1
|
Yu J, Li X, Qi X, Ding Z, Su S, Yu L, Zhou L, Li Y. Translatomics reveals the role of dietary calcium addition in regulating muscle fat deposition in pigs. Sci Rep 2024; 14:12295. [PMID: 38811812 PMCID: PMC11136974 DOI: 10.1038/s41598-024-62986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
Intramuscular fat (IMF) in pork holds significant importance for economic performance within the pig industry and dietary calcium supplementation enhances the accumulation of intramuscular fat. Additionally, calcium ions inhibit translation and reduce protein synthesis. However, the mechanism by which calcium regulates IMF deposition in muscle through translation remains largely unknown. In this study, we compared the ribosome profiles of the longissimus dorsi muscles of Duroc × Landrace × Large white pigs from the normal calcium (NC) group or calcium supplement (HC) group by Ribo-seq, and RNA-seq. By integrating multiple-omics analysis, we further discovered 437 genes that were transcriptionally unchanged but translationally altered and these genes were significantly enriched in the oxidative phosphorylation signaling pathway. Furthermore, experimental data showed that inhibiting the expression of COX10 and mtND4L increased triglyceride accumulation in C2C12 cells, providing new targets for intramuscular fat deposition. Finally, this work links dietary calcium, translation regulation and IMF deposition, providing a new strategy for both meat quality and economic performance within the pig industry.
Collapse
Affiliation(s)
- Jingsu Yu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, China
| | - Xiangling Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, China
| | - Xinyu Qi
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, China
| | - Zhaoxuan Ding
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, China
| | - Songtao Su
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, China
| | - Lin Yu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, China
| | - Lei Zhou
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, China.
| | - Yixing Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
2
|
Dubiez E, Pellegrini E, Finderup Brask M, Garland W, Foucher AE, Huard K, Heick Jensen T, Cusack S, Kadlec J. Structural basis for competitive binding of productive and degradative co-transcriptional effectors to the nuclear cap-binding complex. Cell Rep 2024; 43:113639. [PMID: 38175753 DOI: 10.1016/j.celrep.2023.113639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/07/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
The nuclear cap-binding complex (CBC) coordinates co-transcriptional maturation, transport, or degradation of nascent RNA polymerase II (Pol II) transcripts. CBC with its partner ARS2 forms mutually exclusive complexes with diverse "effectors" that promote either productive or destructive outcomes. Combining AlphaFold predictions with structural and biochemical validation, we show how effectors NCBP3, NELF-E, ARS2, PHAX, and ZC3H18 form competing binary complexes with CBC and how PHAX, NCBP3, ZC3H18, and other effectors compete for binding to ARS2. In ternary CBC-ARS2 complexes with PHAX, NCBP3, or ZC3H18, ARS2 is responsible for the initial effector recruitment but inhibits their direct binding to the CBC. We show that in vivo ZC3H18 binding to both CBC and ARS2 is required for nuclear RNA degradation. We propose that recruitment of PHAX to CBC-ARS2 can lead, with appropriate cues, to competitive displacement of ARS2 and ZC3H18 from the CBC, thus promoting a productive rather than a degradative RNA fate.
Collapse
Affiliation(s)
- Etienne Dubiez
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France; Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Erika Pellegrini
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Maja Finderup Brask
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - William Garland
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | | | - Karine Huard
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Stephen Cusack
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France.
| | - Jan Kadlec
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France.
| |
Collapse
|
3
|
Ponomarenko EA, Krasnov GS, Kiseleva OI, Kryukova PA, Arzumanian VA, Dolgalev GV, Ilgisonis EV, Lisitsa AV, Poverennaya EV. Workability of mRNA Sequencing for Predicting Protein Abundance. Genes (Basel) 2023; 14:2065. [PMID: 38003008 PMCID: PMC10671741 DOI: 10.3390/genes14112065] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Transcriptomics methods (RNA-Seq, PCR) today are more routine and reproducible than proteomics methods, i.e., both mass spectrometry and immunochemical analysis. For this reason, most scientific studies are limited to assessing the level of mRNA content. At the same time, protein content (and its post-translational status) largely determines the cell's state and behavior. Such a forced extrapolation of conclusions from the transcriptome to the proteome often seems unjustified. The ratios of "transcript-protein" pairs can vary by several orders of magnitude for different genes. As a rule, the correlation coefficient between transcriptome-proteome levels for different tissues does not exceed 0.3-0.5. Several characteristics determine the ratio between the content of mRNA and protein: among them, the rate of movement of the ribosome along the mRNA and the number of free ribosomes in the cell, the availability of tRNA, the secondary structure, and the localization of the transcript. The technical features of the experimental methods also significantly influence the levels of the transcript and protein of the corresponding gene on the outcome of the comparison. Given the above biological features and the performance of experimental and bioinformatic approaches, one may develop various models to predict proteomic profiles based on transcriptomic data. This review is devoted to the ability of RNA sequencing methods for protein abundance prediction.
Collapse
Affiliation(s)
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia;
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Zhang X, Zhao Y, Zhou Y, Lv J, Peng J, Zhu H, Liu R. Trends in research on sick sinus syndrome: A bibliometric analysis from 2000 to 2022. Front Cardiovasc Med 2022; 9:991503. [DOI: 10.3389/fcvm.2022.991503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Sick sinus syndrome (SSS) is a refractory arrhythmia disease caused by the pathological changes of sinoatrial node and its adjacent tissues. 2,251 publications related to SSS were retrieved from Web of Science database from 2000 to 2022 and analyzed by using VOS viewer and CiteSpace software. The results showed the United States dominated the field, followed by Japan, Germany, and China. SSS was closely related to risk factors such as atrial fibrillation and aging. Sick sinus syndrome, atrial fibrillation and sinus node dysfunction were the top three keywords that had the strongest correlation with the study. Pacemaker implantation, differentiation and mutation are research hotspots currently. Clinical studies on SSS found that sick sinus syndrome, atrial fibrillation, and pacemakers were the top three keywords that had the largest nodes and the highest frequency. In the field of basic applied research and basic research, atrial fibrillation and pacemaker cells were the focus of research. In conclusion, bibliometric analysis provided valuable information for the prevention, treatment and future research trends of SSS.
Collapse
|
5
|
Sikorski V, Vento A, Kankuri E. Emerging roles of the RNA modifications N6-methyladenosine and adenosine-to-inosine in cardiovascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:426-461. [PMID: 35991314 PMCID: PMC9366019 DOI: 10.1016/j.omtn.2022.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases lead the mortality and morbidity disease metrics worldwide. A multitude of chemical base modifications in ribonucleic acids (RNAs) have been linked with key events of cardiovascular diseases and metabolic disorders. Named either RNA epigenetics or epitranscriptomics, the post-transcriptional RNA modifications, their regulatory pathways, components, and downstream effects substantially contribute to the ways our genetic code is interpreted. Here we review the accumulated discoveries to date regarding the roles of the two most common epitranscriptomic modifications, N6-methyl-adenosine (m6A) and adenosine-to-inosine (A-to-I) editing, in cardiovascular disease.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - IHD-EPITRAN Consortium
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
6
|
Choo SW, Zhong Y, Sendler E, Goustin AS, Cai J, Ju D, Kosir MA, Giordo R, Lipovich L. Estrogen distinctly regulates transcription and translation of lncRNAs and pseudogenes in breast cancer cells. Genomics 2022; 114:110421. [PMID: 35779786 DOI: 10.1016/j.ygeno.2022.110421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/25/2022] [Accepted: 06/25/2022] [Indexed: 11/04/2022]
Abstract
Estrogen drives key transcriptional changes in breast cancer and stimulates breast cancer cells' growth with multiple mechanisms to coordinate transcription and translation. In addition to protein-coding transcripts, estrogen can regulate long non-coding RNA (lncRNA) transcripts, plus diverse non-coding RNAs including antisense, enhancer, and intergenic. LncRNA genes comprise the majority of human genes. The accidental, or regulated, translation of their short open reading frames by ribosomes remains a controversial topic. Here we report for the first time an integrated analysis of RNA abundance and ribosome occupancy level, using Ribo-seq combined with RNA-Seq, in the estrogen-responsive, estrogen receptor α positive, human breast cancer cell model MCF7, before and after hormone treatment. Translational profiling can determine, in an unbiased manner, which fraction of the genome is actually translated into proteins, as well as resolving whether transcription and translation respond concurrently, or differentially, to estrogen treatment. Our data showed specific transcripts more robustly detected in RNA-Seq than in the ribosome-profiling data, and vice versa, suggesting distinct gene-specific estrogen responses at the transcriptional and the translational level, respectively. Here, we showed that estrogen stimulation affects the expression levels of numerous lncRNAs, but not their association with ribosomes, and that most lncRNAs are not ribosome-bound. For the first time, we also demonstrated the transcriptional and translational response of expressed pseudogenes to estrogen, pointing to new perspectives for drug-target development in breast cancer in the future.
Collapse
Affiliation(s)
- Siew-Woh Choo
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, China; Zhejiang Bioinformatics International Science and Technology Cooperation Center, Ouhai, Wenzhou, Zhejiang Province, China; Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province, China.
| | - Yu Zhong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Edward Sendler
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, USA
| | - Anton-Scott Goustin
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, USA
| | - Juan Cai
- Department of Biochemistry, Microbiology and Immunology School of Medicine, Wayne State University, Detroit, USA
| | - Donghong Ju
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, USA; Department of Surgery and Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, USA
| | - Mary Ann Kosir
- Department of Surgery and Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, USA
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| | - Leonard Lipovich
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| |
Collapse
|
7
|
Li L, Xu N, Liu J, Chen Z, Liu X, Wang J. m6A Methylation in Cardiovascular Diseases: From Mechanisms to Therapeutic Potential. Front Genet 2022; 13:908976. [PMID: 35836571 PMCID: PMC9274458 DOI: 10.3389/fgene.2022.908976] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. Recent studies have shown that n6-methyladenosine (m6A) plays a major role in cardiovascular homeostasis and pathophysiology. These studies have confirmed that m6A methylation affects the pathophysiology of cardiovascular diseases by regulating cellular processes such as differentiation, proliferation, inflammation, autophagy, and apoptosis. Moreover, plenty of research has confirmed that m6A modification can delay the progression of CVD via the post-transcriptional regulation of RNA. However, there are few available summaries of m6A modification regarding CVD. In this review, we highlight advances in CVD-specific research concerning m6A modification, summarize the mechanisms underlying the involvement of m6A modification during the development of CVD, and discuss the potential of m6A modification as a therapeutic target of CVD.
Collapse
Affiliation(s)
| | | | | | | | | | - Junnan Wang
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Long Non-Coding RNA Regulation of Epigenetics in Vascular Cells. Noncoding RNA 2021; 7:ncrna7040062. [PMID: 34698214 PMCID: PMC8544676 DOI: 10.3390/ncrna7040062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 01/16/2023] Open
Abstract
The vascular endothelium comprises the interface between the circulation and the vessel wall and, as such, is under the dynamic regulation of vascular signalling, nutrients, and hypoxia. Understanding the molecular drivers behind endothelial cell (EC) and vascular smooth muscle cell (VSMC) function and dysfunction remains a pivotal task for further clinical progress in tackling vascular disease. A newly emerging era in vascular biology with landmark deep sequencing approaches has provided us with the means to profile diverse layers of transcriptional regulation at a single cell, chromatin, and epigenetic level. This review describes the roles of major vascular long non-coding RNA (lncRNAs) in the epigenetic regulation of EC and VSMC function and discusses the recent progress in their discovery, detection, and functional characterisation. We summarise new findings regarding lncRNA-mediated epigenetic mechanisms—often regulated by hypoxia—within the vascular endothelium and smooth muscle to control vascular homeostasis in health and disease. Furthermore, we outline novel molecular techniques being used in the field to delineate the lncRNA subcellular localisation and interaction with proteins to unravel their biological roles in the epigenetic regulation of vascular genes.
Collapse
|
9
|
Ye F, Wang X, Tu S, Zeng L, Deng X, Luo W, Zhang Z. The effects of NCBP3 on METTL3-mediated m6A RNA methylation to enhance translation process in hypoxic cardiomyocytes. J Cell Mol Med 2021; 25:8920-8928. [PMID: 34382339 PMCID: PMC8435433 DOI: 10.1111/jcmm.16852] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/31/2021] [Indexed: 12/02/2022] Open
Abstract
Hypoxia as a crucial pathogenesis factor usually results in huge harmful effects on cardiac injury and dysfunction. Our previous study has uncovered the global transcriptome and translatome profiles of cardiomyocytes in vitro and in vivo to response to hypoxia by RNA sequencing and ribosome profiling sequencing. We observe a series of differential expressed genes between transcription and translation, which may be attributed to the hypoxia‐specific binding affinity of nuclear cap‐binding subunit 3 (NCBP3) at 5' untranslation region of target genes. Although we observe that NCBP3 can facilitate translational process in myocardium under hypoxia stress, the underlying molecular mechanism of NCBP3 for gene translation modulation remains unclear. In this study, we performed NCBP3 immunoprecipitation for mass spectrum and found that METTL3 and eIF4A2 particularly interacted with NCBP3 in hypoxic rat H9C2 cardiomyocytes. Furthermore, we observed that METTL3‐mediated N6‐methyladenosine (m6A) methylation was elevated in hypoxia, but compromised by NCBP3 or METTL3 knockdown. Finally, we also demonstrated that NCBP3/METTL3/eIF4A2 regulatory axis plays a specific role in cardiomyocytes undergoing hypoxic stress. Taken together, we unmasked NCBP3, a novel hypoxia‐specific response protein functions as a scaffold to coordinate METTL3 and eIF4A2 for enhancing gene translation by m6A RNA methylation in cardiomyocytes upon hypoxic stress.
Collapse
Affiliation(s)
- Fei Ye
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - San Tu
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lixiong Zeng
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xu Deng
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wenzhi Luo
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhihui Zhang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
10
|
Chen Y, Liu M, Dong Z. Preferential Ribosome Loading on the Stress-Upregulated mRNA Pool Shapes the Selective Translation under Stress Conditions. PLANTS 2021; 10:plants10020304. [PMID: 33562590 PMCID: PMC7915710 DOI: 10.3390/plants10020304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 01/17/2023]
Abstract
The reprogramming of gene expression is one of the key responses to environmental stimuli, whereas changes in mRNA do not necessarily bring forth corresponding changes of the protein, which seems partially due to the stress-induced selective translation. To address this issue, we systematically compared the transcriptome and translatome using self-produced and publicly available datasets to decipher how and to what extent the coordination and discordance between transcription and translation came to be in response to wounding (self-produced), dark to light transition, heat, hypoxia, Pi starvation and the pathogen-associated molecular pattern (elf18) in Arabidopsis. We found that changes in total mRNAs (transcriptome) and ribosome-protected fragments (translatome) are highly correlated upon dark to light transition or heat stress. However, this close correlation was generally lost under other four stresses analyzed in this study, especially during immune response, which suggests that transcription and translation are differentially coordinated under distinct stress conditions. Moreover, Gene Ontology (GO) enrichment analysis showed that typical stress responsive genes were upregulated at both transcriptional and translational levels, while non-stress-specific responsive genes were changed solely at either level or downregulated at both levels. Taking wounding responsive genes for example, typical stress responsive genes are generally involved in functional categories related to dealing with the deleterious effects caused by the imposed wounding stress, such as response to wounding, response to water deprivation and response to jasmonic acid, whereas non-stress-specific responsive genes are often enriched in functional categories like S-glycoside biosynthetic process, photosynthesis and DNA-templated transcription. Collectively, our results revealed the differential as well as targeted coordination between transcriptome and translatome in response to diverse stresses, thus suggesting a potential model wherein preferential ribosome loading onto the stress-upregulated mRNA pool could be a pacing factor for selective translation.
Collapse
|