1
|
Pistek M, Andorfer P, Grabherr R, Kraus B, Hernandez Bort JA. Factors affecting rAAV titers during triple-plasmid transient transfection in HEK-293 cells. Biotechnol Lett 2024; 46:945-959. [PMID: 39259435 DOI: 10.1007/s10529-024-03520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/24/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024]
Abstract
The efficiency of triple-plasmid transfection in recombinant Adeno-Associated Virus (rAAV) production was analyzed by examining two distinct HEK-293 cells lines. These were categorized as high producer (HP) and low producer (LP) based on their differing levels of productivity under identical conditions. Analysis of RNA expression levels of viral genes revealed disparities in plasmid derived gene expression between the cell lines. Further assessment of transfection efficiency utilizing labeled plasmids revealed lower plasmid uptake and less efficient nuclear transport in LP cell line. Additionally, we observed inferior translation activity in LP, contributing to its shortcomings in overall productivity. In our attempt to optimize plasmid ratios to enhance fully packaged rAAV particle yield, we discovered cell-line-specific optimization potential. The findings highlight the transfection's complexity, urging tailored strategies for improved rAAV production based on each cell line's characteristics, enhancing understanding and guiding further efficiency optimization in rAAV production.
Collapse
Affiliation(s)
- Martina Pistek
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Uferstraße 15, 2304, Orth an der Donau, Austria
| | - Peter Andorfer
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Uferstraße 15, 2304, Orth an der Donau, Austria
| | - Reingard Grabherr
- Biotechnology Department, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Barbara Kraus
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Uferstraße 15, 2304, Orth an der Donau, Austria
| | - Juan A Hernandez Bort
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Uferstraße 15, 2304, Orth an der Donau, Austria.
- Department of Analytical Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria.
| |
Collapse
|
2
|
Leclère JC, Marianowski R, Montier T. Gene therapy for hearing loss: Current status and future prospects of non-viral vector delivery systems. Hear Res 2024; 453:109130. [PMID: 39427589 DOI: 10.1016/j.heares.2024.109130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Current therapeutic options for hearing loss rely on hearing aids, ossiculoplasty or cochlear implants. These devices have limitations, particularly in noisy acoustic environments. Therefore, interest in exploring aetiological treatments to improve not only auditory perception but also the quality of life of those affected is increasing. Gene therapy is a promising aetiological treatment that can fully restore auditory function. The success of gene therapy relies on the efficient delivery of therapeutic genes or genetic modifications to the cells of the inner ear that are designed to repair or replace defective genes and restore normal hearing function. Two main strategies for gene therapy involve the use of recombinant viral vectors and nonviral delivery vehicles. Owing to their excellent diffusion properties and compatibility with sensory cells, recombinant viral vectors, particularly adeno-associated viruses (AAVs), have dominated gene therapy in the cochlea. However, recombinant viral vectors have several drawbacks, such as limited transgene size, immunogenicity (particularly in neonates), and potential need for repeat administration. Nonviral vectors, such as cationic lipids and polymeric nanoparticles, are potential attractive alternatives. Nonviral vectors have several advantages, including low immunogenicity and unlimited transgene size. Recent studies have demonstrated significant auditory recovery in vivo using nonviral vectors in murine models. However, nonviral vectors are not as efficient as viral vectors in transferring genetic material. An alternative to nanoparticles is the use of other methods, such as electroporation. The main advantage of electroporation is that it can be used in combination with cochlear implantation and can target surface cells, but this method has a risk of cell damage. The goal of this review is to provide valuable insights into the current state of research on nonviral vectors for inner ear gene therapy and propose the exploration of innovative and effective gene therapy strategies for the treatment of hearing loss.
Collapse
Affiliation(s)
- Jean-Christophe Leclère
- CHU de Brest, Service d'ORL et chirurgie cervico-faciale, 29200 Brest, France; Univ Brest, LIEN, 29200 Brest, France.
| | - Remi Marianowski
- CHU de Brest, Service d'ORL et chirurgie cervico-faciale, 29200 Brest, France; Univ Brest, LIEN, 29200 Brest, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078 GGB-GTCA team, 29200 Brest, France; CHU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Centre de Référence des Maladies Rares "Maladies Neuromusculaires", 29200 Brest, France.
| |
Collapse
|
3
|
Goraltchouk A, Lourie J, Hollander JM, Grace Rosen H, Fujishiro AA, Luppino F, Zou K, Seregin A. Development and characterization of a first-in-class adjustable-dose gene therapy system. Gene 2024; 919:148500. [PMID: 38663689 DOI: 10.1016/j.gene.2024.148500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Despite significant potential, gene therapy has been relegated to the treatment of rare diseases, due in part to an inability to adjust dosage following initial administration. Other significant constraints include cost, specificity, antigenicity, and systemic toxicity of current generation technologies. To overcome these challenges, we developed a first-in-class adjustable-dose gene therapy system, with optimized biocompatibility, localization, durability, and cost. METHODS A lipid nanoparticle (LNP) delivery system was developed and characterized by dynamic light scattering for size, zeta potential, and polydispersity. Cytocompatibility and transfection efficiency were optimized in vitro using primary human adipocytes and preadipocytes. Durability, immunogenicity, and adjustment of expression were evaluated in C57BL/6 and B6 albino mice using in vivo bioluminescence imaging. Biodistribution was assessed by qPCR and immunohistochemistry; therapeutic protein expression was quantified by ELISA. RESULTS Following LNP optimization, in vitro transfection efficiency of primary human adipocytes reached 81.3 % ± 8.3 % without compromising cytocompatibility. Critical physico-chemical properties of the system (size, zeta potential, polydispersity) remained stable over a broad range of genetic cassette sizes (1,871-6,203 bp). Durable expression was observed in vivo over 6 months, localizing to subcutaneous adipose tissues at the injection site with no detectable transgene in the liver, heart, spleen, or kidney. Gene expression was adjustable using several physical and pharmacological approaches, including cryolipolysis, focused ultrasound, and pharmacologically inducible apoptosis. The ability of transfected adipocytes to express therapeutic transgenes ranging from peptides to antibodies, at potentially clinically relevant levels, was confirmed in vitro and in vivo. CONCLUSION We report the development of a novel, low-cost therapeutic platform, designed to enable the replacement of subcutaneously administered protein treatments with a single-injection, adjustable-dose gene therapy.
Collapse
Affiliation(s)
- Alex Goraltchouk
- Remedium Bio, Inc. 1116 Great Plain Ave, Suite 203, Needham, MA 02492, United States of America
| | - Jared Lourie
- Department of Exercise and Health Sciences, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, United States of America
| | - Judith M Hollander
- Remedium Bio, Inc. 1116 Great Plain Ave, Suite 203, Needham, MA 02492, United States of America
| | - H Grace Rosen
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, United States of America
| | - Atsutaro A Fujishiro
- Department of Exercise and Health Sciences, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, United States of America
| | - Francesco Luppino
- Remedium Bio, Inc. 1116 Great Plain Ave, Suite 203, Needham, MA 02492, United States of America
| | - Kai Zou
- Department of Exercise and Health Sciences, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, United States of America
| | - Alexey Seregin
- Remedium Bio, Inc. 1116 Great Plain Ave, Suite 203, Needham, MA 02492, United States of America.
| |
Collapse
|
4
|
Wang Y, Fu Q, Park SY, Lee YS, Park SY, Lee DY, Yoon S. Decoding cellular mechanism of recombinant adeno-associated virus (rAAV) and engineering host-cell factories toward intensified viral vector manufacturing. Biotechnol Adv 2024; 71:108322. [PMID: 38336188 DOI: 10.1016/j.biotechadv.2024.108322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Recombinant adeno-associated virus (rAAV) is one of the prominent gene delivery vehicles that has opened promising opportunities for novel gene therapeutic approaches. However, the current major viral vector production platform, triple transfection in mammalian cells, may not meet the increasing demand. Thus, it is highly required to understand production bottlenecks from the host cell perspective and engineer the cells to be more favorable and tolerant to viral vector production, thereby effectively enhancing rAAV manufacturing. In this review, we provided a comprehensive exploration of the intricate cellular process involved in rAAV production, encompassing various stages such as plasmid entry to the cytoplasm, plasmid trafficking and nuclear delivery, rAAV structural/non-structural protein expression, viral capsid assembly, genome replication, genome packaging, and rAAV release/secretion. The knowledge in the fundamental biology of host cells supporting viral replication as manufacturing factories or exhibiting defending behaviors against viral production is summarized for each stage. The control strategies from the perspectives of host cell and materials (e.g., AAV plasmids) are proposed as our insights based on the characterization of molecular features and our existing knowledge of the AAV viral life cycle, rAAV and other viral vector production in the Human embryonic kidney (HEK) cells.
Collapse
Affiliation(s)
- Yongdan Wang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Qiang Fu
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - So Young Park
- Department of Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Yong Suk Lee
- Department of Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Seo-Young Park
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States of America.
| |
Collapse
|
5
|
Cunliffe RF, Stirling DC, Razzano I, Murugaiah V, Montomoli E, Kim S, Wane M, Horton H, Caproni LJ, Tregoning JS. Optimizing a linear 'Doggybone' DNA vaccine for influenza virus through the incorporation of DNA targeting sequences and neuraminidase antigen. DISCOVERY IMMUNOLOGY 2024; 3:kyad030. [PMID: 38567290 PMCID: PMC10917164 DOI: 10.1093/discim/kyad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/08/2023] [Accepted: 01/02/2024] [Indexed: 04/04/2024]
Abstract
Influenza virus represents a challenge for traditional vaccine approaches due to its seasonal changes and potential for zoonotic transmission. Nucleic acid vaccines can overcome some of these challenges, especially through the inclusion of multiple antigens to increase the breadth of response. RNA vaccines were an important part of the response to the COVID-19 pandemic, but for future outbreaks DNA vaccines may have some advantages in terms of stability and manufacturing cost that warrant continuing investigation to fully realize their potential. Here, we investigate influenza virus vaccines made using a closed linear DNA platform, Doggybone™ DNA (dbDNA), produced by a rapid and scalable cell-free method. Influenza vaccines have mostly focussed on Haemagglutinin (HA), but the inclusion of Neuraminidase (NA) may provide additional protection. Here, we explored the potential of including NA in a dbDNA vaccine, looking at DNA optimization, mechanism and breadth of protection. We showed that DNA targeting sequences (DTS) improved immune responses against HA but not NA. We explored whether NA vaccine-induced protection against influenza virus infection was cell-mediated, but depletion of CD8 and NK cells made no impact, suggesting it was antibody-mediated. This is reflected in the restriction of protection to homologous strains of influenza virus. Importantly, we saw that including both HA and NA in a single combined vaccine did not dampen the immune response to either one. Overall, we show that linear dbDNA can induce an immune response against NA, which may offer increased protection in instances of HA mismatch where NA remains more conserved.
Collapse
Affiliation(s)
- Robert F Cunliffe
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - David C Stirling
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Ilaria Razzano
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
- VisMederi srl, Siena, 53100, Italia
| | | | - Emanuele Montomoli
- VisMederi srl, Siena, 53100, Italia
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Sungwon Kim
- Touchlight Genetics Ltd, Hampton, TW12 2ER, UK
| | - Madina Wane
- Touchlight Genetics Ltd, Hampton, TW12 2ER, UK
| | | | | | - John S Tregoning
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| |
Collapse
|
6
|
Nguyen QM, Dupré PF, Berchel M, Ghanem R, Jaffrès PA, d'Arbonneau F, Montier T. BSV163/DOPE-mediated TRAIL gene transfection acts synergistically with chemotherapy against cisplatin-resistant ovarian cancer. Chem Biol Drug Des 2024; 103:e14357. [PMID: 37731182 DOI: 10.1111/cbdd.14357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Ovarian cancer is the seventh most frequently diagnosed cancer among women worldwide. Most patients experience recurrence and succumb eventually to resistant disease, underscoring the need for an alternative treatment option. In the presented manuscript, we investigated the effect of the TRAIL-gene, transfected by an innovative bioinspired lipid vector BSV163/DOPE in the presence or absence of cisplatin, to fight against sensitive and resistant ovarian cancer. We showed that BSV163/DOPE can transfect ovarian cancer cell lines (Caov3, OVCAR3, and our new cisplatin-resistant, CR-Caov3) safely and efficiently. In addition, TRAIL-gene transfection in association with cisplatin inhibited cellular growth more efficiently (nearly 50% in Caov3 cells after the combined treatment, and 15% or 25% by each treatment alone, respectively) owing to an increase in apoptosis rate, caspases activity and TRAIL's death receptors expression. Most importantly, such synergistic effect was also observed in CR-Caov3 cells demonstrated by an apoptosis rate of 35% following the combined treatment in comparison with 17% after TRAIL-gene transfection or 6% after cisplatin exposition. These results suggest this combination may have potential application for sensitive as well as refractory ovarian cancer patients.
Collapse
Affiliation(s)
- Quoc Manh Nguyen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, GTCA Team, "Gene Transfer and Combined therapeutic Approaches", Brest, France
| | - Pierre-François Dupré
- Univ Brest, Inserm, EFS, UMR 1078, GGB, GTCA Team, "Gene Transfer and Combined therapeutic Approaches", Brest, France
- CHU de Brest, Service de Chirurgie Gynécologique, Brest, France
| | | | - Rosy Ghanem
- Univ Brest, Inserm, EFS, UMR 1078, GGB, GTCA Team, "Gene Transfer and Combined therapeutic Approaches", Brest, France
- CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Brest, France
| | | | - Frédérique d'Arbonneau
- Univ Brest, Inserm, EFS, UMR 1078, GGB, GTCA Team, "Gene Transfer and Combined therapeutic Approaches", Brest, France
- CHU de Brest, Service d'Odontologie, UFR d'Odontologie de Brest, Brest, France
| | - Tristan Montier
- Univ Brest, Inserm, EFS, UMR 1078, GGB, GTCA Team, "Gene Transfer and Combined therapeutic Approaches", Brest, France
- CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Brest, France
- CHU de Brest, Centre de Référence des Maladies Rares "Maladies Neuromusculaires", Brest, France
| |
Collapse
|
7
|
Kim S, Thuy LT, Lee J, Choi JS. Second-Generation Polyamidoamine Dendrimer Conjugated with Oligopeptides Can Enhance Plasmid DNA Delivery In Vitro. Molecules 2023; 28:7644. [PMID: 38005366 PMCID: PMC10674462 DOI: 10.3390/molecules28227644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Poly(amidoamine) (PAMAM) dendrimers have attracted considerable attention in the field of gene therapy due to their flexibility in introducing different functional moieties and reduced toxicity at low generations. However, their transfection efficiency remains a limitation. Therefore, an essential approach for improving their transfection efficiency as gene carriers involves modifying the structure of PAMAM by conjugating functional groups around their surface. In this study, we successfully conjugated an RRHRH oligopeptide to the surface of PAMAM generation 2 (PAMAM G2) to create RRHRH-PAMAM G2. This construction aims to condense plasmid DNA (pDNA) and facilitate its penetration into cell membranes, leading to its promising potential for gene therapy. RRHRH-PAMAM G2/pDNA complexes were smaller than 100 nm and positively charged. Nano-polyplexes can enter the cell and show a high transfection efficiency after 24 h of transfection. The RRHRH-PAMAM G2 was non-toxic to HeLa, NIH3T3, A549, and MDA-MB-231 cell lines. These results strongly suggest that RRHRH-PAMAM G2 holds promise as a gene carrier for gene therapy owing to its biocompatibility and ability to deliver genes to the cell.
Collapse
Affiliation(s)
| | | | | | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (S.K.); (L.T.T.); (J.L.)
| |
Collapse
|
8
|
Lee JH, Han JP, Song DW, Lee GS, Choi BS, Kim M, Lee Y, Kim S, Lee H, Yeom SC. In vivo genome editing for hemophilia B therapy by the combination of rebalancing and therapeutic gene knockin using a viral and non-viral vector. MOLECULAR THERAPY - NUCLEIC ACIDS 2023; 32:161-172. [PMID: 37064777 PMCID: PMC10090481 DOI: 10.1016/j.omtn.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/16/2023] [Indexed: 04/09/2023]
Abstract
Recent therapeutic strategies for hemophilia include long-term therapeutic gene expression using adeno-associated virus (AAV) and rebalancing therapy via the downregulation of anticoagulant pathways. However, these approaches have limitations in immune responses or insufficiency to control acute bleeding. Thus, we developed a therapeutic strategy for hemophilia B by a combined rebalancing and human factor 9 (hF9) gene knockin (KI) using a lipid nanoparticle (LNP) and AAV. Antithrombin (AT; Serpin Family C Member 1 [Serpinc1]) was selected as the target anticoagulation pathway for the gene KI. First, the combined use of LNP-clustered regularly interspaced short palindromic repeats (CRISPR) and AAV donor resulted in 20% insertions or deletions (indels) in Serpinc1 and 67% reduction of blood mouse AT concentration. Second, hF9 coding sequences were integrated into approximately 3% of the target locus. hF9 KI yielded approximately 1,000 ng/mL human factor IX (hFIX) and restored coagulation activity to a normal level. LNP-CRISPR injection caused sustained AT downregulation and hFIX production up to 63 weeks. AT inhibition and hFIX protein-production ability could be maintained by the proliferation of genetically edited hepatocytes in the case of partial hepatectomy. The co-administration of AAV and LNP showed no severe side effects except random integrations. Our results demonstrate hemophilia B therapy by a combination of rebalancing and hF9 KI using LNP and AAV.
Collapse
|
9
|
Liedl A, Grießing J, Kretzmann JA, Dietz H. Active Nuclear Import of Mammalian Cell-Expressible DNA Origami. J Am Chem Soc 2023; 145:4946-4950. [PMID: 36828394 PMCID: PMC9999407 DOI: 10.1021/jacs.2c12733] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
DNA origami enables the creation of complex 3D shapes from genetic material. Future uses could include the delivery of genetic instructions to cells, but nuclear import remains a major barrier to gene delivery due to the impermeability of the nuclear membrane. Here we realize active nuclear import of DNA origami objects in dividing and chemically arrested mammalian cells. We developed a custom DNA origami single-strand scaffold featuring a mammalian-cell expressible reporter gene (mCherry) and multiple Simian virus 40 (SV40) derived DNA nuclear targeting sequences (DTS). Inclusion of the DTS within DNA origami rescued gene expression in arrested cells, indicating that active transport into the nucleus occurs. Our work successfully adapts mechanisms known from viruses to promote the cellular expression of genetic instructions encoded within DNA origami objects.
Collapse
Affiliation(s)
- Anna Liedl
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Am Coulombwall 4a, 85748 Garching, Germany.,Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Johanna Grießing
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Am Coulombwall 4a, 85748 Garching, Germany.,Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Jessica A Kretzmann
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Am Coulombwall 4a, 85748 Garching, Germany.,Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Hendrik Dietz
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Am Coulombwall 4a, 85748 Garching, Germany.,Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| |
Collapse
|
10
|
Yang J, Luly KM, Green JJ. Nonviral nanoparticle gene delivery into the CNS for neurological disorders and brain cancer applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1853. [PMID: 36193561 PMCID: PMC10023321 DOI: 10.1002/wnan.1853] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/24/2022] [Accepted: 08/11/2022] [Indexed: 03/15/2023]
Abstract
Nonviral nanoparticles have emerged as an attractive alternative to viral vectors for gene therapy applications, utilizing a range of lipid-based, polymeric, and inorganic materials. These materials can either encapsulate or be functionalized to bind nucleic acids and protect them from degradation. To effectively elicit changes to gene expression, the nanoparticle carrier needs to undergo a series of steps intracellularly, from interacting with the cellular membrane to facilitate cellular uptake to endosomal escape and nucleic acid release. Adjusting physiochemical properties of the nanoparticles, such as size, charge, and targeting ligands, can improve cellular uptake and ultimately gene delivery. Applications in the central nervous system (CNS; i.e., neurological diseases, brain cancers) face further extracellular barriers for a gene-carrying nanoparticle to surpass, with the most significant being the blood-brain barrier (BBB). Approaches to overcome these extracellular challenges to deliver nanoparticles into the CNS include systemic, intracerebroventricular, intrathecal, and intranasal administration. This review describes and compares different biomaterials for nonviral nanoparticle-mediated gene therapy to the CNS and explores challenges and recent preclinical and clinical developments in overcoming barriers to nanoparticle-mediated delivery to the brain. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Joanna Yang
- Departments of Biomedical Engineering, Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathryn M Luly
- Departments of Biomedical Engineering, Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jordan J Green
- Departments of Biomedical Engineering, Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Staurenghi F, McClements ME, Salman A, MacLaren RE. Minicircle Delivery to the Neural Retina as a Gene Therapy Approach. Int J Mol Sci 2022; 23:11673. [PMID: 36232975 PMCID: PMC9569440 DOI: 10.3390/ijms231911673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Non-viral gene therapy has the potential to overcome several shortcomings in viral vector-based therapeutics. Methods of in vivo plasmid delivery have developed over recent years to increase the efficiency of non-viral gene transfer, yet further improvements still need to be made to improve their translational capacity. Gene therapy advances for inherited retinal disease have been particularly prominent over the recent decade but overcoming physical and physiological barriers present in the eye remains a key obstacle in the field of non-viral ocular drug delivery. Minicircles are circular double-stranded DNA vectors that contain expression cassettes devoid of bacterial DNA, thereby limiting the risks of innate immune responses induced by such elements. To date, they have not been extensively used in pre-clinical studies yet remain a viable vector option for the treatment of inherited retinal disease. Here, we explore the potential of minicircle DNA delivery to the neural retina as a gene therapy approach. We consider the advantages of minicircles as gene therapy vectors as well as review the challenges involved in optimising their delivery to the neural retina.
Collapse
Affiliation(s)
- Federica Staurenghi
- Nuffield Laboratory of Ophthalmology, Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Michelle E. McClements
- Nuffield Laboratory of Ophthalmology, Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Ahmed Salman
- Nuffield Laboratory of Ophthalmology, Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Oxford University Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
12
|
Girardin C, Maze D, Gonçalves C, Le Guen YT, Pluchon K, Pichon C, Montier T, Midoux P. Selective attachment of a microtubule interacting peptide to plasmid DNA via a triplex forming oligonucleotide for transfection improvement. Gene Ther 2022; 30:271-277. [PMID: 35794469 DOI: 10.1038/s41434-022-00354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/20/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022]
Abstract
In nonviral gene therapy approaches, the linkage of signal molecules to plasmid DNA (pDNA) is of interest for guiding its delivery to the nucleus. Here, we report its linkage to a peptide (P79-98) mediating migration on microtubules by using a triplex-forming oligonucleotide (TFO). pDNA of 5 kbp and 21 kbp containing 6 and 36 oligopurine • oligopyrimidine sites (TH), respectively, inserted outside the luciferase gene sequence were used. TFO with a dibenzocyclooctyl (DBCO) group in 3' end comprising some Bridged Nucleic Acid bases was conjugated by click chemistry with the peptide carrying an azide function in the C-terminal end. We found the formation of 6 and 18 triplex with pDNA of 5 kbp and 21 kbp, respectively. A twofold increase of the transfection efficiency was observed in the hind-limbs upon Hydrodynamic Limb Vein (HLV) injection in mice of naked P79-98 -pDNA of 21 kbp. This work paves the way for the selective equipping of pDNA with intracellular targeting molecules while preserving the full expression of the encoded gene.
Collapse
Affiliation(s)
- Caroline Girardin
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France
| | - Delphine Maze
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France
| | - Cristine Gonçalves
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France
| | | | - Kevin Pluchon
- Univ Brest, INSERM, EFS, UMR 1078, GGB - GTCA Team, F-29200, Brest, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB - GTCA Team, F-29200, Brest, France. .,Service de Génétique Médicale et Biologie de la Reproduction, Centre de référence des maladies rares 'Maladies neuromusculaires', CHRU de Brest, F-29200, Brest, France.
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France.
| |
Collapse
|