressing or miR-411-3p-inhibited OS cells. In summary, the downregulation of KIAA0087 promotes the growth, metastasis, and EMT of OS by targeting the miR-411-3p-mediated SOCS1/JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Haoli Gong
- Department of Orthopedics, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, P. R. China
| | - Ye Tao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, P. R. China
| | - Sheng Xiao
- Department of Orthopedics, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, P. R. China
| | - Xin Li
- Department of Orthopedics, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, P. R. China
| | - Ke Fang
- Department of Orthopedics, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, P. R. China
| | - Jie Wen
- Department of Orthopedics, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, P. R. China
| | - Pan He
- Department of Orthopedics, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, P. R. China
| | - Ming Zeng
- Department of Orthopedics, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, P. R. China.
| |
Collapse
|
14
|
Ge X, Zhou Z, Yang S, Ye W, Wang Z, Wang J, Xiao C, Cui M, Zhou J, Zhu Y, Wang R, Gao Y, Wang H, Tang P, Zhou X, Wang C, Cai W. Exosomal USP13 derived from microvascular endothelial cells regulates immune microenvironment and improves functional recovery after spinal cord injury by stabilizing IκBα. Cell Biosci 2023; 13:55. [PMID: 36915206 PMCID: PMC10012460 DOI: 10.1186/s13578-023-01011-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Spinal cord injury (SCI) can result in irreversible sensory and motor disability with no effective treatment currently. After SCI, infiltrated macrophages accumulate in epicenter through destructed blood-spinal cord barrier (BSCB). Further, great majority of macrophages are preferentially polarized to M1 phenotype, with only a few transient M2 phenotype. The purpose of this study was to explore roles of vascular endothelial cells in microglia/macrophages polarization and the underlying mechanism. Lipopolysaccharide (LPS) was used to pretreat BV2 microglia and RAW264.7 macrophages followed by administration of conditioned medium from microvascular endothelial cell line bEnd.3 cells (ECM). Analyses were then performed to determine the effects of exosomes on microglia/macrophages polarization and mitochondrial function. The findings demonstrated that administration of ECM shifted microglia/macrophages towards M2 polarization, ameliorated mitochondrial impairment, and reduced reactive oxygen species (ROS) production in vitro. Notably, administration of GW4869, an exosomal secretion inhibitor, significantly reversed these observed benefits. Further results revealed that exosomes derived from bEnd.3 cells (Exos) promote motor rehabilitation and M2 polarization of microglia/macrophages in vivo. Ubiquitin-specific protease 13 (USP13) was shown to be significantly enriched in BV2 microglia treated with Exos. USP13 binds to, deubiquitinates and stabilizes the NF-κB inhibitor alpha (IκBα), thus regulating microglia/macrophages polarization. Administration of the selective IκBα inhibitor betulinic acid (BA) inhibited the beneficial effect of Exos in vivo. These findings uncovered the potential mechanism underlying the communications between vascular endothelial cells and microglia/macrophages after SCI. In addition, this study indicates exosomes might be a promising therapeutic strategy for SCI treatment.
Collapse
Affiliation(s)
- Xuhui Ge
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zheng Zhou
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Siting Yang
- Department of Anesthesiology and Nursing, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wu Ye
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhuanghui Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jiaxing Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chenyu Xiao
- Department of Human Anatomy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Min Cui
- Department of Human Anatomy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jiawen Zhou
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yufeng Zhu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Rixiao Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yu Gao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Haofan Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Pengyu Tang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xuhui Zhou
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Ce Wang
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Weihua Cai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
15
|
The Roles of Exosomes in Metastasis of Sarcoma: From Biomarkers to Therapeutic Targets. Biomolecules 2023; 13:biom13030456. [PMID: 36979391 PMCID: PMC10046038 DOI: 10.3390/biom13030456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Sarcoma is a heterogeneous group of mesenchymal neoplasms with a high rate of lung metastasis. The cellular mechanisms responsible for sarcoma metastasis remain poorly understood. Furthermore, there are limited efficacious therapeutic strategies for treating metastatic sarcoma. Improved diagnostic and therapeutic modalities are of increasing importance for the treatment of sarcoma due to their high mortality in the advanced stages of the disease. Recent evidence demonstrates that the exosome, a type of extracellular vesicle released by virtually all cells in the body, is an important facilitator of intercellular communication between the cells and the surrounding environment. The exosome is gaining significant attention among the medical research community, but there is little knowledge about how the exosome affects sarcoma metastasis. In this review, we summarize the multifaceted roles of sarcoma-derived exosomes in promoting the process of metastasis via the formation of pre-metastatic niche (PMN), the regulation of immunity, angiogenesis, vascular permeability, and the migration of sarcoma cells. We also highlight the potential of exosomes as innovative diagnostic and prognostic biomarkers as well as therapeutic targets in sarcoma metastasis.
Collapse
|
16
|
Ren Z, Xiao W, He M, Bai L. Chitosan targets PI3K/Akt/FoxO3a axis to up-regulate FAM172A and suppress MAPK/ERK pathway to exert anti-tumor effect in osteosarcoma. Chem Biol Interact 2023; 373:110354. [PMID: 36706893 DOI: 10.1016/j.cbi.2023.110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
Osteosarcoma (OS) is a serve and the most frequent primary malignant tumor of bone. Chitosan was reported to have anti-tumor effect on human cancers including OS. However, the molecular mechanism by which chitosan suppresses tumor growth is not fully illustrated. In this study, human OS cell lines, including both Saos-2 and U2OS cells, were used to dissect the underlying mechanisms. RNA sequencing results show that a candidate biomarker family with sequence similarity 172 member A (FAM172A) was up-regulated in both of the two cell lines treated with chitosan. We observed that the mitogen-activated protein kinase (MAPK) signaling pathway could be inactivated by chitosan, and the MAPK inhibition caused by chitosan was reversed by FAM172A knockdown. Moreover, we uncovered a direct interaction between C-terminal domain of FAM172A (311-415) and mitogen-activated protein kinase kinase 1 (MEK1) (270-307) by immunoprecipitation assay. Finally, we also found that chitosan could bind with subunit p85 of PI3K to further inactivate the PI3K/Akt pathway. Taken together, our study demonstrates that chitosan binds with PI3K p85 subunit to suppress the activity of PI3K/Akt pathway to up-regulate the expression of FAM172A, and which exerts its function by suppressing phosphorylation of MEK1/2 and blocking the activity of MAPK/ERK signaling pathway. Taken together, our study deepens the understanding of the molecular mechanism of MAPK/ERK pathway inhibition induced by chitosan, and provides insights into the development of new targets to enhance the pharmacological effect of chitosan against OS.
Collapse
Affiliation(s)
- Zhaozhou Ren
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Wan'an Xiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Ming He
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Lunhao Bai
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
17
|
Liu C, Tang L, Zhou Y, Tang X, Zhang G, Zhu Q, Zhou Y. Immune-associated biomarkers identification for diagnosing carotid plaque progression with uremia through systematical bioinformatics and machine learning analysis. Eur J Med Res 2023; 28:92. [PMID: 36823662 PMCID: PMC9948329 DOI: 10.1186/s40001-023-01043-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/04/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Uremia is one of the most challenging problems in medicine and an increasing public health issue worldwide. Patients with uremia suffer from accelerated atherosclerosis, and atherosclerosis progression may trigger plaque instability and clinical events. As a result, cardiovascular and cerebrovascular complications are more likely to occur. This study aimed to identify diagnostic biomarkers in uremic patients with unstable carotid plaques (USCPs). METHODS Four microarray datasets (GSE37171, GSE41571, GSE163154, and GSE28829) were downloaded from the NCBI Gene Expression Omnibus database. The Limma package was used to identify differentially expressed genes (DEGs) in uremia and USCP. Weighted gene co-expression network analysis (WGCNA) was used to determine the respective significant module genes associated with uremia and USCP. Moreover, a protein-protein interaction (PPI) network and three machine learning algorithms were applied to detect potential diagnostic genes. Subsequently, a nomogram and a receiver operating characteristic curve (ROC) were plotted to diagnose USCP with uremia. Finally, immune cell infiltrations were further analyzed. RESULTS Using the Limma package and WGCNA, the intersection of 2795 uremia-related DEGs and 1127 USCP-related DEGs yielded 99 uremia-related DEGs in USCP. 20 genes were selected as candidate hub genes via PPI network construction. Based on the intersection of genes from the three machine learning algorithms, three hub genes (FGR, LCP1, and C5AR1) were identified and used to establish a nomogram that displayed a high diagnostic performance (AUC: 0.989, 95% CI 0.971-1.000). Dysregulated immune cell infiltrations were observed in USCP, showing positive correlations with the three hub genes. CONCLUSION The current study systematically identified three candidate hub genes (FGR, LCP1, and C5AR1) and established a nomogram to assist in diagnosing USCP with uremia using various bioinformatic analyses and machine learning algorithms. Herein, the findings provide a foothold for future studies on potential diagnostic candidate genes for USCP in uremic patients. Additionally, immune cell infiltration analysis revealed that the dysregulated immune cell proportions were identified, and macrophages could have a critical role in USCP pathogenesis.
Collapse
Affiliation(s)
- Chunjiang Liu
- grid.415644.60000 0004 1798 6662Department of General Surgery, Division of Vascular Surgery, Shaoxing People’s Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, 312000 China
| | - Liming Tang
- grid.415644.60000 0004 1798 6662Department of General Surgery, Division of Vascular Surgery, Shaoxing People’s Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, 312000 China
| | - Yue Zhou
- grid.415644.60000 0004 1798 6662Department of General Surgery, Division of Vascular Surgery, Shaoxing People’s Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, 312000 China
| | - Xiaoqi Tang
- grid.415644.60000 0004 1798 6662Department of General Surgery, Division of Vascular Surgery, Shaoxing People’s Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, 312000 China
| | - Gang Zhang
- grid.412679.f0000 0004 1771 3402Department of Rehabilitation, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, 230000 Anhui China
| | - Qin Zhu
- Hepatobiliary CenterKey Laboratory of Liver TransplantationNHC Key Laboratory of Living Donor Liver Transplantation, The First Affiliated Hospital of Nanjing Medical UniversityChinese Academy of Medical SciencesNanjing Medical University), Nanjing, 210000, Jiangsu, China.
| | - Yufei Zhou
- Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
18
|
lncRNA LINC00960 promotes apoptosis by sponging ubiquitin ligase Nrdp1-targeting miR-183-5p. Acta Biochim Biophys Sin (Shanghai) 2023; 55:91-102. [PMID: 36722261 PMCID: PMC10157604 DOI: 10.3724/abbs.2023005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
<p indent="0mm">The ubiquitin ligase Nrdp1/RNF41 promotes the ubiquitin-dependent degradation of multiple important substrates, including BRUCE/BIRC6, a giant ubiquitin-conjugating enzyme inhibiting both apoptosis and autophagy. miR-183-5p is associated with various malignancies potentially by targeting dozens of genes. Here, we show that the lncRNA LINC00960 binds to the Nrdp1-targeting miR-183-5p and promotes apoptosis. Compared to other known miR-183-5p targets, Nrdp1 mRNA is among the few with top scores to complement miR-183-5p. miR-183-5p binds to the <sc>3'UTR</sc> of Nrdp1 mRNA and downregulates Nrdp1 at both the mRNA and protein levels. The miR-183-5p mimics inhibit DNA damage-induced apoptosis probably by upregulating BRUCE level, whereas the miR-183-5p inhibitor suppresses the effects of miR-183-5p. LINC00960 is the noncoding RNA with the highest score to complement miR-183-5p. LINC00960 overexpression reduces, but its knockdown increases, the level of miR-183-5p, whereas LINC00960 overexpression increases, but its knockdown decreases, the level of Nrdp1 and apoptosis. Importantly, the expression of LINC00960, which is associated with multiple types of tumors, positively correlates with that of Nrdp1 in several tumors but inversely correlates with that of miR-183-5p in multiple human tumor cell lines, as analysed by quantitative PCR. Thus, miR-183-5p downregulates Nrdp1 expression and inhibits apoptosis, whereas LINC00960 upregulates Nrdp1 and promotes apoptosis by inhibiting miR-183-5p. These results may provide new ideas for the prevention, diagnosis and treatment of apoptosis-related diseases, such as tumors and neurodegenerative diseases. </p>.
Collapse
|
19
|
Advances in the Study of Exosomes as Drug Delivery Systems for Bone-Related Diseases. Pharmaceutics 2023; 15:pharmaceutics15010220. [PMID: 36678850 PMCID: PMC9867375 DOI: 10.3390/pharmaceutics15010220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Bone-related diseases are major problems and heavy burdens faced by modern society. Current clinical approaches for the treatment of these pathological conditions often lead to complications and have limited therapeutic efficacy. In this context, the development of nanotherapeutic platforms, such as extracellular vesicles, can improve the relevant therapeutic effects. In particular, exosomes are nano-sized, lipid bilayer extracellular vesicles secreted by many cells in mammals. Due to their innate capacity to transport materials-including proteins, lipids, and genes-among cells, as well as their innate attraction to target cells, they are considered to be a crucial medium for cell communication and are involved in a number of biological processes. Exosomes have been used as drug delivery vehicles in recent bone tissue engineering studies, in order to regulate bone homeostasis. However, the precise workings of the exosome regulatory network in maintaining bone homeostasis and its potential for treating bone injury remain unclear. To provide a fresh perspective for the study of exosomes in drug delivery and bone-related diseases, in this paper, we review recent studies on the roles of exosomes for drug delivery in bone homeostasis and bone-related diseases, as well as the composition and characteristics of exosomes and their regulatory roles in bone homeostasis and bone-related diseases, aiming to provide new ideas for the therapeutic application of exosomes in the treatment of bone-related diseases.
Collapse
|
20
|
Inhibition of the Glycolysis Prevents the Cerebral Infarction Progression Through Decreasing the Lactylation Levels of LCP1. Mol Biotechnol 2022. [PMID: 36574182 DOI: 10.1007/s12033-022-00643-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractCerebral infarction (CI), also known as ischemic stroke, has a high incidence rate and mortality rate. The purpose of this study was to investigate the potential effect and mechanism of Lymphocyte cytosolic protein 1 (LCP1) in the CI progression. The middle cerebral artery occlusion (MCAO) treated rats and oxygen–glucose deprivation/reoxygenation (OGD/R) stimulated PC12 cells were used to establish CI model in vivo and in vitro. The cell proliferation and apoptosis was determined by CCK-8 assay and flow cytometry, respectively. Immunoprecipitation and western blot was performed to test the lactylation levels of LCP1. The cells were treated with cycloheximide to determined the protein stability of LCP1. The glucose uptake and lactate production was determined with commercial kits. The extracellular acidification rate were evaluated by Seahorse. The results showed that LCP1 was upregulated in the MCAO rats and OGD/R stimulated PC12 cells. LCP1 knockdown dramatically decreased the neurological score, infarct volume and the brain water content of MCAO rats. Besides, LCP1 knockdown promoted the cell viability while decreased the apoptosis rate of the OGD/R stimulated PC12 cells. Additionally, the global lactylation and lactylation levels of LCP1 was prominently enhanced in vivo and in vitro in cerebral infarction. 2-DG treatment prominently decreased it. In conclusion, inhibiting the glycolysis decreased the lactylation levels of LCP1 and resulted in the degradation of LCP1, which eventually relieved the CI progression.
Collapse
|
21
|
TIAM2 promotes proliferation and invasion of osteosarcoma cells by activating the JAK2/STAT3 signaling pathway. J Bone Oncol 2022; 37:100461. [DOI: 10.1016/j.jbo.2022.100461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
|
22
|
Zhu G, Xia Y, Zhao Z, Li A, Li H, Xiao T. LncRNA XIST from the bone marrow mesenchymal stem cell derived exosome promotes osteosarcoma growth and metastasis through miR-655/ACLY signal. Cancer Cell Int 2022; 22:330. [PMID: 36309693 PMCID: PMC9617450 DOI: 10.1186/s12935-022-02746-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background Long non-coding RNA X-inactive specific transcript (XIST) regulates the progression of a variety of tumors, including osteosarcoma. Bone marrow mesenchymal stem cells (BMSCs) can be recruited into osteosarcoma tissue and affect the progression by secreting exosomes. However, whether BMSCs derived exosomes transmit XIST to regulate the growth and metastasis of osteosarcoma and the related mechanism are still unclear. Method In this study, BMSCs derived exosomes were used to treat human osteosarcoma cells MG63 and 143B, and the level of XIST in BMSCs was intervened by siRNA. CCK-8, EdU, transwell assays were used to analyze the changes of cell proliferation, migration and invasion. Bioinformatics analysis, RNA pulldown and dual-luciferase reporter gene assays validated the targeted relationship of XIST with miR-655 and the interaction between miR-655 and ACLY 3’-UTR. 143B/LUC cell line was used to establish an animal model of in situ osteosarcoma to verify the found effects of XIST on osteosarcoma. Oil Red O staining, Western blot and so on were used to detect the changes of lipid deposition and protein expression. Results It was found that BMSCs derived exosomes promoted the proliferation, migration and invasion of osteosarcoma cells, and the down-regulation of XIST inhibited this effect. miR-655 mediated the role of BMSCs derived exosomal XIST in promoting the progression of osteosarcoma and down-regulation of miR-655 could reverse the effects of inhibiting XIST on the proliferation, migration and invasion of osteosarcoma cells. Meanwhile, animal level results confirmed that BMSCs derived exosomal XIST could promote osteosarcoma growth and lung metastasis by combining with miR-655. In-depth mechanism study showed that BMSCs derived exosomal XIST combined with miR-655 to increase the protein level of ACLY, which led to lipid deposition and activate β-catenin signal to promote the proliferation, migration and invasion of osteosarcoma cells. Conclusion This study showed that BMSCs derived exosomal XIST could enter osteosarcoma cells, bind and down-regulates the level of miR-655, resulting in an increase in the level of ACLY, thus increasing the lipid deposition and the activity of β-catenin signal to promote the growth and metastasis of osteosarcoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02746-0.
Collapse
|
23
|
Yue J, Chen ZS, Xu XX, Li S. Functions and therapeutic potentials of exosomes in osteosarcoma. ACTA MATERIA MEDICA 2022; 1:552-562. [PMID: 36710945 PMCID: PMC9879305 DOI: 10.15212/amm-2022-0024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteosarcoma is a primary malignant tumor of the skeleton with the morbidity of 2.5 in 1 million. The regularly on-set is in the epiphysis of the extremities with a high possibility of early metastasis, rapid progression, and poor prognosis. The survival rate of patients with metastatic or recurrent osteosarcoma remains low, and novel diagnostic and therapeutic methods are urgently needed. Exosomes are extracellular vesicles 30-150 nm in diameter secreted by various cells that are widely present in various body fluids. Exosomes are abundant in biologically active components such as proteins, nucleic acids, and lipids. Exosomes participate in numerous physiological and pathological processes via intercellular substance exchange and signaling. This review presents the novel findings of exosomes in osteosarcoma in diagnosis, prognosis, and therapeutic aspects.
Collapse
Affiliation(s)
- Jiaji Yue
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, PR China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY,United States
| | - Xiang-Xi Xu
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, PR China
| |
Collapse
|
24
|
Yang M, Zhang Y, Liu G, Zhao Z, Li J, Yang L, Liu K, Hu W, Lou Y, Jiang J, Liu Q, Zhao P. TIPE1 inhibits osteosarcoma tumorigenesis and progression by regulating PRMT1 mediated STAT3 arginine methylation. Cell Death Dis 2022; 13:815. [PMID: 36151091 PMCID: PMC9508122 DOI: 10.1038/s41419-022-05273-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 01/23/2023]
Abstract
Osteosarcoma (OS), the most common primary malignancy of the bone, has a poor prognosis due to its high mortality rate and high potential for metastasis. Thus, it is urgently necessary to explore functional molecular targets of therapeutic strategies for osteosarcoma. Here, we reported that TIPE1 expression was decreased in osteosarcoma tissues compared to normal and adjacent nontumor tissues, and its expression was negatively related to tumor stage and tumor size. Functional assays showed that TIPE1 inhibited osteosarcoma carcinogenesis and metastatic potential both in vivo and in vitro. Furthermore, we investigated that the STAT3 signaling pathway was significantly downregulated after TIPE1 overexpression. Mechanistically, TIPE1 bind to the catalytic domain of PRMT1, which deposits an asymmetric dimethylarginine (ADMA) mark on histone/non-histone proteins, and thus inhibited PRMT1 mediated STAT3 methylation at arginine (R) residue 688. This abolished modification decreased STAT3 transactivation and expression, by which subsequently suppressed osteosarcoma malignancy. Taken together, these data showed that TIPE1 inhibits the malignant transformation of osteosarcoma through PRMT1-mediated STAT3 arginine methylation and ultimately decreases the development and metastasis of osteosarcoma. TIPE1 might be a potential molecular therapeutic target and an early biomarker for osteosarcoma diagnosis.
Collapse
Affiliation(s)
- Minghao Yang
- grid.452240.50000 0004 8342 6962Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100 PR China
| | - Yuzhu Zhang
- grid.477019.cCenter of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, 255036 PR China
| | - Guangping Liu
- grid.477019.cCenter of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, 255036 PR China
| | - Ziqian Zhao
- grid.13394.3c0000 0004 1799 3993The Second Medical College, Xinjiang Medical University, Urumqi, 830092 PR China
| | - Jigang Li
- grid.477019.cCenter of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, 255036 PR China
| | - Le Yang
- grid.460018.b0000 0004 1769 9639Shandong First Medical University, Jinan, 250117 PR China
| | - Kui Liu
- grid.477019.cCenter of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, 255036 PR China
| | - Wei Hu
- grid.477019.cCenter of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, 255036 PR China
| | - Yunwei Lou
- grid.412990.70000 0004 1808 322XSchool of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 PR China
| | - Jie Jiang
- grid.452240.50000 0004 8342 6962Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100 PR China
| | - Qing Liu
- grid.412509.b0000 0004 1808 3414School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049 PR China
| | - Peiqing Zhao
- grid.477019.cCenter of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, 255036 PR China
| |
Collapse
|
25
|
Gao X, Gao B, Li S. Extracellular vesicles: A new diagnostic biomarker and targeted drug in osteosarcoma. Front Immunol 2022; 13:1002742. [PMID: 36211364 PMCID: PMC9539319 DOI: 10.3389/fimmu.2022.1002742] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma (OS) is a primary bone cancer that is highly prevalent among adolescents and adults below the age of 20 years. The prognostic outcome of metastatic OS or relapse is extremely poor; thus, developing new diagnostic and therapeutic strategies for treating OS is necessary. Extracellular vesicles (EVs) ranging from 30–150 nm in diameter are commonly produced in different cells and are found in various types of body fluids. EVs are rich in biologically active components like proteins, lipids, and nucleic acids. They also strongly affect pathophysiological processes by modulating the intercellular signaling pathways and the exchange of biomolecules. Many studies have found that EVs influence the occurrence, development, and metastasis of osteosarcoma. The regulation of inflammatory communication pathways by EVs affects OS and other bone-related pathological conditions, such as osteoarthritis and rheumatoid arthritis. In this study, we reviewed the latest findings related to diagnosis, prognosis prediction, and the development of treatment strategies for OS from the perspective of EVs.
Collapse
Affiliation(s)
- Xiaozhuo Gao
- Department of Pathology, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| | - Bo Gao
- Department of Pathology, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
- *Correspondence: Shenglong Li, ;
| |
Collapse
|
26
|
Albaradei S, Albaradei A, Alsaedi A, Uludag M, Thafar MA, Gojobori T, Essack M, Gao X. MetastaSite: Predicting metastasis to different sites using deep learning with gene expression data. Front Mol Biosci 2022; 9:913602. [PMID: 35936793 PMCID: PMC9353773 DOI: 10.3389/fmolb.2022.913602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
Deep learning has massive potential in predicting phenotype from different omics profiles. However, deep neural networks are viewed as black boxes, providing predictions without explanation. Therefore, the requirements for these models to become interpretable are increasing, especially in the medical field. Here we propose a computational framework that takes the gene expression profile of any primary cancer sample and predicts whether patients' samples are primary (localized) or metastasized to the brain, bone, lung, or liver based on deep learning architecture. Specifically, we first constructed an AutoEncoder framework to learn the non-linear relationship between genes, and then DeepLIFT was applied to calculate genes' importance scores. Next, to mine the top essential genes that can distinguish the primary and metastasized tumors, we iteratively added ten top-ranked genes based upon their importance score to train a DNN model. Then we trained a final multi-class DNN that uses the output from the previous part as an input and predicts whether samples are primary or metastasized to the brain, bone, lung, or liver. The prediction performances ranged from AUC of 0.93-0.82. We further designed the model's workflow to provide a second functionality beyond metastasis site prediction, i.e., to identify the biological functions that the DL model uses to perform the prediction. To our knowledge, this is the first multi-class DNN model developed for the generic prediction of metastasis to various sites.
Collapse
Affiliation(s)
- Somayah Albaradei
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Asim Alsaedi
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Mahmut Uludag
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Maha A. Thafar
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | - Takashi Gojobori
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magbubah Essack
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xin Gao
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
27
|
Sadrkhanloo M, Entezari M, Orouei S, Ghollasi M, Fathi N, Rezaei S, Hejazi ES, Kakavand A, Saebfar H, Hashemi M, Goharrizi MASB, Salimimoghadam S, Rashidi M, Taheriazam A, Samarghandian S. STAT3-EMT axis in tumors: modulation of cancer metastasis, stemness and therapy response. Pharmacol Res 2022; 182:106311. [PMID: 35716914 DOI: 10.1016/j.phrs.2022.106311] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 02/07/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) mechanism is responsible for metastasis of tumor cells and their spread to various organs and tissues of body, providing undesirable prognosis. In addition to migration, EMT increases stemness and mediates therapy resistance. Hence, pathways involved in EMT regulation should be highlighted. STAT3 is an oncogenic pathway that can elevate growth rate and migratory ability of cancer cells and induce drug resistance. The inhibition of STAT3 signaling impairs cancer progression and promotes chemotherapy-mediated cell death. Present review focuses on STAT3 and EMT interaction in modulating cancer migration. First of all, STAT3 is an upstream mediator of EMT and is able to induce EMT-mediated metastasis in brain tumors, thoracic cancers and gastrointestinal cancers. Therefore, STAT3 inhibition significantly suppresses cancer metastasis and improves prognosis of patients. EMT regulators such as ZEB1/2 proteins, TGF-β, Twist, Snail and Slug are affected by STAT3 signaling to stimulate cancer migration and invasion. Different molecular pathways such as miRNAs, lncRNAs and circRNAs modulate STAT3/EMT axis. Furthermore, we discuss how STAT3 and EMT interaction affects therapy response of cancer cells. Finally, we demonstrate targeting STAT3/EMT axis by anti-tumor agents and clinical application of this axis for improving patient prognosis.
Collapse
Affiliation(s)
- Mehrdokht Sadrkhanloo
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nikoo Fathi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
28
|
Han Y, Wang D, Peng L, Huang T, He X, Wang J, Ou C. Single-cell sequencing: a promising approach for uncovering the mechanisms of tumor metastasis. J Hematol Oncol 2022; 15:59. [PMID: 35549970 PMCID: PMC9096771 DOI: 10.1186/s13045-022-01280-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023] Open
Abstract
Single-cell sequencing (SCS) is an emerging high-throughput technology that can be used to study the genomics, transcriptomics, and epigenetics at a single cell level. SCS is widely used in the diagnosis and treatment of various diseases, including cancer. Over the years, SCS has gradually become an effective clinical tool for the exploration of tumor metastasis mechanisms and the development of treatment strategies. Currently, SCS can be used not only to analyze metastasis-related malignant biological characteristics, such as tumor heterogeneity, drug resistance, and microenvironment, but also to construct metastasis-related cell maps for predicting and monitoring the dynamics of metastasis. SCS is also used to identify therapeutic targets related to metastasis as it provides insights into the distribution of tumor cell subsets and gene expression differences between primary and metastatic tumors. Additionally, SCS techniques in combination with artificial intelligence (AI) are used in liquid biopsy to identify circulating tumor cells (CTCs), thereby providing a novel strategy for treating tumor metastasis. In this review, we summarize the potential applications of SCS in the field of tumor metastasis and discuss the prospects and limitations of SCS to provide a theoretical basis for finding therapeutic targets and mechanisms of metastasis.
Collapse
Affiliation(s)
- Yingying Han
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Dan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lushan Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Tao Huang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Department of Pathology, School of Basic Medicine, Central South University, Changsha, 410031, Hunan, China. .,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
29
|
Lymphocyte cytosolic protein 1 (L-plastin) I232F mutation impairs granulocytic proliferation and causes neutropenia. Blood Adv 2022; 6:2581-2594. [PMID: 34991157 PMCID: PMC9043934 DOI: 10.1182/bloodadvances.2021006398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022] Open
Abstract
Neutrophils migrate into inflamed tissue, engage in phagocytosis, and clear pathogens or apoptotic cells. These processes require well-coordinated events involving the actin cytoskeleton. We describe a child with severe neutropenia and episodes of soft tissue infections and pneumonia. Bone marrow examination showed granulocytic hypoplasia with dysplasia. Whole-exome sequencing revealed a de novo heterozygous missense mutation in LCP1, which encodes the F-actin-binding protein Lymphocyte Cytosolic Protein 1. To determine its pathophysiological significance, we stably transduced cells with doxycycline-inducible wild-type LCP1 and LCP1 I232F lentiviral constructs. We observed dysplastic granulocytic 32D cells expressing LCP1 I232F cells. These cells showed decreased proliferation without a block in differentiation. In addition, expression of LCP1 I232F resulted in a cell cycle arrest at the G2/M phase, but it did not lead to increased levels of genes involved in apoptosis or the unfolded protein response. Both 32D and HeLa cells expressing mutant LCP1 displayed impaired cell motility and invasiveness. Flow cytometry showed increased F-actin. However, mutant LCP1-expressing 32D cells exhibited normal oxidative burst upon stimulation. Confocal imaging and subcellular fractionation revealed diffuse intracellular localization of LCP1, but only the mutant form was found in the nucleus. We conclude that LCP1 is a new gene involved in granulopoiesis, and the missense variant LCP1 I232F leads to neutropenia and granulocytic dysplasia with aberrant actin dynamics. Our work supports a model of neutropenia due to aberrant actin regulation.
Collapse
|
30
|
Liu Y, Yuan J, Zhang Q, Ren Z, Li G, Tian R. Circ_0016347 modulates proliferation, migration, invasion, cell cycle, and apoptosis of osteosarcoma cells via the miR-661/IL6R axis. Autoimmunity 2022; 55:264-274. [PMID: 35166635 DOI: 10.1080/08916934.2022.2037129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Osteosarcoma is a common primary bone tumour in children and adolescents. Circular RNAs (circRNAs) exert vital functions in human diseases, including osteosarcoma. Therefore, we explored the role of circ_0016347 in osteosarcoma. METHODS The real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression levels of circ_0016347, microRNA-661 (miR-661), and Interleukin-6 receptor (IL6R) in osteosarcoma tissues and cells. The proliferation of osteosarcoma cells was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazol-3-ium bromide (MTT) and EdU experiments. The migration and invasion were determined by transwell assay. The cell cycle distribution and apoptosis were assessed by flow cytometry assay. The association relationships among circ_0016347, miR-661, and IL6R were analyzed by dual-luciferase reporter assays. The western blot assay was employed to assay the protein expression. A xenograft experiment was established to clarify the functional role of circ_0016347 inhibition in vivo. RESULTS Circ_0016347 was obviously overexpressed in osteosarcoma tissues and cells compared with control groups. The suppression of circ_0016347 impeded proliferation, migration, invasion, and cell cycle and induced apoptosis in osteosarcoma cells, which was overturned by knockdown of miR-661. Consistently, circ_0016347 knockdown repressed tumour growth in vivo. Moreover, miR-661 directly targeted and inhibited IL6R, and the upregulation of IL6R reversed miR-661-induced effects on osteosarcoma cells. Furthermore, circ_0016347 could regulate IL6R expression through miR-661. Inhibition of circ_0016347 also inactivated the Janus kinase 2 (JAK2)/Transcription 3 (STAT3) signalling pathway in osteosarcoma cells by IL6R. CONCLUSION Circ_0016347 functioned as an oncogene in osteosarcoma at least in part by the miR-661/IL6R axis and JAK2/STAT3 signalling pathway.
Collapse
Affiliation(s)
- Yan Liu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Jianjun Yuan
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Quan Zhang
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Zhishuai Ren
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Guang Li
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Rong Tian
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
31
|
Li ZF, Meng DD, Liu YY, Bi FG, Tian K, Xu JZ, Sun JG, Gu CX, Li Y. Hypoxia inducible factor-3α promotes osteosarcoma progression by activating KDM3A-mediated demethylation of SOX9. Chem Biol Interact 2022; 351:109759. [PMID: 34826399 DOI: 10.1016/j.cbi.2021.109759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/03/2021] [Accepted: 11/21/2021] [Indexed: 12/11/2022]
Abstract
Hypoxia/oxygen-sensing signally is closely associated with many tumor progressions, including osteosarcoma (OS). Previous research principally focused on the function of hypoxia-inducible factor (HIF)-1α and HIF-2α as the major hypoxia-associated transcription factors in OS, however, the role of HIF-3α has not been investigated. Our study found that HIF-3α was upregulated in OS tissues and cell lines. HIF-3α overexpression facilitated cell proliferation and invasion, and inhibited apoptosis, whereas HIF-3α knockdown showed the opposite results. Chromatin immunoprecipitation analysis revealed that lysine demethylase 3A (KDM3A) expression was transcriptionally activated by HIF-3α under hypoxia, and KDM3A occupied the SRY-box transcription factor 9 (SOX9) gene promoter region through H3 lysine 9 dimethylation (H3K9me2). Additionally, rescue results revealed that KDM3A or SOX9 overexpression reversed the effects of HIF-3α silence on cell functions. The Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway inhibitor cucurbitacin I suppressed the promotive effects of HIF-3α overexpression on cell proliferation, invasion and TAK2/STAT3 pathway. Finally, OS cell line MG-63 transfected with HIF-3α short hairpin RNA (HIF-3α shRNA) were subcutaneously injected into nude mice, and the results found that HIF-3α knockdown significantly inhibited the xenograft tumor growth of OS in vivo. In conclusion, this study reveals that HIF-3α promotes OS progression in vitro and in vivo by activating KDM3A-mediated SOX9 promoter demethylation, which may provide a potential therapeutic mechanism for OS.
Collapse
Affiliation(s)
- Zhi-Fu Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China.
| | - Dong-Dong Meng
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Yong-Yi Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Fang-Gang Bi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Ke Tian
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Jian-Zhong Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Jian-Guang Sun
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Chen-Xi Gu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Yu Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| |
Collapse
|
32
|
Yang Q, Liu J, Wu B, Wang X, Jiang Y, Zhu D. Role of extracellular vesicles in osteosarcoma. Int J Med Sci 2022; 19:1216-1226. [PMID: 35928720 PMCID: PMC9346389 DOI: 10.7150/ijms.74137] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma is a malignant bone tumor characterized by the direct production of osteoid tissue from tumor cells. Extracellular vesicles are membranous vesicles released by cells into the extracellular matrix, which exist widely in various body fluids and cell supernatants, and stably carry some important signaling molecules. They are involved in cell communication, cell migration, angiogenesis and tumor cell growth. Increasing evidence has shown that extracellular vesicles play a significant role in osteosarcoma development, progression, and metastatic process, indicating that extracellular vesicles can be use as biomarker vehicles in the diagnosis and prognosis of osteosarcoma. This review discusses the basic biological characteristics of extracellular vesicles and focuses on their application in osteosarcoma.
Collapse
Affiliation(s)
- Qifan Yang
- Department of Orthopaedics, the First Hospital of Jilin University, Changchun, Street Xinmin 71, China
| | - Jing Liu
- The first clinical medical college of Bin Zhou Medical College, Street Huanghe 661, China
| | - Bo Wu
- Department of Orthopaedics, the First Hospital of Jilin University, Changchun, Street Xinmin 71, China
| | - Xinyu Wang
- Department of Orthopaedics, the First Hospital of Jilin University, Changchun, Street Xinmin 71, China
| | - Ye Jiang
- Department of Orthopaedics, the First Hospital of Jilin University, Changchun, Street Xinmin 71, China
| | - Dong Zhu
- Department of Orthopaedics, the First Hospital of Jilin University, Changchun, Street Xinmin 71, China
| |
Collapse
|
33
|
de Seny D, Baiwir D, Bianchi E, Cobraiville G, Deroyer C, Poulet C, Malaise O, Paulissen G, Kaiser MJ, Hauzeur JP, Mazzucchelli G, Delvenne P, Malaise M. New Proteins Contributing to Immune Cell Infiltration and Pannus Formation of Synovial Membrane from Arthritis Diseases. Int J Mol Sci 2021; 23:ijms23010434. [PMID: 35008858 PMCID: PMC8745719 DOI: 10.3390/ijms23010434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 01/15/2023] Open
Abstract
An inflamed synovial membrane plays a major role in joint destruction and is characterized by immune cells infiltration and fibroblast proliferation. This proteomic study considers the inflammatory process at the molecular level by analyzing synovial biopsies presenting a histological inflammatory continuum throughout different arthritis joint diseases. Knee synovial biopsies were obtained from osteoarthritis (OA; n = 9), chronic pyrophosphate arthropathy (CPPA; n = 7) or rheumatoid arthritis (RA; n = 8) patients. The histological inflammatory score was determined using a semi-quantitative scale based on synovial hyperplasia, lymphocytes, plasmocytes, neutrophils and macrophages infiltration. Proteomic analysis was performed by liquid chromatography-mass spectrometry (LC-MS/MS). Differentially expressed proteins were confirmed by immunohistochemistry. Out of the 1871 proteins identified and quantified by LC-MS/MS, 10 proteins (LAP3, MANF, LCP1, CTSZ, PTPRC, DNAJB11, EML4, SCARA5, EIF3K, C1orf123) were differentially expressed in the synovial membrane of at least one of the three disease groups (RA, OA and CPPA). Significant increased expression of the seven first proteins was detected in RA and correlated to the histological inflammatory score. Proteomics is therefore a powerful tool that provides a molecular pattern to the classical histology usually applied for synovitis characterization. Except for LCP1, CTSZ and PTPRC, all proteins have never been described in human synovitis.
Collapse
Affiliation(s)
- Dominique de Seny
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
- Correspondence: ; Tel.: +32-366-24-74
| | - Dominique Baiwir
- GIGA Proteomics Facility, University of Liège, 4000 Liège, Belgium; (D.B.); (P.D.)
| | - Elettra Bianchi
- Department of Pathology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium;
| | - Gaël Cobraiville
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
| | - Céline Deroyer
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
| | - Christophe Poulet
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
| | - Olivier Malaise
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
| | - Geneviève Paulissen
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
| | - Marie-Joëlle Kaiser
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
| | - Jean-Philippe Hauzeur
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium;
| | - Philippe Delvenne
- GIGA Proteomics Facility, University of Liège, 4000 Liège, Belgium; (D.B.); (P.D.)
| | - Michel Malaise
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
| |
Collapse
|
34
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Arefian N. Regulatory Role of Non-Coding RNAs on Immune Responses During Sepsis. Front Immunol 2021; 12:798713. [PMID: 34956235 PMCID: PMC8695688 DOI: 10.3389/fimmu.2021.798713] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022] Open
Abstract
Sepsis is resulted from a systemic inflammatory response to bacterial, viral, or fungal agents. The induced inflammatory response by these microorganisms can lead to multiple organ system failure with devastating consequences. Recent studies have shown altered expressions of several non-coding RNAs such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) during sepsis. These transcripts have also been found to participate in the pathogenesis of multiple organ system failure through different mechanisms. NEAT1, MALAT1, THRIL, XIST, MIAT and TUG1 are among lncRNAs that participate in the pathoetiology of sepsis-related complications. miR-21, miR-155, miR-15a-5p, miR-494-3p, miR-218, miR-122, miR-208a-5p, miR-328 and miR-218 are examples of miRNAs participating in these complications. Finally, tens of circRNAs such as circC3P1, hsa_circRNA_104484, hsa_circRNA_104670 and circVMA21 and circ-PRKCI have been found to affect pathogenesis of sepsis. In the current review, we describe the role of these three classes of noncoding RNAs in the pathoetiology of sepsis-related complications.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Normohammad Arefian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Liu D, Liu W, Jiang L, Dong S, Ma W, Wang S, Wan C. Silencing of TLR7 protects against lipopolysaccharide-induced chondrocyte apoptosis and injury by blocking the p21-mediated JAK2/STAT3 pathway. Am J Transl Res 2021; 13:13555-13566. [PMID: 35035696 PMCID: PMC8748165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 08/06/2021] [Indexed: 06/14/2023]
Abstract
Involvement of toll-like receptor 7 (TLR7) in the immune response has been reported in diverse inflammatory diseases. However, the role of TLR7 in the pathogenesis of osteoarthritis (OA) is poorly understood. In this study, we sought to investigate the contribution of TLR7 in regulating chondrocyte apoptosis, inflammation, and degradation of the extracellula matrix (ECM), and its underlying mechanisms. We found that TLR7 expression was increased in cartilage tissues of OA patients and in lipopolysaccharide (LPS)-induced chondrocytes. Silencing of TLR7 alleviated LPS-induced chondrocyte apoptosis, inflammation, and ECM degradation. Mechanistically, TLR7 silencing inhibited the JAK2/STAT3 signaling pathway by inducing p21 expression. Moreover, p21 knockdown and colivein (an activator of JAK2/STAT3 signaling) partially rescued the suppressive role of TLR7 silencing on chondrocyte apoptosis, the inflammatory response, and ECM underproduction. Taken together, our data revealed that knockdown of TLR7 attenuated chondrocyte apoptosis and injury by blocking the p21-mediated JAK2/STAT3 pathway, suggesting that TLR7 may be a therapeutic target in OA.
Collapse
Affiliation(s)
- Dan Liu
- Department of The Joint and Bone Surgery, Yantaishan HospitalYantai 264001, Shandong, China
| | - Wei Liu
- Department of Pathophysiology, Binzhou Medical UniversityBinzhou 256603, Shandong, China
| | - Limin Jiang
- Department of The Joint and Bone Surgery, Yantaishan HospitalYantai 264001, Shandong, China
| | - Shengjie Dong
- Department of The Joint and Bone Surgery, Yantaishan HospitalYantai 264001, Shandong, China
| | - Weihua Ma
- Department of The Joint and Bone Surgery, Yantaishan HospitalYantai 264001, Shandong, China
| | - Shijun Wang
- Department of The Joint and Bone Surgery, Yantaishan HospitalYantai 264001, Shandong, China
| | - Chao Wan
- Department of The Joint and Bone Surgery, Yantaishan HospitalYantai 264001, Shandong, China
| |
Collapse
|
36
|
Thakur A, Parra DC, Motallebnejad P, Brocchi M, Chen HJ. Exosomes: Small vesicles with big roles in cancer, vaccine development, and therapeutics. Bioact Mater 2021; 10:281-294. [PMID: 34901546 PMCID: PMC8636666 DOI: 10.1016/j.bioactmat.2021.08.029] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a deadly disease that is globally and consistently one of the leading causes of mortality every year. Despite the availability of chemotherapy, radiotherapy, immunotherapy, and surgery, a cure for cancer has not been attained. Recently, exosomes have gained significant attention due to the therapeutic potential of their various components including proteins, lipids, nucleic acids, miRNAs, and lncRNAs. Exosomes constitute a set of tiny extracellular vesicles with an approximate diameter of 30-100 nm. They are released from different cells and are present in biofluids including blood, cerebrospinal fluid (CSF), and urine. They perform crucial multifaceted functions in the malignant progression of cancer via autocrine, paracrine, and endocrine communications. The ability of exosomes to carry different cargoes including drug and molecular information to recipient cells make them a novel tool for cancer therapeutics. In this review, we discuss the major components of exosomes and their role in cancer progression. We also review important literature about the potential role of exosomes as vaccines and delivery carriers in the context of cancer therapeutics.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Pritzker School of Molecular Engineering, The University of Chicago, United States.,Ben May Department for Cancer Research, The University of Chicago, United States
| | - Diana Carolina Parra
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Pedram Motallebnejad
- Pritzker School of Molecular Engineering, The University of Chicago, United States.,Ben May Department for Cancer Research, The University of Chicago, United States
| | - Marcelo Brocchi
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Huanhuan Joyce Chen
- Pritzker School of Molecular Engineering, The University of Chicago, United States.,Ben May Department for Cancer Research, The University of Chicago, United States
| |
Collapse
|
37
|
Liu Z, Weng S, Xu H, Wang L, Liu L, Zhang Y, Guo C, Dang Q, Xing Z, Lu T, Han X. Computational Recognition and Clinical Verification of TGF-β-Derived miRNA Signature With Potential Implications in Prognosis and Immunotherapy of Intrahepatic Cholangiocarcinoma. Front Oncol 2021; 11:757919. [PMID: 34760703 PMCID: PMC8573406 DOI: 10.3389/fonc.2021.757919] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) were recently implicated in modifying the transforming growth factor β (TGF-β) signaling in multiple cancers. However, TGF-β-derived miRNAs and their potential clinical significance remain largely unexplored in intrahepatic cholangiocarcinoma (ICC). In this study, we proposed an integrated framework that enables the identification of TGF-β-derived miRNAs in ICC (termed “TGFmitor”). A total of 36 TGF-β-derived miRNAs were identified, of which nine significantly correlated with overall survival (OS) and aberrantly expressed in ICC. According to these miRNAs, we discovered and validated a TGF-β associated miRNA signature (TAMIS) in GSE53870 (n =63) and TCGA-CHOL (n =32). To further confirm the clinical interpretation of TAMIS, another validation based on qRT-PCR results from 181 ICC tissues was performed. TAMIS was proven to be an independent risk indicator for both OS and relapse-free survival (RFS). TAMIS also displayed robust performance in three cohorts, with satisfactory AUCs and C-index. Besides, patients with low TAMIS were characterized by superior levels of CD8+ T cells infiltration and PD-L1 expression, while patients with high TAMIS possessed enhanced CMTM6 expression. Kaplan-Meier analysis suggested CMTM6 could further stratify TAMIS. The TAMIShighCMTM6high subtype had the worst prognosis and lowest levels of CD8A and PD-L1 expression relative to the other subtypes, indicating this subtype might behave as “super-cold” tumors. Notably, the improved discrimination was observed when CMTM6 was combined with TAMIS. Overall, our signature could serve as a powerful tool to help improve prognostic management and immunotherapies of ICC patients.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - ChunGuang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Taoyuan Lu
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| |
Collapse
|
38
|
Yang L, Huang X, Guo H, Wang L, Yang W, Wu W, Jing D, Shao Z. Exosomes as Efficient Nanocarriers in Osteosarcoma: Biological Functions and Potential Clinical Applications. Front Cell Dev Biol 2021; 9:737314. [PMID: 34712664 PMCID: PMC8546119 DOI: 10.3389/fcell.2021.737314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common bone tumor affecting both adolescents and children. Although localized osteosarcoma has an overall survival of >70% in the clinic, metastatic, refractory, and recurrent osteosarcoma have poorer survival rates. Exosomes are extracellular vesicles released by cells and originally thought to be a way for cells to discard unwanted products. Currently, exosomes have been reported to be involved in intercellular cross-talk and induce changes in cellular behavior by transferring cargoes (proteins, DNA, RNA, and lipids) between cells. Exosomes regulate osteosarcoma progression, and processes such as tumorigenesis, proliferation, metastasis, angiogenesis, immune evasion, and drug resistance. Increasing evidences shows that exosomes have significant potential in promoting osteosarcoma progression and development. In this review, we describe the current research status of exosomes in osteosarcoma, focusing on the biological functions of osteosarcoma exosomes as well as their application in osteosarcoma as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lingkai Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoyu Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lutong Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Doudou Jing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Targeting Cancer Stem Cells by Dietary Agents: An Important Therapeutic Strategy against Human Malignancies. Int J Mol Sci 2021; 22:ijms222111669. [PMID: 34769099 PMCID: PMC8584029 DOI: 10.3390/ijms222111669] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
As a multifactorial disease, treatment of cancer depends on understanding unique mechanisms involved in its progression. The cancer stem cells (CSCs) are responsible for tumor stemness and by enhancing colony formation, proliferation as well as metastasis, and these cells can also mediate resistance to therapy. Furthermore, the presence of CSCs leads to cancer recurrence and therefore their complete eradication can have immense therapeutic benefits. The present review focuses on targeting CSCs by natural products in cancer therapy. The growth and colony formation capacities of CSCs have been reported can be attenuated by the dietary agents. These compounds can induce apoptosis in CSCs and reduce tumor migration and invasion via EMT inhibition. A variety of molecular pathways including STAT3, Wnt/β-catenin, Sonic Hedgehog, Gli1 and NF-κB undergo down-regulation by dietary agents in suppressing CSC features. Upon exposure to natural agents, a significant decrease occurs in levels of CSC markers including CD44, CD133, ALDH1, Oct4 and Nanog to impair cancer stemness. Furthermore, CSC suppression by dietary agents can enhance sensitivity of tumors to chemotherapy and radiotherapy. In addition to in vitro studies, as well as experiments on the different preclinical models have shown capacity of natural products in suppressing cancer stemness. Furthermore, use of nanostructures for improving therapeutic impact of dietary agents is recommended to rapidly translate preclinical findings for clinical use.
Collapse
|
40
|
THAP9-AS1 Promotes Tumorigenesis and Reduces ROS Generation through the JAK2/STAT3 Signaling Pathway by Increasing SOCS3 Promoter Methylation in Osteosarcoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5620475. [PMID: 34691358 PMCID: PMC8531775 DOI: 10.1155/2021/5620475] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 11/18/2022]
Abstract
Increasing studies have demonstrated that dysfunction of long noncoding RNAs (lncRNAs) plays critical roles in the development of human cancers. THAP9-AS1 has been reported to be dysregulated and associated with tumor progression in some cancers. However, the function and mechanism of THAP9-AS1 in osteosarcoma (OS) remain unclear. In the present study, we found that the expression of THAP9-AS1 was significantly upregulated in OS tissues and associated with the advanced stage of tumors and poor prognosis of patients. Blast comparison results showed that the SOCS3 promoter region and THAP9-AS1 had base complementary pairing binding sites. The interactions between THAP9-AS1, DNA methyltransferases (DNMTs), and SOCS3 were assessed by RIP and ChIP assays. The results of methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP) validated that THAP9-AS1 enhanced the methylation level of the SOCS3 promoter. The mRNA levels of SOCS3 in OS cells could be reversed by the demethylation agent 5-aza-2'-deoxycytidine. The mRNA expression of SOCS3 was downregulated in OS tissues and negatively correlated with THAP9-AS1 expression in tumors. Moreover, the western blot and immunofluorescence (IF) assay data showed that THAP9-AS1 activated the JAK2/STAT3 signaling pathway by upregulating p-JAK2 and p-STAT3 and the nuclear translocation of p-STAT3. Functionally, ectopic expression of THAP9-AS1 promoted cell proliferation, migration, and invasion and inhibited apoptosis, and this phenomenon could be reversed by SOCS3. Introduction of the JAK/STAT inhibitor AG490 partially abolished the stimulative effect of THAP9-AS1 on cellular processes. In addition, THAP9-AS1 decreased oxidative stress by reducing reactive oxygen species (ROS) and enhancing the mitochondrial membrane potential of OS cells via the SOCS3/JAK2/STAT3 pathway. Stable overexpression of THAP9-AS1 contributed to tumor growth and metastasis in vivo. In total, our findings suggested that upregulation of THAP9-AS1 might recruit DNMTs to epigenetically inhibit SOCS3, thereby activating the JAK2/STAT3 signaling pathway and oncogenesis of OS. These results provide novel insights for the understanding of OS progression.
Collapse
|
41
|
Banik K, Khatoon E, Hegde M, Thakur KK, Puppala ER, Naidu VGM, Kunnumakkara AB. A novel bioavailable curcumin-galactomannan complex modulates the genes responsible for the development of chronic diseases in mice: A RNA sequence analysis. Life Sci 2021; 287:120074. [PMID: 34687757 DOI: 10.1016/j.lfs.2021.120074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chronic diseases or non-communicable diseases are a major burden worldwide due to the lack of highly efficacious treatment modalities and the serious side effects associated with the available therapies. PURPOSE/STUDY DESIGN A novel self-emulsifying formulation of curcumin with fenugreek galactomannan hydrogel scaffold as a water-dispersible non-covalent curcumin-galactomannan molecular complex (curcumagalactomannosides, CGM) has shown better bioavailability than curcumin and can be used for the prevention and treatment of chronic diseases. However, the exact potential of this formulation has not been studied, which would pave the way for its use for the prevention and treatment of multiple chronic diseases. METHODS The whole transcriptome analysis (RNAseq) was used to identify differentially expressed genes (DEGs) in the liver tissues of mice treated with LPS to investigate the potential of CGM on the prevention and treatment of chronic diseases. Expression analysis using DESeq2 package, GO, and pathway analysis of the differentially expressed transcripts was performed using UniProtKB and KEGG-KAAS server. RESULTS The results showed that 559 genes differentially expressed between the liver tissue of control mice and CGM treated mice (100 mg/kg b.wt. for 14 days), with adjusted p-value below 0.05, of which 318 genes were significantly upregulated and 241 were downregulated. Further analysis showed that 33 genes which were upregulated (log2FC > 8) in the disease conditions were significantly downregulated, and 32 genes which were downregulated (log2FC < -8) in the disease conditions were significantly upregulated after the treatment with CGM. CONCLUSION Overall, our study showed CGM has high potential in the prevention and treatment of multiple chronic diseases.
Collapse
Affiliation(s)
- Kishore Banik
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Elina Khatoon
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Eswara Rao Puppala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Educational Research (NIPER) Guwahati, Assam, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Educational Research (NIPER) Guwahati, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
42
|
Shi Z, Wang K, Xing Y, Yang X. CircNRIP1 Encapsulated by Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Vesicles Aggravates Osteosarcoma by Modulating the miR-532-3p/AKT3/PI3K/AKT Axis. Front Oncol 2021; 11:658139. [PMID: 34660257 PMCID: PMC8511523 DOI: 10.3389/fonc.2021.658139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence indicates that extracellular vesicle (EV)-encapsulated circRNAs have the potential diagnostic and prognostic values for malignancies. However, the role of circNRIP1 in osteosarcoma remains unclear. We herein investigated the therapeutic potential of circNRIP1 delivered by bone marrow mesenchymal stem cell–derived EVs (BMSC-EVs) in osteosarcoma. The expression of circNRIP1 was examined in the clinical tissue samples of osteosarcoma patients, after which the downstream genes of circNRIP1 were bioinformatically predicted. Gain- and loss-of function assays were then performed in osteosarcoma cells with manipulation of circNRIP1 and miR-532-3p expression. EVs isolated from BMSCs were characterized and co-cultured with osteosarcoma cells to examine their effects on cell phenotypes, as reflected by CCK-8 and Transwell assays. Further, a mouse model of tumor xenografts was established for in vivo substantiation. circNRIP1 was upregulated in osteosarcoma tissues and cells. Overexpression of circNRIP1 promoted the proliferative, migratory, and invasive potential of osteosarcoma cells. Co-culture data showed that BMSC-EVs could transfer circNRIP1 into osteosarcoma cells where it competitively bound to miR-532-3p and weakened miR-532-3p’s binding ability to AKT3. By this mechanism, the PI3K/AKT signaling pathway was activated and the malignant characteristics of osteosarcoma cells were stimulated. In vivo experimental results unveiled that circNRIP1-overexpressing BMSC-EVs in nude mice resulted in enhanced tumor growth. In conclusion, the BMSC-EV-enclosed circNRIP1 revealed a new molecular mechanism in the pathogenesis of osteosarcoma, which might provide a novel therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Zuowei Shi
- Department of Orthopaedics, First Hospital of Harbin Medical University, Harbin, China
| | - Kaifu Wang
- Department of Orthopaedics, First Hospital of Harbin Medical University, Harbin, China
| | - Yufei Xing
- Department of Orthopaedics, First Hospital of Harbin Medical University, Harbin, China
| | - Xuefeng Yang
- Department of Orthopaedics, First Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
43
|
Xu G, Ma Z, Yang F, Bai Y, Li J, Luo W, Zhong J. TRIM59 promotes osteosarcoma progression via activation of STAT3. Hum Cell 2021; 35:250-259. [PMID: 34625908 DOI: 10.1007/s13577-021-00615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Osteosarcoma (OS) is a common, highly malignant bone tumor. Tripartite motif-containing protein 59 (TRIM59) has been identified as a potential oncogenic protein involved in the initiation and progression of various human carcinomas. Nonetheless, the possible roles and molecular mechanisms of action of TRIM59 in OS remain unclear. In this study, we found that TRIM59 expression levels were frequently upregulated in OS tissues and cell lines. TRIM59 knockdown significantly suppressed the proliferation, migration, and invasion of OS cells and promoted OS cell apoptosis, whereas TRIM59 overexpression had the opposite effects. In vivo experiments demonstrated that TRIM59 knockdown suppressed OS tumor growth and metastasis in vivo. Furthermore, we found that TRIM59 directly interacted with phospho-STAT3 in OS cells. The downregulation of STAT3 levels attenuated TRIM59-induced cell proliferation and invasion. Taken together, our results indicate that TRIM59 promoted OS progression via STAT3 activation. Therefore, our study may provide a novel therapeutic target for OS.
Collapse
Affiliation(s)
- Guoxing Xu
- Department of Orthopaedics, Jiading District Anting Hospital of Shanghai, Shanghai, 201805, China
| | - Zhenjiang Ma
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Fei Yang
- Department of Pathology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China
| | - Yanqiang Bai
- Department of Orthopaedics, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan, 250013, Shandong, China
| | - Jian Li
- Department of Orthopaedics, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan, 250013, Shandong, China
| | - Wanglin Luo
- Department of Orthopaedics, Jiading District Anting Hospital of Shanghai, Shanghai, 201805, China
| | - Jiangbo Zhong
- Department of Orthopaedics, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan, 250013, Shandong, China.
| |
Collapse
|
44
|
Wei QT, Liu BY, Ji HY, Lan YF, Tang WH, Zhou J, Zhong XY, Lian CL, Huang QZ, Wang CY, Xu YM, Guo HB. Exosome-mediated transfer of MIF confers temozolomide resistance by regulating TIMP3/PI3K/AKT axis in gliomas. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:114-128. [PMID: 34514093 PMCID: PMC8413833 DOI: 10.1016/j.omto.2021.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/12/2021] [Indexed: 01/08/2023]
Abstract
Temozolomide (TMZ) resistance is an important cause of clinical treatment failure and poor prognosis in gliomas. Increasing evidence indicates that cancer-derived exosomes contribute to chemoresistance; however, the specific contribution of glioma-derived exosomes remains unclear. The aim of this study was to explore the role and underlying mechanisms of exosomal macrophage migration inhibitory factor (MIF) on TMZ resistance in gliomas. We first demonstrated that MIF was upregulated in the exosomes of TMZ-resistant cells, engendering the transfer of TMZ resistance to sensitive cells. Our results indicated that exosomal MIF conferred TMZ resistance to sensitive cells through the enhancement of cell proliferation and the repression of cell apoptosis upon TMZ exposure. MIF knockdown enhanced TMZ sensitivity in resistant glioma cells by upregulating Metalloproteinase Inhibitor 3 (TIMP3) and subsequently suppressing the PI3K/AKT signaling pathway. Additionally, exosomal MIF promoted tumor growth and TMZ resistance of glioma cells in vivo, while IOS-1 (MIF inhibitor) promotes glioma TMZ sensitive in vivo. Taken together, our study demonstrated that exosome-mediated transfer of MIF enhanced TMZ resistance in glioma through downregulating TIMP3 and further activating the PI3K/AKT signaling pathway, highlighting a prognostic biomarker and promising therapeutic target for TMZ treatment in gliomas.
Collapse
Affiliation(s)
- Q T Wei
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China.,Department of Neurosurgery, The First Affiliated Hospital of Shantou University, Shantou 515041, Guangdong, China
| | - B Y Liu
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China
| | - H Y Ji
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China.,Department of Neurosurgery, The First Affiliated Hospital of Shantou University, Shantou 515041, Guangdong, China
| | - Y F Lan
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China
| | - W H Tang
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China
| | - J Zhou
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China
| | - X Y Zhong
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China
| | - C L Lian
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China
| | - Q Z Huang
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China
| | - C Y Wang
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China
| | - Y M Xu
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University, Shantou 515041, Guangdong, China
| | - H B Guo
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China
| |
Collapse
|
45
|
Li S. The basic characteristics of extracellular vesicles and their potential application in bone sarcomas. J Nanobiotechnology 2021; 19:277. [PMID: 34535153 PMCID: PMC8447529 DOI: 10.1186/s12951-021-01028-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Bone sarcomas are rare cancers accompanied by metastatic disease, mainly including osteosarcoma, Ewing sarcoma and chondrosarcoma. Extracellular vesicles (EVs) are membrane vesicles released by cells in the extracellular matrix, which carry important signal molecules, can stably and widely present in various body fluids, such as plasma, saliva and scalp fluid, spinal cord, breast milk, and urine liquid. EVs can transport almost all types of biologically active molecules (DNA, mRNA, microRNA (miRNA), proteins, metabolites, and even pharmacological compounds). In this review, we summarized the basic biological characteristics of EVs and focused on their application in bone sarcomas. EVs can be use as biomarker vehicles for diagnosis and prognosis in bone sarcomas. The role of EVs in bone sarcoma has been analyzed point-by-point. In the microenvironment of bone sarcoma, bone sarcoma cells, mesenchymal stem cells, immune cells, fibroblasts, osteoclasts, osteoblasts, and endothelial cells coexist and interact with each other. EVs play an important role in the communication between cells. Based on multiple functions in bone sarcoma, this review provides new ideas for the discovery of new therapeutic targets and new diagnostic analysis.
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, China.
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| |
Collapse
|
46
|
Zhuang Y, Ma Y, Yan S, Zhao B, Wu S, Zhang Q, Huang X, Zhao H, Zhao C, Liu Z, Yang L. Cyy260, a novel small molecule inhibitor, suppresses non-small cell lung cancer cell growth via JAK2/STAT3 pathway. Am J Cancer Res 2021; 11:4241-4258. [PMID: 34659885 PMCID: PMC8493399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a malignant tumor that accounts for the most new cancer cases and cancer-related deaths worldwide, and the proliferation and metastasis of NSCLC are the main reasons for treatment failure and patient death. Traditional chemotherapeutic drugs have low selectivity, which can kill cancer cells and cause damage to normal cells at the same time. Therefore, it is particularly important to study therapies that target cancer cells and to find low-toxicity, high-efficiency anticancer drugs. Cyy260 is a novel small molecule inhibitor that we synthesized for the first time. Here, we investigated the in vitro and in vivo antitumor activities of Cyy260 and explored the underlying mechanisms in NSCLC. Cyy260 had a concentration- and time-dependent inhibitory effect on NSCLC cells, but it was less toxic to normal cells. Cyy260 regulated apoptosis through intracellular and extracellular apoptotic pathways. In addition, Cyy260 could also induce cell cycle arrest, thereby inhibiting cell proliferation. Further analysis of molecular mechanisms showed that the JAK2/STAT3 signaling pathway was involved in the antitumor effect mediated by Cyy260. Analysis of subcutaneously transplanted tumors in mice showed that Cyy260 suppressed tumor growth in vivo. Our results proved that Cyy260 is a novel inhibitor of the JAK2/STAT3 pathway thus may have potential in therapy of NSCLC and other cancers.
Collapse
Affiliation(s)
- Yan Zhuang
- The First Affiliated Hospital, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
- Affiliated Yueqing Hospital, Wenzhou Medical UniversityWenzhou 325600, Zhejiang, China
- The Institute of Life Sciences, Wenzhou UniversityWenzhou 325035, Zhejiang, China
| | - Yue Ma
- The First Affiliated Hospital, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
- Affiliated Yueqing Hospital, Wenzhou Medical UniversityWenzhou 325600, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Sunshun Yan
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical UniversityWenzhou 325027, Zhejiang, China
| | - Bing Zhao
- The First Affiliated Hospital, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
- Affiliated Yueqing Hospital, Wenzhou Medical UniversityWenzhou 325600, Zhejiang, China
- The Institute of Life Sciences, Wenzhou UniversityWenzhou 325035, Zhejiang, China
| | - Shuling Wu
- The First Affiliated Hospital, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
- Affiliated Yueqing Hospital, Wenzhou Medical UniversityWenzhou 325600, Zhejiang, China
- The Institute of Life Sciences, Wenzhou UniversityWenzhou 325035, Zhejiang, China
| | - Qianwen Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Xiaoying Huang
- The First Affiliated Hospital, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Haiyang Zhao
- The Institute of Life Sciences, Wenzhou UniversityWenzhou 325035, Zhejiang, China
| | - Chengguang Zhao
- The First Affiliated Hospital, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
- Affiliated Yueqing Hospital, Wenzhou Medical UniversityWenzhou 325600, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Zhiguo Liu
- The First Affiliated Hospital, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
- Affiliated Yueqing Hospital, Wenzhou Medical UniversityWenzhou 325600, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Lehe Yang
- The First Affiliated Hospital, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
- Affiliated Yueqing Hospital, Wenzhou Medical UniversityWenzhou 325600, Zhejiang, China
| |
Collapse
|
47
|
Duan A, Shen K, Li B, Li C, Zhou H, Kong R, Shao Y, Qin J, Yuan T, Ji J, Guo W, Wang X, Xue T, Li L, Huang X, Sun Y, Cai Z, Liu W, Liu F. Extracellular vesicles derived from LPS-preconditioned human synovial mesenchymal stem cells inhibit extracellular matrix degradation and prevent osteoarthritis of the knee in a mouse model. Stem Cell Res Ther 2021; 12:427. [PMID: 34321073 PMCID: PMC8317426 DOI: 10.1186/s13287-021-02507-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/11/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Previous studies report that lipopolysaccharide (LPS)-preconditioned mesenchymal stem cells have enhanced trophic support and improved regenerative and repair properties. Extracellular vesicles secreted by synovial mesenchymal stem cells (EVs) can reduce cartilage damage caused by osteoarthritis (OA). Previous studies show that extracellular vesicles secreted by LPS-preconditioned synovial mesenchymal stem cells (LPS-pre EVs) can improve the response to treatment of osteoarthritis (OA). This study sought to explore effects of LPS-pre EVs on chondrocyte proliferation, migration, and chondrocyte apoptosis, as well as the protective effect of LPS-pre EVs on mouse articular cartilage. METHODS Chondrocytes were extracted to explore the effect of LPS-pre EVs on proliferation, migration, and apoptosis of chondrocytes. In addition, the effect of LPS-pre EVs on expression level of important proteins of chondrocytes was explored suing in vitro experiments. Further, intraarticular injection of LPS-pre EVs was performed on the destabilization of the medial meniscus (DMM)-induced mouse models of OA to explore the therapeutic effect of LPS-pre EVs on osteoarthritis in vivo. RESULTS Analysis showed that LPS-pre EVs significantly promoted proliferation and migration of chondrocytes and inhibited the apoptosis of chondrocytes compared with PBS and EVs. Moreover, LPS-pre EVs inhibited decrease of aggrecan and COL2A1 and increase of ADAMTS5 caused by IL-1β through let-7b. Furthermore, LPS-pre EVs significantly prevented development of OA in DMM-induced mouse models of OA. CONCLUSIONS LPS pretreatment is an effective and promising method to improve therapeutic effect of extracellular vesicles secreted from SMSCs on OA.
Collapse
Affiliation(s)
- Ao Duan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Kai Shen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Beichen Li
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210001, Jiangsu, China
| | - Cong Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Hao Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Renyi Kong
- Department of Orthopedics, Xincheng Hospital of Traditional Chinese Medicine, Maanshan, 243131, Anhui, China
| | - Yuqi Shao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jian Qin
- Department of Orthopedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, China
| | - Tangbo Yuan
- Department of Orthopedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, China
| | - Juan Ji
- Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211100, China
| | - Wei Guo
- Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211100, China
| | - Xipeng Wang
- Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211100, China
| | - Tengfei Xue
- Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211100, China
| | - Lei Li
- Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211100, China
| | - Xinxin Huang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yuqin Sun
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhenyu Cai
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wei Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Feng Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
48
|
Liu Y, Yang S, Wang F, Zhou Z, Xu W, Xie J, Qiao L, Gu Y. PLEK2 promotes osteosarcoma tumorigenesis and metastasis by activating the PI3K/AKT signaling pathway. Oncol Lett 2021; 22:534. [PMID: 34084215 PMCID: PMC8161470 DOI: 10.3892/ol.2021.12795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/28/2021] [Indexed: 01/20/2023] Open
Abstract
Increasing evidence suggest that pleckstrin-2 (PLEK2) acts as an oncogene in several malignancies. The present study aimed to investigate the effects of PLEK2 on osteosarcoma (OS) tumorigenesis and metastasis. PLEK2 expression in OS was analyzed via bioinformatics, reverse transcription-quantitative PCR, western blot and immunohistochemistry analyses. The Cell Counting Kit-8 (CCK-8), colony formation and EdU assays were performed to assess the role of PLEK2 in OS cell proliferation. The pro-metastatic effects of PLEK2 were assessed via the Transwell and wound healing assays. In addition, the PLEK2 downstream pathway was analyzed via bioinformatics analysis and verified via western blot analysis. The results demonstrated that PLEK2 expression was upregulated in both OS cell lines and specimens. The results of the CCK-8, colony formation and EdU assays demonstrated that PLEK2 promoted OS cell proliferation in vitro. The in vivo experiments further demonstrated that PLEK2 knockdown significantly suppressed OS growth. In addition, the Transwell and wound healing assays indicated that PLEK2 promoted OS invasiveness in vitro, which was induced by the activation of the epithelial-to-mesenchymal transition process. Bioinformatics analysis revealed that PLEK2 can activate the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway, which was verified via western blot analysis. Taken together, the results of the present study suggest that PLEK2 may play a tumor-promoting role in OS via the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopedics, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Siting Yang
- Department of Anesthesiology and Nursing, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Feng Wang
- Department of Analysis Center, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Zheng Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wenjing Xu
- Department of Ultrasound, Wuxi Xishan People's Hospital, Wuxi, Jiangsu 214000, P.R. China
| | - Jingjing Xie
- Department of Ultrasound, Wuxi Xishan People's Hospital, Wuxi, Jiangsu 214000, P.R. China
| | - Linhui Qiao
- Department of Orthopedics, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Yanglin Gu
- Department of Orthopedics, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| |
Collapse
|
49
|
Ghafouri-Fard S, Shirvani-Farsani Z, Hussen BM, Taheri M. The critical roles of lncRNAs in the development of osteosarcoma. Biomed Pharmacother 2021; 135:111217. [PMID: 33433358 DOI: 10.1016/j.biopha.2021.111217] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is rare malignancy of childhood and adolescence, with high morbidity and mortality despite accomplishment of diverse therapeutic modalities. Identification of the underlying mechanism of osteosarcoma evolution would help in better management of this rare malignancy. Lots of investigations have described abnormal regulation of long non-coding RNAs (lncRNAs) in clinical specimens of osteosarcoma and the established cell lines. This malignancy has been associated with over-expression of TUG1, LOXL1-AS1, MIR100HG, NEAT1, HULC, ANRIL and a number of other lncRNAs, while under-expression of lots of lncRNAs including LncRNA-p21, FER1L4, GAS5, LncRNA NR_136400 and LINC-PINT. Expression amounts of LUCAT1, LINC00922, SNHG12, FOXC2-AS1 and OIP5-AS1 lncRNAs have been associated with response to a number of chemotherapeutic agents. Taken together, lncRNAs are possible targets for proposing novel advanced therapeutic modalities for osteosarcoma.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University G.C., Tehran, Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Exosomes from Bone Marrow Microenvironment-Derived Mesenchymal Stem Cells Affect CML Cells Growth and Promote Drug Resistance to Tyrosine Kinase Inhibitors. Stem Cells Int 2020; 2020:8890201. [PMID: 33414831 PMCID: PMC7752271 DOI: 10.1155/2020/8890201] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/09/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Although major advances have been achieved in the treatment of chronic myeloid leukemia (CML) by using tyrosine kinase inhibitors, patients relapse after withdrawal and need long-term medication. This reflects the CML clones have not been eliminated completely. The precise mechanisms for the maintenance of CML cells are not yet fully understood. The bone marrow microenvironment constitutes the sanctuary for leukemic cells. Mesenchymal stem cells (MSC) are an important component of the bone marrow microenvironment (BM). It plays an important role in the development and drug resistance of CML. Accumulating evidence indicates that exosomes play a vital role in cell-to-cell communication. We successfully isolated and purified exosomes from human bone marrow microenvironment-derived mesenchymal stem cells (hBMMSC-Exo) by serial centrifugation. In the present study, we investigated the effect of hBMMSC-Exo on the proliferation, apoptosis, and drug resistance of CML cells. The results demonstrated that hBMMSC-Exo had the ability to inhibit the proliferation of CML cells in vitro via miR-15a and arrest cell cycle in the G0/G1 phase. However, the results obtained from BALB/c nu/nu mice studies apparently contradicted the in vitro results. In fact, hBMMSC-Exo increased tumor incidence and promoted tumor growth in vivo. Further study showed the antiapoptotic protein Bcl-2 expression increased, whereas the Caspase3 expression decreased. Moreover, the in vivo study in the xenograft tumor model showed that hBMMSC-Exo promoted the proliferation and decreased the sensitivity of CML cells to tyrosine kinase inhibitors, resulting in drug resistance. These results demonstrated that hBMMSC-Exo supported the maintenance of CML cells and drug resistance in BM by cell-extrinsic protective mechanisms. They also suggested that hBMMSC-Exo might be a potential target to overcome the microenvironment-mediated drug resistance.
Collapse
|