1
|
Han S, Zhu W, Guo Q. Cohesin Complex Interacting with Promoters of MMP Genes for in Pterygium Occurrence. Curr Eye Res 2025:1-10. [PMID: 39819270 DOI: 10.1080/02713683.2025.2452919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
PURPOSE Pterygium is a common ocular surface disease characterized by a high recurrence rate and unknown etiology. METHODS In this study, we investigated the upregulation of matrix metalloproteinase genes, including MMP1, MMP2, MMP3, MMP7, MMP9, MMP11, MMP12, MMP13, MMP23B, and MMP28, in pterygium tissue using RNA sequencing, Western blotting, and immunohistochemistry. RESULTS Employing the MEME tool, we identified a conserved DNA motif within the promoter regions of these matrix metalloproteinase genes. Mass spectrometry analysis revealed an interaction between the cohesin complex and this motif. Disrupting the cohesin complex through RNA interference of RAD21 cohesin complex component or structural maintenance of chromosomes 3 in primary pterygial fibroblasts led to decreased matrix metalloproteinase gene expression and reduced recruitment of twist family bHLH transcription factor 1 and transcription factor 4 to matrix metalloproteinase gene promoters. CONCLUSION Overall, our findings suggest a novel epigenetic mechanism regulating matrix metalloproteinase transcription in pterygium.
Collapse
Affiliation(s)
- Shichao Han
- Department of Ophthalmology, Zibo Center Hospital, Zibo, China
| | - Wei Zhu
- Department of Ophthalmology, Zibo Center Hospital, Zibo, China
| | - Qianqian Guo
- Department of Ophthalmology, Zibo Center Hospital, Zibo, China
| |
Collapse
|
2
|
Xie Y, Li X, Wang M, Chu M, Cao G. Lin28b-let-7 Modulates mRNA Expression of GnRH1 Through Multiple Signaling Pathways Related to Glycolysis in GT1-7 Cells. Animals (Basel) 2025; 15:120. [PMID: 39858120 PMCID: PMC11758636 DOI: 10.3390/ani15020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Lin28b and let-7 miRNA regulate mammalian pubertal initiation and Gonadotropin-releasing hormone (GnRH) production. However, it remains unclear which signaling pathways Lin28b regulates to modulate GnRH production. In this study, the mRNA expression levels of Lin28b and let-7 in the pubertal and juvenile goat hypothalamus and pituitary gland were detected, and Lin28b expression in the pubertal hypothalamus decreased significantly compared with that in juvenile tissues. It was predicted that Lin28b might inhibit GnRH1 expression, which was verified in the GnRH-producing cell model GT1-7 cells. Lin28b inhibited GnRH1 expression and promoted Kiss1/Gpr54 signaling. The pyruvate content and the expression of Hif1a and Hk2, which were related to glycolysis, were also promoted by Lin28b overexpression. Additionally, 77 differentially expressed miRNAs (DEMIs) in Lin28b-overexpressed GT1-7 cells were identified. Bioinformatics analysis and mRNA expression of the target genes of DEMIs revealed that the MAPK and PI3K-AKT-mTOR signaling pathways were key pathways that involved the regulatory effect of Lin28b on GnRH. In GT1-7 cells, GnRH1 expression was suppressed by blocking mTOR signaling with rapamycin, which was rescued by Lin28b overexpression. These results indicate that Lin28b-let-7 regulates GnRH1 expression through several pathways, including the Kiss1/Gpr54, MAPK, and mTOR signaling pathways, which are all related to glucose metabolism and provide new insights into the molecular mechanism of the regulatory role of Lin28b on GnRH production.
Collapse
Affiliation(s)
- Yujing Xie
- School of Agriculture and Biology, Liaocheng University, Liaocheng 252059, China (X.L.)
| | - Xin Li
- School of Agriculture and Biology, Liaocheng University, Liaocheng 252059, China (X.L.)
| | - Meng Wang
- School of Agriculture and Biology, Liaocheng University, Liaocheng 252059, China (X.L.)
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guiling Cao
- School of Agriculture and Biology, Liaocheng University, Liaocheng 252059, China (X.L.)
| |
Collapse
|
3
|
Yun T, Hua J, Chen L, Ye W, Ni Z, Zhu Y, Zhang C. Infection with novel duck reovirus induces stress granule and methylation-mediated host translational shutoff in Muscovy ducklings. Commun Biol 2024; 7:1549. [PMID: 39572728 PMCID: PMC11582818 DOI: 10.1038/s42003-024-07259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
The recently identified novel duck reovirus (NDRV) is a waterfowl reovirus that can seriously harm or kill various waterfowl species. However, how NDRV interacts with host cells in Muscovy ducklings beyond the typical pathogenesis resulting from a viral infection is unknown. The current study examined the global translation efficiency of the Fabricius bursa of Muscovy ducklings infected with NDRV HN10 using mass spectrometry and ribosome footprint sequencing. Protein-protein interactions were investigated using immunogold labeling, transmission electron microscopy, and immunocytochemistry. An analysis of the relationship between m6A and translation was performed using RNA immunoprecipitation and m6A methylation immunoprecipitation. We found that both in vivo and in vitro, the translation efficiency of RNA modified with m6A could be significantly reduced by σB, a structural protein component of NDRV HN10. Furthermore, σB might simultaneously interact with the stress granule complex CAPRIN1 and G3BP1 and the m6A reader protein YTHDF1/3. Significant overlap was observed between m6A-modified and G3BP1-enriched RNA, indicating that granule stress could capture m6A-methylated RNA. We discovered a new function for NDRV HN10 in translational shutoff by recruiting m6A-modified RNA into stress granules located in the Fabricius bursa of Muscovy ducklings.
Collapse
Affiliation(s)
- Tao Yun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Jionggang Hua
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weicheng Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zheng Ni
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yinchu Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Cun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
4
|
Li C, Li W, Wei W, Chen Q, Gao H, Zhao Y, Zhang L, Ling L, Shen H, Shen Y, Shen Y. Gene expression profiles of endothelium, microglia and oligodendrocytes in hippocampus of post-stroke depression rat at single cell resolution. Mol Psychiatry 2024:10.1038/s41380-024-02810-3. [PMID: 39521840 DOI: 10.1038/s41380-024-02810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Post-stroke depression (PSD) is a common but severe mental complication after stroke. However, the cellular and molecular understanding of PSD is still yet to be illustrated. In current study, we prepared PSD rat model (MD) via unilateral middle cerebral artery occlusion (MCAO) and chronic stress stimulation (DEPR), and isolated hippocampal tissues for single cell sequencing of 10x Genomics Chromium. First, we determined the presence of the increased cell population of endothelium and microglia and the compromised oligodendrocytes in MD compared to NC, MCAO and DEPR. The enriched functions of highly variable genes (HVGs) of endothelium and microglia suggested a reinforced blood-brain barrier in MD. Next, cell clusters of endothelium, microglia and oligodendrocytes were individually analyzed, and the subtypes with distinct functions were identified. The presence of expression profiles, intercellular communications and signaling pathways of these three cell populations of PSD displayed a similar but more aggressive appearance with DEPR compared to MCAO and NC. Taken together, this study characterized the specific gene profile of endothelium, microglia and oligodendrocytes of hippocampal PSD by single cell sequencing, emphasizing the crosstalk among them to provide theoretical basis for the in-depth mechanism research and drug therapy of PSD.
Collapse
Affiliation(s)
- Cai Li
- Department of Neurology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Wentao Li
- Department of Neurology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Wenbin Wei
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200013, China
| | - Qili Chen
- School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning, China
| | - Han Gao
- Department of Neurology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yanqing Zhao
- Department of Neurology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Lingling Zhang
- Department of Neurology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Li Ling
- Department of Neurology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Hao Shen
- Clinical laboratory, Suzhou Ninth People's Hospital, Suzhou, 215200, Jiangsu, China.
| | - Yifen Shen
- Central laboratory, Suzhou Ninth People's Hospital, Suzhou, 215200, Jiangsu, China.
| | - Yihang Shen
- Central laboratory, Suzhou Ninth People's Hospital, Suzhou, 215200, Jiangsu, China.
| |
Collapse
|
5
|
Shen Y, Zhang L, Yang T, Li X, Liu C, Li H, Hu Y, Shen H, Li H, Orlov YL, Zhou S, Shen Y. Monosome Stalls the Translation Process Mediated by IGF2BP in Arcuate Nucleus for Puberty Onset Delay. Mol Neurobiol 2024:10.1007/s12035-024-04450-8. [PMID: 39235646 DOI: 10.1007/s12035-024-04450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Puberty onset through hypothalamic-pituitary-gonad (HPG) axis as an important reproductive event in postnatal development is initiated from hypothalamic arcuate nucleus (ARC). The growing evidence indicates that translational control also plays an essential role in the final expression of gonadotropin genes. To investigate the role of protein translation and behavior of ribosomes in pubertal onset, the global profiles of transcriptome, single ribosome (monosome), polysome, and tandem mass tag proteome were comprehensively investigated in rat hypothalamic ARCs of different pubertal stages using RNA sequencing, polyribo sequencing, and mass spectrum. Transcriptome-wide enrichments of N6-methyladenosine and IGF2BP2 were investigated using meRIP and RIP sequencing. Monosome was robustly enriched on a large proportion of mRNA in early puberty rats (postnatal day (PND)-25) compared to late puberty (PND-35 and PND-45). Monosome-enriched mRNAs, including HPG axis-related genes, had a large number of upstream ORFs (uORF, < 100 nt) and displayed translational repression in early puberty. Furthermore, insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) could particularly interact with and facilitate monosome to bind with mRNA in early puberty. Finally, ectopic over-expression of IGF2BP2 in hypothalamic ARC via lateral ventricle injection in vivo could recruit monosome to aggregate on mRNA and delay puberty onset. We uncovered a novel regulatory mechanism of IGF2BP2 and monosome for translational control in puberty onset, which shed light on the neuroendocrine regulatory network involved in HPG axis activation.
Collapse
Affiliation(s)
- Yifen Shen
- Central Laboratory, Suzhou Bay Clinical College, Xuzhou Medical University, Suzhou Ninth People's Hospital, Soochow University, Suzhou, 215200, Jiangsu, China
| | - Le Zhang
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, 215009, Jiangsu, China
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Yang
- Department of Medical Cosmetology, Suzhou Ninth People's Hospital, Soochow University, Suzhou, 215200, Jiangsu, China
| | - Xiaosong Li
- Department of Anorectal Surgery, Suzhou Ninth People's Hospital, Suzhou, 215200, Jiangsu, China
| | - Chao Liu
- Central Laboratory, Suzhou Bay Clinical College, Xuzhou Medical University, Suzhou Ninth People's Hospital, Soochow University, Suzhou, 215200, Jiangsu, China
| | - Hongmei Li
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
| | - Yanping Hu
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Hao Shen
- Clinical Laboratory, Suzhou Ninth People's Hospital, Suzhou, 215200, Jiangsu, China
| | - Hua Li
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, 215009, Jiangsu, China.
| | - Yuriy L Orlov
- The Digital Health Center, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia.
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Shasha Zhou
- Department of Endocrinology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200040, China.
| | - Yihang Shen
- Central Laboratory, Suzhou Bay Clinical College, Xuzhou Medical University, Suzhou Ninth People's Hospital, Soochow University, Suzhou, 215200, Jiangsu, China.
| |
Collapse
|
6
|
Niyonzima YB, Asato Y, Murakami T, Kadokawa H. Alpha-synuclein expression in GnRH neurons of young and old bovine hypothalami. Reprod Fertil Dev 2024; 36:RD24033. [PMID: 39283977 DOI: 10.1071/rd24033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/15/2024] [Indexed: 11/13/2024] Open
Abstract
Context Understanding of central nervous system mechanisms related to age-related infertility remains limited. Fibril α-synuclein, distinct from its monomer form, is implicated in age-related diseases and propagates among neurons akin to prions. Aims We compared α-synuclein expression in gonadotropin-releasing hormone-expressing neurons (GnRH neurons) in the pre-optic area, arcuate nucleus, and median eminence of healthy heifers and aged cows to determine its role in age-related infertility. Methods We analysed mRNA and protein expression, along with fluorescent immunohistochemistry for GnRH and α-synuclein, followed by Congo red staining to detect amyloid deposits, and confocal microscopy. Key results Both mRNA and protein expressions of α-synuclein were confirmed by reverse transcription-polymerase chain reaction (RT-PCR) and western blots in bovine cortex, hippocampus, and anterior and posterior hypothalamus tissues. Significant differences in α-synuclein mRNA expression were observed in the cortex and hippocampus between young and old cows. Western blots showed five bands of α-synuclein, probably reflecting monomer, dimer, and oligomers, in the cortex, hippocampus, hypothalamus tissues, and there were significant differences in some bands between young and old cows. Bright-field and polarised light microscopy did not detect obvious amyloid deposition in aged hypothalami; however, higher-sensitive confocal microscopy unveiled strong positive signal of Congo red and α-synuclein in GnRH neurons in aged hypothalami. Additionally, α-synuclein expression was detected in immortalised GnRH neurons, GT1-7 cells. Conclusion Alpha-synuclein was expressed in GnRH neurons, and some differences were observed between young and old hypothalami. Implications Alpha-synuclein may play an important role in aging-related infertility.
Collapse
Affiliation(s)
- Yvan Bienvenu Niyonzima
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| | - Yuuki Asato
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| | - Tomoaki Murakami
- Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroya Kadokawa
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| |
Collapse
|
7
|
Ding SM, Shi LG, Cao ZP, Zhu NN, Liu YY, Wang MY, Cui SS, Cheng HR, Liang D, Cao YX, Liu YJ. HTR1B regulates mitochondrial homeostasis and mitophagy by activating the ERK/ MAPK signalling pathway during human embryonic arrest. Heliyon 2024; 10:e33132. [PMID: 39022094 PMCID: PMC11253063 DOI: 10.1016/j.heliyon.2024.e33132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Background Previous studies have shown that serotonin and its receptors are widely distributed in mammalian reproductive tisssues and play an important role in embryonic development. However, the specific effects of the serotonergic system on embryonic arrest (EA) and the underlying mechanism require further investigation. Methods Chorionic villi were collected from patients with EA and healthy pregnant women. Western blotting (WB) and immunohistochemistry (IHC) were used to detect serotonin receptor 1B (HTR1B) levels and evaluate mitochondrial function. Additionally, HTR-8/SVneo cells were transfected with an HTR1B overexpression plasmid. Quantitative real-time polymerase chain reaction(qRT-PCR), Cell Counting Kit-8 (CCK-8), and wound healing assays were utilized to evaluate mitophagy level, cell proliferation and cell migration, respectively. Results We discovered elevated HTR1B levels in the chorionic villi of the patients with EA compared to controls. Concurrently, we observed enhanced levels of nucleus-encoded proteins including mitofilin, succinate dehydrogenase complex subunit A (SDHA), and cytochrome c oxidase subunit 4 (COXIV), along with the mitochondrial fusion protein optic atrophy 1(OPA1), fission proteins mitochondrial fission protein 1(FIS1) and mitochondrial fission factor (MFF) in the EA group. Additionally, there was an excessive mitophagy levels in EA group. Furthermore, a notable activation of mitogen-activated protein kinase (MAPK) signaling pathway proteins including extracellular regulating kinase (ERK), c-Jun N-terminal kinase (JNK), and P38 was observed in the EA group. By overexpressing HTR1B in HTR-8/SVneo cells, we observed a significant reduction in cell proliferation and migration. HTR1B overexpression also caused an increase in levels of SDHA and FIS1, as well as an upregulation of mitophagy. Notably, the ERK inhibitor U0126 effectively mitigated these effects. Conclusion These findings show that HTR1B influences mitochondrial homeostasis, promoting excessive mitophagy and impairing cell proliferation and migration by activating the MAPK signalling pathway during post-implantation EA. Therefore, HTR1B may serve as a potential therapeutic target for patients with EA.
Collapse
Affiliation(s)
- Si-min Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230022, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ling-ge Shi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230022, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhen-ping Cao
- The Third People's Hospital of Hefei, The Third Clinical Teaching Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Na-na Zhu
- The Second People's Hospital of Hefei, The Second Clinical Teaching Hospital of Anhui Medical University, Hefei, 230011, Anhui, China
| | - Yun-yun Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230022, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Meng-yao Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230022, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shuang-shuang Cui
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230022, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hui-ru Cheng
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230022, China
| | - Dan Liang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230022, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yun-xia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230022, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine,No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ya-jing Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230022, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine,No 81 Meishan Road, Hefei, 230032, Anhui, China
| |
Collapse
|
8
|
Zhao R, Guo Y, Zhang L, Huang Z, Li X, Lan B, Zhong D, Chen H, Xuan C. CBX4 plays a bidirectional role in transcriptional regulation and lung adenocarcinoma progression. Cell Death Dis 2024; 15:378. [PMID: 38816356 PMCID: PMC11140001 DOI: 10.1038/s41419-024-06745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Lung adenocarcinoma (LUAD) remains a leading cause of cancer-related mortality worldwide. Understanding the dysregulated epigenetics governing LUAD progression is pivotal for identifying therapeutic targets. CBX4, a chromobox protein, is reported to be upregulated in LUAD. This study highlights the dual impact of CBX4 on LUAD proliferation and metastasis through a series of rigorous in vitro and in vivo experiments. Further investigation into the underlying mechanism through high-throughput ChIP-seq and RNA-seq reveals that CBX4 functions in promoting LUAD proliferation via upregulating PHGDH expression and subsequent serine biosynthesis, while concurrently suppressing LUAD metastasis by inhibiting ZEB2 transcription. CBX4 facilitates PHGDH transcription through the interaction with GCN5, inducing heightened histone acetylation on the PHGDH promoter. Simultaneously, the inhibition of ZEB2 transcription involves CBX4-mediated recruitment of canonical PRC1 (cPRC1), establishing H2K119ub on the ZEB2 promoter. These findings underscore CBX4's pivotal role as a regulator of LUAD progression, emphasizing its diverse transcriptional regulatory functions contingent upon interactions with specific epigenetic partners. Understanding the nuanced interplay between CBX4 and epigenetic factors sheds light on potential therapeutic avenues in LUAD.
Collapse
Affiliation(s)
- Ran Zhao
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Department of Medical Oncology, Tianjin Medical University General Hospital; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Yanxuan Guo
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Department of Medical Oncology, Tianjin Medical University General Hospital; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Linlin Zhang
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhiyong Huang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Department of Medical Oncology, Tianjin Medical University General Hospital; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Xuanyuan Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Department of Medical Oncology, Tianjin Medical University General Hospital; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Bei Lan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Department of Medical Oncology, Tianjin Medical University General Hospital; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Diansheng Zhong
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Hao Chen
- Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Chenghao Xuan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Department of Medical Oncology, Tianjin Medical University General Hospital; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
9
|
Monroy J, Cortés OD, Domínguez R, Mendoza‐Garrido ME, Gallegos E, Cárdenas M, Aragón A, Ayala ME. The differential sensitivity of the hypothalamic-hypophysial-ovarian axis to 5-hydroxytryptophan alters the secretion of estradiol. Exp Physiol 2024; 109:365-379. [PMID: 38064347 PMCID: PMC10988714 DOI: 10.1113/ep091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/22/2023] [Indexed: 03/02/2024]
Abstract
Serotonin [5-hydroxytryptamine (5-HT)] modulates ovarian function. The precursor of 5-HT, 5-hydroxytryptophan (5-HTP), has been used to treat depression. However, the effects of 5-HTP on ovarian and reproductive physiology remain unknown. In this research, we analysed the impact of 5-HTP on the monoaminergic system and its interactions with the reproductive axis and ovarian estradiol secretion when administered by distinct routes. Female rats 30 days of age were injected with 5-HTP i.p. (100 mg/kg), into the ovarian bursa (1.5 µg/40 µL) or into the median raphe nucleus (20 µg/2.5 µL) and were killed 60 or 120 min after injection. As controls, we used rats of the same age injected with vehicle (0.9% NaCl). Monoamine, gonadotrophin and steroid ovarian hormone concentrations were measured. The injection of 5-HTP either i.p. or directly into the ovarian bursa increased the concentrations of 5-HT and the metabolite 5-hydroxyindole-3-acetic acid in the ovary. For both routes of administration, the serum concentration of estradiol increased. After i.p. injection of 5-HTP, the concentrations of luteinizing hormone were decreased and follicle-stimulating hormone increased after 120 min. Micro-injection of 5-HTP into the median raphe nucleus increased the concentrations of 5-HT in the anterior hypothalamus and dopamine in the medial hypothalamus after 120 min. Our results suggest that the administration of 5-HTP either i.p. or directly into the ovarian bursa enhances ovarian estradiol secretion.
Collapse
Affiliation(s)
- Juana Monroy
- Laboratorio de Pubertad, Unidad de Investigación en Biología de la Reproducción, Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Omar D. Cortés
- Laboratorio de Pubertad, Unidad de Investigación en Biología de la Reproducción, Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Roberto Domínguez
- Laboratorio de Pubertad, Unidad de Investigación en Biología de la Reproducción, Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - María Eugenia Mendoza‐Garrido
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y Estudios Avanzados (CINVESTAV)Instituto Politécnico NacionalMexico CityMexico
| | - Eloir Gallegos
- Laboratorio de Pubertad, Unidad de Investigación en Biología de la Reproducción, Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Mario Cárdenas
- Departamento de Biología de la ReproducciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Andrés Aragón
- Laboratorio de Gametos y Desarrollo Tecnológico, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantlaState of MéxicoMexico
| | - María E. Ayala
- Laboratorio de Pubertad, Unidad de Investigación en Biología de la Reproducción, Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| |
Collapse
|
10
|
Zang S, Yin X, Li P. FTO-mediated m 6A demethylation regulates GnRH expression in the hypothalamus via the PLCβ3/Ca 2+/CAMK signalling pathway. Commun Biol 2023; 6:1297. [PMID: 38129517 PMCID: PMC10739951 DOI: 10.1038/s42003-023-05677-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
N6-methyladenosine (m6A) plays a crucial role in the development and functional homeostasis of the central nervous system. The fat mass and obesity-associated (FTO) gene, which is highly expressed in the hypothalamus, is closely related to female pubertal development. In this study, we found that m6A methylation decreased in the hypothalamus gradually with puberty and decreased in female rats with precocious puberty. FTO expression was increased at the same time. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) showed that the m6A methylation of PLCβ3, a key enzyme of the Ca2+ signalling pathway, was decreased significantly in the hypothalamus in precocious rats. Upregulating FTO increased PLCβ3 expression and activated the Ca2+ signalling pathway, which promoted GnRH expression. Dual-luciferase reporter and MeRIP-qPCR assays confirmed that FTO regulated m6A demethylation of PLCβ3 and promoted PLCβ3 expression. Upon overexpressing FTO in the hypothalamic arcuate nucleus (ARC) in female rats, we observed advanced puberty onset. Meanwhile, PLCβ3 and GnRH expression in the hypothalamus increased significantly, and the Ca2+ signalling pathway was activated. Our study demonstrates that FTO enhances GnRH expression, which promotes puberty onset, by regulating m6A demethylation of PLCβ3 and activating the Ca2+ signalling pathway.
Collapse
Affiliation(s)
- Shaolian Zang
- Department of endocrinology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 200062, Shanghai, China
| | - Xiaoqin Yin
- Department of endocrinology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 200062, Shanghai, China.
| | - Pin Li
- Department of endocrinology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 200062, Shanghai, China.
| |
Collapse
|
11
|
Yang T, Hei R, Li X, Ma T, Shen Y, Liu C, He W, Zhu L, Gu Y, Hu Y, Wei W, Shen Y. The role of NPY2R/NFATc1/DYRK1A regulatory axis in sebaceous glands for sebum synthesis. Cell Mol Biol Lett 2023; 28:60. [PMID: 37501148 PMCID: PMC10375735 DOI: 10.1186/s11658-023-00467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/15/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Sebaceous glands (SGs) synthesize and secret sebum to protect and moisturize the dermal system via the complicated endocrine modulation. Dysfunction of SG are usually implicated in a number of dermal and inflammatory diseases. However, the molecular mechanism behind the differentiation, development and proliferation of SGs is far away to fully understand. METHODS Herein, the rat volar and mammary tissues with abundant SGs from female SD rats with (post-natal day (PND)-35) and without puberty onset (PND-25) were arrested, and conducted RNA sequencing. The protein complex of Neuropeptide Y receptor Y2 (NPY2R)/NPY5R/Nuclear factor of activated T cells 1 (NFATc1) was performed by immunoprecipitation, mass spectrum and gel filtration. Genome-wide occupancy of NFATc1 was measured by chromatin immunoprecipitation sequencing. Target proteins' expression and localization was detected by western blot and immunofluorescence. RESULTS NPY2R gene was significantly up-regulated in volar and mammary SGs of PND-25. A special protein complex of NPY2R/NPY5R/NFATc1 in PND-25. NFATc1 was dephosphorylated and activated, then localized into nucleus to exert as a transcription factor in volar SGs of PND-35. NFATc1 was especially binding at enhancer regions to facilitate the distal SG and sebum related genes' transcription. Dual specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) contributed to NFATc1 phosphorylation in PND-25, and inactivated of DYRK1A resulted in NFATc1 dephosphorylation and nuclear localization in PND-35. CONCLUSIONS Our findings unmask the new role of NPY2R/NFATc1/DYRK1A in pubertal SG, and are of benefit to advanced understanding the molecular mechanism of SGs' function after puberty, and provide some theoretical basis for the treatment of acne vulgaris from the perspective of hormone regulation.
Collapse
Affiliation(s)
- Tao Yang
- Department of Medical Cosmetology, Suzhou Ninth People's Hospital, Suzhou, 215200, Jiangsu, China
| | - Renyi Hei
- Department of Otolaryngology-Head and Neck Surgery, General Hospital of Shenyang Military Area Command, Shenyang, 110016, Liaoning, China
| | - Xiaosong Li
- Department of Anorectal Surgery, Suzhou Ninth People's Hospital, Suzhou, 215200, Jiangsu, China
| | - Tianhua Ma
- Graduate School of Soochow University, Suzhou, 215031, Jiangsu, China
| | - Yifen Shen
- Central Laboratory, Suzhou Ninth People's Hospital, 2666, Ludang Road, Suzhou, 215200, Jiangsu, China
| | - Chao Liu
- Central Laboratory, Suzhou Ninth People's Hospital, 2666, Ludang Road, Suzhou, 215200, Jiangsu, China
| | - Wen He
- Central Laboratory, Suzhou Ninth People's Hospital, 2666, Ludang Road, Suzhou, 215200, Jiangsu, China
| | - Lin Zhu
- Central Laboratory, Suzhou Ninth People's Hospital, 2666, Ludang Road, Suzhou, 215200, Jiangsu, China
| | - Yongchun Gu
- Central Laboratory, Suzhou Ninth People's Hospital, 2666, Ludang Road, Suzhou, 215200, Jiangsu, China
| | - Yanping Hu
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Wenbin Wei
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Huangpu District, Shanghai, 200013, China.
| | - Yihang Shen
- Central Laboratory, Suzhou Ninth People's Hospital, 2666, Ludang Road, Suzhou, 215200, Jiangsu, China.
| |
Collapse
|
12
|
Shen Y, Liu C, Yang T, Tang Y, Shen Y, Gu Y. Transcriptome characterization of human gingival mesenchymal and periodontal ligament stem cells in response to electronic-cigarettes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121307. [PMID: 36804562 DOI: 10.1016/j.envpol.2023.121307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The potential toxicities and threats of electronic cigarettes (E-cigs) on periodontal health remain elusive. Gingival mesenchymal stem cells (GMSCs) and periodontal ligament stem cells (PDLSCs) contribute to cell differentiation and regeneration for periodontium as well as inflammatory modulation. However, the effects of E-cig exposure on periodontal tissues, particularly GMSCs and PDLSCs, and the underlying epigenetic mechanisms remain largely unknown. In this study, we conducted RNA-seq analysis to examine the transcriptome of human GMSCs and PDLSCs exposed to four types of E-cigs (aerosol and liquid with tobacco and menthol flavor) and conventional tobacco smoke in vitro. Our results showed that E-cig exposure primarily impacted the immunoregulation and inflammatory responses to pathogenic microorganisms in GMSCs, and the microenvironment, differentiation and response to corticosteroid in PDLSCs, which were significantly different from the damage effects caused by tobacco smoke. Additionally, we discovered a large number of differentially expressed non-coding RNAs among the different E-cig exposure methods and flavors. We also noticed that in GMSCs, CXCL2 was especially down-regulated by E-cig aerosol exposure whereas up-regulated by E-liquid exposure compared to control. Of note, the enhancer elements near CXCL2 and other genes located at Chromosome 4 contributed to the transcription activity of these genes, and KDM6B was remarkably elevated in response to E-liquid exposure. Lastly, we conducted ChIP-seq analysis to confirm that the elevated gene transcription by E-liquids was due to the weakened H3K27me3 at genome-wide enhancer elements in GMSCs, but not at promoter regions. Taken together, our results characterized the diverse gene expression profiles of GMSCs and PDLSCs in response to E-cigs with different exposure methods and flavors in vitro, and indicated a novel mechanism of KDM6B-mediated H3K27me3 on enhancers for gene transcription regulation. Our data could be served as a resource for emphasizing the understanding of E-cigs in periodontal health.
Collapse
Affiliation(s)
- Yifen Shen
- Central Laboratory, Ninth People's Hospital of Suzhou, Soochow University, Suzhou, Jiangsu, 215200, China
| | - Chao Liu
- Central Laboratory, Ninth People's Hospital of Suzhou, Soochow University, Suzhou, Jiangsu, 215200, China
| | - Tao Yang
- Department of Dentistry, Ninth People's Hospital of Suzhou, Soochow University, Suzhou, Jiangsu, 215200, China
| | - Ying Tang
- Central Laboratory, Ninth People's Hospital of Suzhou, Soochow University, Suzhou, Jiangsu, 215200, China
| | - Yihang Shen
- Central Laboratory, Ninth People's Hospital of Suzhou, Soochow University, Suzhou, Jiangsu, 215200, China
| | - Yongchun Gu
- Department of Dentistry, Ninth People's Hospital of Suzhou, Soochow University, Suzhou, Jiangsu, 215200, China.
| |
Collapse
|
13
|
Ren Z, Xiao W, He M, Bai L. Chitosan targets PI3K/Akt/FoxO3a axis to up-regulate FAM172A and suppress MAPK/ERK pathway to exert anti-tumor effect in osteosarcoma. Chem Biol Interact 2023; 373:110354. [PMID: 36706893 DOI: 10.1016/j.cbi.2023.110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
Osteosarcoma (OS) is a serve and the most frequent primary malignant tumor of bone. Chitosan was reported to have anti-tumor effect on human cancers including OS. However, the molecular mechanism by which chitosan suppresses tumor growth is not fully illustrated. In this study, human OS cell lines, including both Saos-2 and U2OS cells, were used to dissect the underlying mechanisms. RNA sequencing results show that a candidate biomarker family with sequence similarity 172 member A (FAM172A) was up-regulated in both of the two cell lines treated with chitosan. We observed that the mitogen-activated protein kinase (MAPK) signaling pathway could be inactivated by chitosan, and the MAPK inhibition caused by chitosan was reversed by FAM172A knockdown. Moreover, we uncovered a direct interaction between C-terminal domain of FAM172A (311-415) and mitogen-activated protein kinase kinase 1 (MEK1) (270-307) by immunoprecipitation assay. Finally, we also found that chitosan could bind with subunit p85 of PI3K to further inactivate the PI3K/Akt pathway. Taken together, our study demonstrates that chitosan binds with PI3K p85 subunit to suppress the activity of PI3K/Akt pathway to up-regulate the expression of FAM172A, and which exerts its function by suppressing phosphorylation of MEK1/2 and blocking the activity of MAPK/ERK signaling pathway. Taken together, our study deepens the understanding of the molecular mechanism of MAPK/ERK pathway inhibition induced by chitosan, and provides insights into the development of new targets to enhance the pharmacological effect of chitosan against OS.
Collapse
Affiliation(s)
- Zhaozhou Ren
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Wan'an Xiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Ming He
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Lunhao Bai
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
14
|
Dou Z, Lu F, Hu J, Wang H, Li B, Li X. MicroRNA-6838-5p suppresses the self-renewal and metastasis of human liver cancer stem cells through downregulating CBX4 expression and inactivating ERK signaling. Biol Chem 2023; 404:29-39. [PMID: 36215729 DOI: 10.1515/hsz-2022-0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/22/2022] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary human liver malignancy with high mortality. Liver cancer stem cells (CSCs) have been demonstrated to contribute to the recurrence, metastasis and drug resistance of liver cancer. Human HCC cohort analysis indicated that the epigenetic regulator polycomb chromobox homologue 4 (CBX4) was overexpressed in human HCC. Moreover, we found that CBX4 expression was significantly higher in CD44+ CD133+ Hep3B CSCs. Functionally, we demonstrated that CBX4 regulated cell proliferation, self-renewal, and metastasis ability of Hep3B CSCs. Bioinformatics analysis predicted that CBX4 was a direct target of microRNA-6838-5p (miR-6838-5p), which was further confirmed by luciferase reporter assay. MiR-6838-6p was down-regulated in HCC tumors and overexpression of miR-6838-5p attenuated the malignant traits of human liver CSCs in vitro. In addition, we found that miR-6838-5p/CBX4 axis modulates the biological properties of human liver CSCs via regulating ERK signaling. Overexpression of miR-6838-5p suppressed Hep3B xenograft tumor growth in vivo, while CBX4 overexpression abrogated the suppression effect, restored the angiogenesis, epithelial-to-mesenchymal transition (EMT), and ERK signaling in Hep3B tumor. In summary, our findings suggest that miR-6838-5p/CBX4 axis regulates liver tumor development and metastasis, which could be utilized as potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Zhimin Dou
- Department of the First Clinical Medical College, Lanzhou University, No.1, Donggang West Road, Chengguan District, Lanzhou, Gansu, 730000, China
- Department of Critical Care Medicine, The First Hospital of Lanzhou University, No.1, Donggang West Road, Chengguan District, Lanzhou, Gansu, 730000, China
| | - Fei Lu
- Department of the First Clinical Medical College, Lanzhou University, No.1, Donggang West Road, Chengguan District, Lanzhou, Gansu, 730000, China
| | - Jinjing Hu
- Department of Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, No.1, Donggang West Road, Chengguan District, Lanzhou, Gansu, 730000, China
| | - Haiping Wang
- Department of Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, No.1, Donggang West Road, Chengguan District, Lanzhou, Gansu, 730000, China
| | - Bin Li
- Department of Critical Care Medicine, The First Hospital of Lanzhou University, No.1, Donggang West Road, Chengguan District, Lanzhou, Gansu, 730000, China
| | - Xun Li
- Department of the First Clinical Medical College, Lanzhou University, No.1, Donggang West Road, Chengguan District, Lanzhou, Gansu, 730000, China
- Department of Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, No.1, Donggang West Road, Chengguan District, Lanzhou, Gansu, 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, No.1, Donggang West Road, Chengguan District, Lanzhou, Gansu, 730000, China
| |
Collapse
|
15
|
Genomic distribution of signal transducer and activator of transcription (STAT) family in colorectal cancer. Hum Cell 2023; 36:286-295. [PMID: 36284066 DOI: 10.1007/s13577-022-00815-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/16/2022] [Indexed: 01/07/2023]
Abstract
JAK/STAT pathway has been widely acknowledged in the development of human cancers. However, the role of different phosphorylated STAT proteins translocating into nucleus in transcription activation of target genes is not fully understood. In present research, ChIP-seq was carried on to investigate the genome-wide distribution of the activated STAT1, STAT2, STAT3, STAT5 and STAT6 in colorectal cancer HCT-116 cells. Our observations indicated that the homodimers rather than heterodimers of STAT protein predominantly occupied on genomic DNA. STAT3 accounted for the largest proportion among all STAT proteins HCT-116 cells. Furthermore, the biased binding motif targeted by different STAT homodimers suggested the distinct biological functions. Here, we noticed that NR5A2 was a specific co-activator of STAT3 by DNA motif analysis. Co-IP assay determined that NR5A2 indeed interacted with STAT3 homodimer rather than other homodimers or heterodimers. NR5A2 knockdown resulted in a reduced binding affinity of STAT3 homodimer in the original regions. Taken together, we characterize the genome-wide landscape of activated STAT proteins, and reveal the differences of binding patterns as well as the target genes and associated functions between homodimer and heterodimer of STAT proteins in HCT-116 cells. We also present some new findings and possible mechanisms regarding the role of NR5A2 on STAT3 in CRC. Our findings may provide new insights into the design of STAT inhibitors to treat CRC and other diseases.
Collapse
|
16
|
Long non-coding RNA tumor protein 73 antisense RNA 1 influences an interaction between lysine demethylase 5A and promoter of tumor protein 73 to enhance the malignancy of colorectal cancer. Hum Cell 2022; 35:1512-1520. [PMID: 35896939 DOI: 10.1007/s13577-022-00740-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/16/2022] [Indexed: 01/23/2023]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. The aim of the present study was to explore the expression level of tumor protein 73 (TP73) in highly malignant CRC tumors and how the long non-coding RNA tumor protein 73 antisense RNA 1 (TP73-AS1) influences that transcription. We found that TP73-AS1 was highly expressed in malignant CRC samples in The Cancer Genome Atlas (TCGA) database. We also demonstrated TP73-AS1 was expressed in thirty samples of CRC tissues collected from China Medical University patients as well as in HCT116, RKO and SW480 CRC cell lines but not in HCoEpiC or CCD-18Co normal colon cells. Only wild-type TP73-AS1, but not any of its alternate splicing isoforms, was positively correlated with tumor malignancy. TP73-AS1 transcripts were shown to be located in cell nuclei especially in close proximity to the TP73 promoter in CRC cells, but not in normal colon cells. In addition, an interaction between lysine demethylase 5A (KDM5A) and TP73-AS1 in CRC cells, but not normal colon cells, and KDM5A localization on the TP73 promoter were influenced by TP73-AS1. Interestingly, the H3K4me3 level on the TP73 promoter was reduced, but was elevated by TP73-AS1 knockdown in CRC cells. In conclusion, these results suggest a novel epigenetic role of TP73-AS1 on histone demethylation that influences TP73 transcription, and shed light on malignancy in CRC.
Collapse
|
17
|
Zhu K, Sun S, Guo F, Gao L. Impaired Fanconi anemia pathway causes DNA hypomethylation in human angiosarcomas. Hum Cell 2022; 35:1602-1611. [PMID: 35817884 DOI: 10.1007/s13577-022-00736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/10/2022] [Indexed: 11/04/2022]
Abstract
Angiosarcomas (AS) is a rare soft tissue sarcomas with poor treatment options and a dismal prognosis. The abnormal DNA methylation pattern has been determined as the certain clinical relevance with different angiosarcoma subtypes. However, the profound mechanism is not clear. In present study, we studied thirty-six AS with or without chronic lymphedema, and reported that DNA damage was an important factor causing DNA methylation abnormality. Furthermore, we determined that the impaired Fanconi anemia (FA) pathway contributed to severe DNA damage in AS with chronic lymphedema. We also observed that the activated FANCD2 could facilitate DNMT1 recruitment on genomic DNA. Our study uncovers a novel regulatory mechanism of FA pathway on DNA methylation, and is a benefit to advanced understanding the pathogenesis of AS, as well as providing the potential therapeutic targets for AS treatment.
Collapse
Affiliation(s)
- Kangning Zhu
- Department of Laboratory, Henan Provincial People's Hospital, NO. 7, Weiwu Road, Zhengzhou, 450003, Henan, China.
| | - Suofeng Sun
- Department of Gastroenterology, Henan Provincial People's Hospital, NO. 7, Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Fengxia Guo
- Department of Laboratory, Henan Provincial People's Hospital, NO. 7, Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Lan Gao
- Department of Laboratory, Henan Provincial People's Hospital, NO. 7, Weiwu Road, Zhengzhou, 450003, Henan, China
| |
Collapse
|
18
|
Zhao Y, Zhao H, Zhang D, Quan Q, Ge Y, Li L, Guo L. YTHDF3 Facilitates eIF2AK2 and eIF3A Recruitment on mRNAs to Regulate Translational Processes in Oxaliplatin-Resistant Colorectal Cancer. ACS Chem Biol 2022; 17:1778-1788. [PMID: 35708211 DOI: 10.1021/acschembio.2c00131] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxaliplatin, as a first-line drug, frequently causes chemo-resistance in colorectal cancer (CRC). The role of N6-methyladenosine (m6A) modification in multiple biological functions has been well studied. However, the molecular mechanisms underlying m6A methylation in modulating anti-cancer drug resistance in CRC remain obscure. In the present study, we found that YTH m6A RNA-binding protein 3 (YTHDF3) was highly expressed in oxaliplatin-resistant (OXAR) CRC tissues and cells. Moreover, we observed that YTHDF3 could recognize the 5' untranslated region of significantly m6A-methylated RNAs, which were associated with tumor resistance and recruit eukaryotic translation initiation factor 3 subunit A (eIF3A) to facilitate the translation of these target genes. Furthermore, we determined that eukaryotic translation initiation factor 2 alpha kinase 2 (eIF2AK2) bridged YTHDF3 and eIF3A, enhancing the stability of the YTHDF3/eIF3A complex in OXAR CRC cells. Taken together, our data identified YTHDF3 as a novel hallmark and revealed the molecular mechanism of YTHDF3 on gene translation via coordination with eIF2AK2 in OXAR CRC cells.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hongchao Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Danhuan Zhang
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai 200336, China
| | - Qiuying Quan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yan Ge
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Liantao Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
19
|
Characterization of Acetylation of Histone H3 at Lysine 9 in the Trigeminal Ganglion of a Rat Trigeminal Neuralgia Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1300387. [PMID: 35571235 PMCID: PMC9095355 DOI: 10.1155/2022/1300387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022]
Abstract
Trigeminal neuralgia (TN) is a chronic neuropathic pain disorder characterized by spontaneous and elicited paroxysms of electric-shock-like or stabbing pain in a region of the face. The epigenetic regulation of TN is still obscure. In current study, a rat TN model subject to carbamazepine (CBZ) treatment was established, and transcriptome- and genome-scale profiling of H3K9ac and HDAC3 was performed by RNA-seq and ChIP-seq. We observed that H3K9ac levels in the trigeminal ganglion were lower in the TN rats compared with those in the control, and CBZ treatment led to recovery of H3K9ac levels. Further, we found that HDAC3 was overactivated, which interfered with H3K9 acetylation due to higher phosphorylation in TN compared with that in the control. Finally, the phosphokinase leucine-rich repeat kinase 2 (LRRK2) was demonstrated to contribute to HDAC3 activity via the MAPK signaling pathway. Taken together, we identified a regulatory mechanism in which the phosphate groups transferred from activated ERK and LRRK2 to HDAC3 caused genome-scale deacetylation at H3K9 and resulted in the silencing of a large number of genes in TN. The kinases or important enzymes within this regulatory axis may represent important targets for TN therapy and prevention.
Collapse
|
20
|
Liu Q, Sun H, Liu Y, Li X, Xu B, Li L, Jin W. HTR1A Inhibits the Progression of Triple-Negative Breast Cancer via TGF-β Canonical and Noncanonical Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105672. [PMID: 35199941 PMCID: PMC9036047 DOI: 10.1002/advs.202105672] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Triple-negative breast cancer is the most aggressive subtype of breast cancer and the incidence of depression in breast cancer patients is high, which leading to worse survival and increased risk of recurrence. The effect of antidepressants on breast cancer patients remains contradictory, which might be due to variations in antidepression targets. Therefore, there is significant value to explore the antitumor potential of antidepressants and discover new therapeutic targets for breast patients. The authors screen antidepressant-related oncogenes or suppressors by using siRNAs. After combining functional experiments with online database analysis, 5-hydroxytryptamine receptor 1A (HTR1A is selected with antitumor potential in breast cancer cells in vivo and in vitro. RNA-seq analysis and coimmunoprecipitation assays indicate that HTR1A interacts with TRIM21 and PSMD7 to inhibit the degradation of TβRII through the ubiquitin-proteasome pathway, thereby inhibiting the transforming growth factor-β (TGF-β) canonical and noncanonical pathway. In addition, HTR1A is an independent predictive factor for breast cancer patients. The combined treatment of HTR1A agonists with demethylation drugs may significantly improve patient survival. It is of great significance to clarify the function and mechanism of the depression-related gene HTR1A in breast cancer, which might provide a new approach for triple-negative breast cancer patients.
Collapse
Affiliation(s)
- Qiqi Liu
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Hefen Sun
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yang Liu
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xuan Li
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Baojin Xu
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Liangdong Li
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Wei Jin
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
21
|
Zhou M, Zhou S, Han K, Zhang J, Chen Q, Tian C, Zhu H, Jiang M, Min D. Th1 immune maturation effects of Nocardia rubra cell-wall skeleton via PI3K/Akt/PAX8 regulatory axis. Sci Prog 2022; 105:368504221092901. [PMID: 35473474 PMCID: PMC10450467 DOI: 10.1177/00368504221092901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nocardia rubra cell-wall skeleton (Nr-CWS) is reported as an external immunotherapeutic enhancer with the advantage of antitumor effect on human cancers. However, the immune regulatory role of Nr-CWS is not fully illustrated. We studied mouse CD4+ T lymphocytes isolated from mice spleen were induced by Nr-CWS and observed that the differentiation of Th1 CD4+ T cells and the cytokines of IL-2, TNF-α, IFN-γ were all enhanced by Nr-CWS. Furthermore, RNA sequencing was conducted to investigate the different mRNA profiling induced by Nr-CWS. We observed that paired box 8 (PAX8) was significantly up-regulated in Nr-CWS-treated Th1 cells compared to control. As a transcription factor, chromatin immunoprecipitation sequencing was carried out to study the genome-wide distribution of PAX8. Interestingly, we found that the binding domain of PAX8 was elevated by Nr-CWS, and the target genes associated with these binding sites showed a positive correlation between their transcription and PAX8 binding strength. Finally, we determined that Nr-CWS could enhance the activity of the PI3 K/Akt signaling pathway. Akt agonist could mimic the effect of Nr-CWS for PAX8 up-regulation, while Akt inhibitor compromised the expression of PAX8. Taken together, we determined a novel role of Nr-CWS in boosting the activity of Th1 maturation via the PI3 K/Akt/PAX8 axis.
Collapse
Affiliation(s)
- Meixiang Zhou
- Department of Oncology, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, China
| | - Shuping Zhou
- Department of Oncology, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, China
| | - Kun Han
- Department of Oncology, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, China
| | - Jie Zhang
- Department of Oncology, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, China
| | - Qingyu Chen
- Department of Oncology, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, China
| | - Cong Tian
- Department of Oncology, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, China
| | - Hongling Zhu
- Department of Oncology, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, China
| | - Mengyi Jiang
- Department of Oncology, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, China
| | - Daliu Min
- Department of Oncology, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, China
| |
Collapse
|
22
|
Zhou S, Zang S, Hu Y, Shen Y, Li H, Chen W, Li P, Shen Y. Transcriptome-scale spatial gene expression in rat arcuate nucleus during puberty. Cell Biosci 2022; 12:8. [PMID: 35063020 PMCID: PMC8781439 DOI: 10.1186/s13578-022-00745-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
Background A variety of neurons in hypothalamus undergo a complicated regulation on transcription activity of multiple genes for hypothalamic–pituitary–gonadal axis activation during pubertal development. Identification of puberty-associated cell composition and characterization of the unique transcriptional signatures across different cells are beneficial to isolation of specific neurons and advanced understanding of their functions. Methods The hypothalamus of female Sprague–Dawley rats in postnatal day-25, 35 and 45 were used to define the dynamic spatial atlas of gene expression in the arcuate nucleus (ARC) by 10× Genomics Visium platform. A surface protein expressed selectively by kisspeptin neurons was used to sort neurons by flow cytometric assay in vitro. The transcriptome of the isolated cells was examined using Smart sequencing. Results Four subclusters of neurons with similar gene expression signatures in ARC were identified. Only one subcluster showed the robust expression of Kiss1, which could be isolated by a unique membrane surface biomarker Solute carrier family 18 member A3 (SLC18A3). Moreover, genes in different subclusters presenting three expression modules distinctly functioned in each pubertal stage. Different types of cells representing distinct functions on glial or neuron differentiation, hormone secretion as well as estradiol response precisely affect and coordinate with each other, resulting in a complicated regulatory network for hypothalamic–pituitary–gonadal axis initiation and modulation. Conclusion Our data revealed a comprehensive transcriptomic overview of ARC within different pubertal stages, which could serve as a valuable resource for the study of puberty and sexual development disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00745-2.
Collapse
|