1
|
Zhang W, Zhang M, Zhu M. RAEPI: Predicting Enhancer-Promoter Interactions Based on Restricted Attention Mechanism. Interdiscip Sci 2025; 17:153-165. [PMID: 39546160 DOI: 10.1007/s12539-024-00669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024]
Abstract
Enhancer-promoter interactions (EPIs) are crucial in gene transcription regulation and cell differentiation. Traditional biological experiments are costly and time-consuming, motivating the development of computational prediction methods. However, existing EPI prediction methods inadequately capture the intricate direct interactions between enhancer and promoter sequences, which limits their prediction performance to some extent. In this work, we propose an innovative attention-based approach RAEPI, which uses convolutional neural networks to extract initial features of enhancers and promoters, combined with a specially designed Restricted Attention mechanism with Query-Key-Value constrained to simulate the interactions between them for further feature extraction. To improve cross-cell line prediction, we employ a transfer learning strategy for pre-training. Furthermore, we extracted sequence motifs to evaluate the RAEPI's effectiveness from a visualization perspective. Experimental results show that RAEPI achieves competitive prediction performance to existing methods on the benchmark dataset.
Collapse
Affiliation(s)
- Wanjing Zhang
- College of Computer Science, Sichuan University, Chengdu, 610065, China
| | - Mingyang Zhang
- College of Computer Science, Sichuan University, Chengdu, 610065, China
| | - Min Zhu
- College of Computer Science, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
2
|
Liu L, Han L, Han K, Zhang Z, Zhang H, Zhang L. Identification of co-localised transcription factors based on paired motifs analysis. IET Syst Biol 2024; 18:238-249. [PMID: 39588827 DOI: 10.1049/syb2.12104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/02/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024] Open
Abstract
The interaction of transcription factors (TFs) with DNA precisely regulates gene transcription. In mammalian cells, thousands of TFs often interact with DNA cis-regulatory elements in a combinatorial manner rather than act alone. The identification of cooperativity between TFs can help to explore the mechanism of transcriptional regulation. However, little is known about the cooperative patterns of TFs in the genome. To identify which TFs prefer co-localisation, the authors conducted a paired motif analysis in the accessible regions of the human genome based on the Poisson background model. Especially, the authors distinguish the cooperative binding TFs and the competitive binding TFs according to the distance between TF motifs. In the K562 cell line, the authors find that TFs from a same family are always competing the same binding sites, such as FOS_JUN family, whereas KLF family TFs show significant cooperative binding in the adjacency region. Furthermore, the comparative analysis across 16 human cell lines indicates that most TF combination patterns are conserved, but there are still some cell-line-specific patterns. Finally, in human prostate cancer cells (PC-3) and human prostate normal cells (RWPE-2), the authors investigate the specific TF combination patterns in the disease cell and normal cell. The results show that the cooperative binding TF pairs shared by PC-3 and RWPE-2 account for over 90%. Simultaneously, the authors also identify 26 specific TF combination pairs in PC-3 cancer cells.
Collapse
Affiliation(s)
- Li Liu
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Lu Han
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Kaiyuan Han
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zheng Zhang
- Computer Science and Information Systems, Murray State University, Murray, USA
| | - Haojiang Zhang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lirong Zhang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| |
Collapse
|
3
|
Ren J, Guo Z, Qi Y, Zhang Z, Liu L. Prediction of YY1 loop anchor based on multi-omics features. Methods 2024; 232:96-106. [PMID: 39521361 DOI: 10.1016/j.ymeth.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
The three-dimensional structure of chromatin is crucial for the regulation of gene expression. YY1 promotes enhancer-promoter interactions in a manner analogous to CTCF-mediated chromatin interactions. However, little is known about which YY1 binding sites can form loop anchors. In this study, the LightGBM model was used to predict YY1-loop anchors by integrating multi-omics data. Due to the large imbalance in the number of positive and negative samples, we use AUPRC to reflect the quality of the classifier. The results show that the LightGBM model exhibits strong predictive performance (AUPRC≥0.93). To verify the robustness of the model, the dataset was divided into training and test sets at a 4:1 ratio. The results show that the model performs well for YY1-loop anchor prediction on both the training and independent test sets. Additionally, we ranked the importance of the features and found that the formation of YY1-loop anchors is primarily influenced by the co-binding of transcription factors CTCF, SMC3, and RAD21, as well as histone modifications and sequence context.
Collapse
Affiliation(s)
- Jun Ren
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China; School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Zhiling Guo
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Yixuan Qi
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China; School of Mathematics and Statistics, Hainan Normal University, Haikou, China; School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zheng Zhang
- Computer Science and Information Systems, Murray State University, Murray, USA
| | - Li Liu
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.
| |
Collapse
|
4
|
Liu L, Jia R, Hou R, Huang C. Prediction of cell-type-specific cohesin-mediated chromatin loops based on chromatin state. Methods 2024; 226:151-160. [PMID: 38670416 DOI: 10.1016/j.ymeth.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Chromatin loop is of crucial importance for the regulation of gene transcription. Cohesin is a type of chromatin-associated protein that mediates the interaction of chromatin through the loop extrusion. Cohesin-mediated chromatin interactions have strong cell-type specificity, posing a challenge for predicting chromatin loops. Existing computational methods perform poorly in predicting cell-type-specific chromatin loops. To address this issue, we propose a random forest model to predict cell-type-specific cohesin-mediated chromatin loops based on chromatin states identified by ChromHMM and the occupancy of related factors. Our results show that chromatin state is responsible for cell-type-specificity of loops. Using only chromatin states as features, the model achieved high accuracy in predicting cell-type-specific loops between two cell types and can be applied to different cell types. Furthermore, when chromatin states are combined with the occurrence frequency of CTCF, RAD21, YY1, and H3K27ac ChIP-seq peaks, more accurate prediction can be achieved. Our feature extraction method provides novel insights into predicting cell-type-specific chromatin loops and reveals the relationship between chromatin state and chromatin loop formation.
Collapse
Affiliation(s)
- Li Liu
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324003, China.
| | - Ranran Jia
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou 571158, China.
| | - Rui Hou
- College of Data Science and Application, Inner Mongolia University of Technology, Hohhot 010051, China.
| | - Chengbing Huang
- School of Computer Science and Technology, Aba Teachers University, Aba 623002, China.
| |
Collapse
|
5
|
Ding H, Xing F, Zou L, Zhao L. QSAR analysis of VEGFR-2 inhibitors based on machine learning, Topomer CoMFA and molecule docking. BMC Chem 2024; 18:59. [PMID: 38555462 PMCID: PMC10981835 DOI: 10.1186/s13065-024-01165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
VEGFR-2 kinase inhibitors are clinically approved drugs that can effectively target cancer angiogenesis. However, such inhibitors have adverse effects such as skin toxicity, gastrointestinal reactions and hepatic impairment. In this study, machine learning and Topomer CoMFA, which is an alignment-dependent, descriptor-based method, were employed to build structural activity relationship models of potentially new VEGFR-2 inhibitors. The prediction ac-curacy of the training and test sets of the 2D-SAR model were 82.4 and 80.1%, respectively, with KNN. Topomer CoMFA approach was then used for 3D-QSAR modeling of VEGFR-2 inhibitors. The coefficient of q2 for cross-validation of the model 1 was greater than 0.5, suggesting that a stable drug activity-prediction model was obtained. Molecular docking was further performed to simulate the interactions between the five most promising compounds and VEGFR-2 target protein and the Total Scores were all greater than 6, indicating that they had a strong hydrogen bond interactions were present. This study successfully used machine learning to obtain five potentially novel VEGFR-2 inhibitors to increase our arsenal of drugs to combat cancer.
Collapse
Affiliation(s)
- Hao Ding
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Lin Zou
- Medical College of Guangxi University, Nanning, 530004, Guangxi, China
| | - Liang Zhao
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
6
|
Phan LT, Oh C, He T, Manavalan B. A comprehensive revisit of the machine-learning tools developed for the identification of enhancers in the human genome. Proteomics 2023; 23:e2200409. [PMID: 37021401 DOI: 10.1002/pmic.202200409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023]
Abstract
Enhancers are non-coding DNA elements that play a crucial role in enhancing the transcription rate of a specific gene in the genome. Experiments for identifying enhancers can be restricted by their conditions and involve complicated, time-consuming, laborious, and costly steps. To overcome these challenges, computational platforms have been developed to complement experimental methods that enable high-throughput identification of enhancers. Over the last few years, the development of various enhancer computational tools has resulted in significant progress in predicting putative enhancers. Thus, researchers are now able to use a variety of strategies to enhance and advance enhancer study. In this review, an overview of machine learning (ML)-based prediction methods for enhancer identification and related databases has been provided. The existing enhancer-prediction methods have also been reviewed regarding their algorithms, feature selection processes, validation techniques, and software utility. In addition, the advantages and drawbacks of these ML approaches and guidelines for developing bioinformatic tools have been highlighted for a more efficient enhancer prediction. This review will serve as a useful resource for experimentalists in selecting the appropriate ML tool for their study, and for bioinformaticians in developing more accurate and advanced ML-based predictors.
Collapse
Affiliation(s)
- Le Thi Phan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Changmin Oh
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Tao He
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| |
Collapse
|
7
|
Liu P, Li D, Zhang J, He M, Gao D, Wang Y, Lin Y, Pan D, Li P, Wang T, Li J, Kong F, Zeng B, Lu L, Ma J, Long K, Li G, Tang Q, Jin L, Li M. Comparative three-dimensional genome architectures of adipose tissues provide insight into human-specific regulation of metabolic homeostasis. J Biol Chem 2023; 299:104757. [PMID: 37116707 PMCID: PMC10245122 DOI: 10.1016/j.jbc.2023.104757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023] Open
Abstract
Elucidating the regulatory mechanisms of human adipose tissues (ATs) evolution is essential for understanding human-specific metabolic regulation, but the functional importance and evolutionary dynamics of three-dimensional (3D) genome organizations of ATs are not well defined. Here, we compared the 3D genome architectures of anatomically distinct ATs from humans and six representative mammalian models. We recognized evolutionarily conserved and human-specific chromatin conformation in ATs at multiple scales, including compartmentalization, topologically associating domain (TAD), and promoter-enhancer interactions (PEI), which have not been described previously. We found PEI are much more evolutionarily dynamic with respect to compartmentalization and topologically associating domain. Compared to conserved PEIs, human-specific PEIs are enriched for human-specific sequence, and the binding motifs of their potential mediators (transcription factors) are less conserved. Our data also demonstrated that genes involved in the evolutionary dynamics of chromatin organization have weaker transcriptional conservation than those associated with conserved chromatin organization. Furthermore, the genes involved in energy metabolism and the maintenance of metabolic homeostasis are enriched in human-specific chromatin organization, while housekeeping genes, health-related genes, and genetic variations are enriched in evolutionarily conserved compared to human-specific chromatin organization. Finally, we showed extensively divergent human-specific 3D genome organizations among one subcutaneous and three visceral ATs. Together, these findings provide a global overview of 3D genome architecture dynamics between ATs from human and mammalian models and new insights into understanding the regulatory evolution of human ATs.
Collapse
Affiliation(s)
- Pengliang Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, Sichuan, China.
| | - Jiaman Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mengnan He
- Wildlife Conservation Research Department, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yujie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Lin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dengke Pan
- Institute of Organ Transplantation, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine & Genetics, Chengdu Xi'nan Gynecology Hospital, Chengdu, Sichuan, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Jing Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fanli Kong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lu Lu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jideng Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Keren Long
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guisen Li
- Renal Department & Nephrology Institute, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Qianzi Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Long Jin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Zheng L, Liu L, Zhu W, Ding Y, Wu F. Predicting enhancer-promoter interaction based on epigenomic signals. Front Genet 2023; 14:1133775. [PMID: 37144127 PMCID: PMC10151517 DOI: 10.3389/fgene.2023.1133775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction: The physical interactions between enhancers and promoters are often involved in gene transcriptional regulation. High tissue-specific enhancer-promoter interactions (EPIs) are responsible for the differential expression of genes. Experimental methods are time-consuming and labor-intensive in measuring EPIs. An alternative approach, machine learning, has been widely used to predict EPIs. However, most existing machine learning methods require a large number of functional genomic and epigenomic features as input, which limits the application to different cell lines. Methods: In this paper, we developed a random forest model, HARD (H3K27ac, ATAC-seq, RAD21, and Distance), to predict EPI using only four types of features. Results: Independent tests on a benchmark dataset showed that HARD outperforms other models with the fewest features. Discussion: Our results revealed that chromatin accessibility and the binding of cohesin are important for cell-line-specific EPIs. Furthermore, we trained the HARD model in the GM12878 cell line and performed testing in the HeLa cell line. The cross-cell-lines prediction also performs well, suggesting it has the potential to be applied to other cell lines.
Collapse
Affiliation(s)
- Leqiong Zheng
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
| | - Li Liu
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Wen Zhu
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
| | - Yijie Ding
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
| | - Fangxiang Wu
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| |
Collapse
|
9
|
Zhang X, Zhu W, Sun H, Ding Y, Liu L. Prediction of CTCF loop anchor based on machine learning. Front Genet 2023; 14:1181956. [PMID: 37077544 PMCID: PMC10106609 DOI: 10.3389/fgene.2023.1181956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Introduction: Various activities in biological cells are affected by three-dimensional genome structure. The insulators play an important role in the organization of higher-order structure. CTCF is a representative of mammalian insulators, which can produce barriers to prevent the continuous extrusion of chromatin loop. As a multifunctional protein, CTCF has tens of thousands of binding sites in the genome, but only a portion of them can be used as anchors of chromatin loops. It is still unclear how cells select the anchor in the process of chromatin looping.Methods: In this paper, a comparative analysis is performed to investigate the sequence preference and binding strength of anchor and non-anchor CTCF binding sites. Furthermore, a machine learning model based on the CTCF binding intensity and DNA sequence is proposed to predict which CTCF sites can form chromatin loop anchors.Results: The accuracy of the machine learning model that we constructed for predicting the anchor of the chromatin loop mediated by CTCF reached 0.8646. And we find that the formation of loop anchor is mainly influenced by the CTCF binding strength and binding pattern (which can be interpreted as the binding of different zinc fingers).Discussion: In conclusion, our results suggest that The CTCF core motif and it’s flanking sequence may be responsible for the binding specificity. This work contributes to understanding the mechanism of loop anchor selection and provides a reference for the prediction of CTCF-mediated chromatin loops.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
| | - Wen Zhu
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- *Correspondence: Wen Zhu,
| | - Huimin Sun
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Yijie Ding
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
| | - Li Liu
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| |
Collapse
|
10
|
Zhao S, Pan Q, Zou Q, Ju Y, Shi L, Su X. Identifying and Classifying Enhancers by Dinucleotide-Based Auto-Cross Covariance and Attention-Based Bi-LSTM. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7518779. [PMID: 35422876 PMCID: PMC9005296 DOI: 10.1155/2022/7518779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/12/2022] [Indexed: 11/17/2022]
Abstract
Enhancers are a class of noncoding DNA elements located near structural genes. In recent years, their identification and classification have been the focus of research in the field of bioinformatics. However, due to their high free scattering and position variability, although the performance of the prediction model has been continuously improved, there is still a lot of room for progress. In this paper, density-based spatial clustering of applications with noise (DBSCAN) was used to screen the physicochemical properties of dinucleotides to extract dinucleotide-based auto-cross covariance (DACC) features; then, the features are reduced by feature selection Python toolkit MRMD 2.0. The reduced features are input into the random forest to identify enhancers. The enhancer classification model was built by word2vec and attention-based Bi-LSTM. Finally, the accuracies of our enhancer identification and classification models were 77.25% and 73.50%, respectively, and the Matthews' correlation coefficients (MCCs) were 0.5470 and 0.4881, respectively, which were better than the performance of most predictors.
Collapse
Affiliation(s)
- Shulin Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Qingfeng Pan
- General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xi Su
- Foshan Maternal and Child Health Hospital, Foshan, Guangdong, China
| |
Collapse
|
11
|
Identification of Nine mRNA Signatures for Sepsis Using Random Forest. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5650024. [PMID: 35345523 PMCID: PMC8957445 DOI: 10.1155/2022/5650024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022]
Abstract
Sepsis has high fatality rates. Early diagnosis could increase its curating rates. There were no reliable molecular biomarkers to distinguish between infected and uninfected patients currently, which limit the treatment of sepsis. To this end, we analyzed gene expression datasets from the GEO database to identify its mRNA signature. First, two gene expression datasets (GSE154918 and GSE131761) were downloaded to identify the differentially expressed genes (DEGs) using Limma package. Totally 384 common DEGs were found in three contrast groups. We found that as the condition worsens, more genes were under disorder condition. Then, random forest model was performed with expression matrix of all genes as feature and disease state as label. After which 279 genes were left. We further analyzed the functions of 279 important DEGs, and their potential biological roles mainly focused on neutrophil threshing, neutrophil activation involved in immune response, neutrophil-mediated immunity, RAGE receptor binding, long-chain fatty acid binding, specific granule, tertiary granule, and secretory granule lumen. Finally, the top nine mRNAs (MCEMP1, PSTPIP2, CD177, GCA, NDUFAF1, CLIC1, UFD1, SEPT9, and UBE2A) associated with sepsis were considered as signatures for distinguishing between sepsis and healthy controls. Based on 5-fold cross-validation and leave-one-out cross-validation, the nine mRNA signature showed very high AUC.
Collapse
|
12
|
Li H, Shi L, Gao W, Zhang Z, Zhang L, Wang G. dPromoter-XGBoost: Detecting promoters and strength by combining multiple descriptors and feature selection using XGBoost. Methods 2022; 204:215-222. [PMID: 34998983 DOI: 10.1016/j.ymeth.2022.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 01/02/2022] [Indexed: 12/12/2022] Open
Abstract
Promoters play an irreplaceable role in biological processes and genetics, which are responsible for stimulating the transcription and expression of specific genes. Promoter abnormalities have been found in some diseases, and the level of promoter-binding transcription factors can be used as a marker before a disease occurs. Hence, detecting promoters from DNA sequences has important biological significance, particular, distinguishing strong promoters can help to elucidate differences in gene expression and the mechanisms of specific diseases. With the introduction of third-generation sequencing, it is difficult to match the speed of sequencing to the speed of labeling promoters experimentally. Many computing models have been designed to fill this gap and identify unlabeled DNA. However, their feature representation methods are very singular, which cannot reflect the information contained in the original samples. With the aim of avoiding information loss, we propose a computational model based on multiple descriptors and feature selection to jointly express samples. It is worth mentioning that a new feature descriptor called K-mer word vector is defined. The promoter model of multiple feature descriptors dominated by K-mer word vector achieves similar performance to existing methods, the sensitivity of 85.72% can distinguish the promoter more effectively than other methods. Furthermore, the performance of the promoter strength has surpassed published methods, and accuracy of 77.00% greatly improves the ability to distinguish between strong and weak promoters.
Collapse
Affiliation(s)
- Hongfei Li
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China; Yangtze Delta Region Institute, University of Electronic Science and Technology, Quzhou,China
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wentao Gao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Zixiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Guohua Wang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China.
| |
Collapse
|
13
|
Lv H, Shi L, Berkenpas JW, Dao FY, Zulfiqar H, Ding H, Zhang Y, Yang L, Cao R. Application of artificial intelligence and machine learning for COVID-19 drug discovery and vaccine design. Brief Bioinform 2021; 22:bbab320. [PMID: 34410360 PMCID: PMC8511807 DOI: 10.1093/bib/bbab320] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
The global pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, has led to a dramatic loss of human life worldwide. Despite many efforts, the development of effective drugs and vaccines for this novel virus will take considerable time. Artificial intelligence (AI) and machine learning (ML) offer promising solutions that could accelerate the discovery and optimization of new antivirals. Motivated by this, in this paper, we present an extensive survey on the application of AI and ML for combating COVID-19 based on the rapidly emerging literature. Particularly, we point out the challenges and future directions associated with state-of-the-art solutions to effectively control the COVID-19 pandemic. We hope that this review provides researchers with new insights into the ways AI and ML fight and have fought the COVID-19 outbreak.
Collapse
Affiliation(s)
- Hao Lv
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200433, China
| | | | - Fu-Ying Dao
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hasan Zulfiqar
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui Ding
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Renzhi Cao
- Department of Computer Science, Pacific Lutheran University, Tacoma 98447, USA
| |
Collapse
|
14
|
Lv Y, Huang S, Zhang T, Gao B. Application of Multilayer Network Models in Bioinformatics. Front Genet 2021; 12:664860. [PMID: 33868392 PMCID: PMC8044439 DOI: 10.3389/fgene.2021.664860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/26/2021] [Indexed: 11/24/2022] Open
Abstract
Multilayer networks provide an efficient tool for studying complex systems, and with current, dramatic development of bioinformatics tools and accumulation of data, researchers have applied network concepts to all aspects of research problems in the field of biology. Addressing the combination of multilayer networks and bioinformatics, through summarizing the applications of multilayer network models in bioinformatics, this review classifies applications and presents a summary of the latest results. Among them, we classify the applications of multilayer networks according to the object of study. Furthermore, because of the systemic nature of biology, we classify the subjects into several hierarchical categories, such as cells, tissues, organs, and groups, according to the hierarchical nature of biological composition. On the basis of the complexity of biological systems, we selected brain research for a detailed explanation. We describe the application of multilayer networks and chronological networks in brain research to demonstrate the primary ideas associated with the application of multilayer networks in biological studies. Finally, we mention a quality assessment method focusing on multilayer and single-layer networks as an evaluation method emphasizing network studies.
Collapse
Affiliation(s)
- Yuanyuan Lv
- Hainan Key Laboratory for Computational Science and Application, Hainan Normal University, Haikou, China
- Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Quzhou, China
| | - Shan Huang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianjiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Bo Gao
- Department of Radiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|