1
|
Liao JY, Yang B, Shi CP, Deng WX, Deng JS, Cen MF, Zheng BQ, Zhan ZL, Liang QL, Wang JE, Tao S, Lu D, Liang M, Zhang YC, Yin D. RBPWorld for exploring functions and disease associations of RNA-binding proteins across species. Nucleic Acids Res 2025; 53:D220-D232. [PMID: 39498484 PMCID: PMC11701580 DOI: 10.1093/nar/gkae1028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/03/2024] [Accepted: 10/21/2024] [Indexed: 01/18/2025] Open
Abstract
RNA-binding proteins (RBPs) play key roles in a wide range of physiological and pathological processes. To facilitate the investigation of RBP functions and disease associations, we updated the EuRBPDB and renamed it as RBPWorld (http://research.gzsys.org.cn/rbpworld/#/home). Leveraging 998 RNA-binding domains (RBDs) and 87 RNA-binding Proteome (RBPome) datasets, we successfully identified 1 393 413 RBPs from 445 species, including 3030 human RBPs (hRBPs). RBPWorld includes primary RNA targets of diverse hRBPs, as well as potential downstream regulatory pathways and alternative splicing patterns governed by various hRBPs. These insights were derived from analyses of 1515 crosslinking immunoprecipitation-seq datasets and 616 RNA-seq datasets from cells with hRBP gene knockdown or knockout. Furthermore, we systematically identified 929 RBPs with multi-functions, including acting as metabolic enzymes and transcription factors. RBPWorld includes 838 disease-associated hRBPs and 970 hRBPs that interact with 12 disease-causing RNA viruses. This provision allows users to explore the regulatory roles of hRBPs within the context of diseases. Finally, we developed an intuitive interface for RBPWorld, facilitating users easily access all the included data. We believe that RBPWorld will be a valuable resource in advancing our understanding of the biological roles of RBPs across different species.
Collapse
Affiliation(s)
- Jian-You Liao
- Department of Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong 510120, China
- Department of Precision Medicine Center, Shenshan Central Hospital, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, 1 Heng Er Road, Dongyong Town, Shanwei, Guangdong 516621, China
| | - Bing Yang
- Department of Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong 510120, China
| | - Chuan-Ping Shi
- Department of Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong 510120, China
| | - Wei-Xi Deng
- Department of Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong 510120, China
| | - Jin-Si Deng
- Department of Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong 510120, China
| | - Mei-Feng Cen
- Department of Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong 510120, China
| | - Bing-Qi Zheng
- Department of Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong 510120, China
| | - Zi-Ling Zhan
- Department of Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong 510120, China
| | - Qiao-Ling Liang
- Department of Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong 510120, China
| | - Ji-En Wang
- Department of Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong 510120, China
| | - Shuang Tao
- Department of Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong 510120, China
| | - Daning Lu
- Department of Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong 510120, China
| | - Maojin Liang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Institute of Hearing and Speech-Language Sciences, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong 510120, China
| | - Yu-Chan Zhang
- Department of Life Science, Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, No.135 Xingang Xi Lu, Haizhu District, Guangzhou, Guangdong 510275, China
| | - Dong Yin
- Department of Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong 510120, China
| |
Collapse
|
2
|
Tan W, Xiao C, Ma M, Cao Y, Huang Z, Wang X, Kang R, Li Z, Li E. Role of non-coding RNA in lineage plasticity of prostate cancer. Cancer Gene Ther 2025; 32:1-10. [PMID: 39496938 DOI: 10.1038/s41417-024-00834-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 11/06/2024]
Abstract
The treatment of prostate cancer (PCa) has made great progress in recent years, but treatment resistance always develops and can even lead to fatal disease. Exploring the mechanism of drug resistance is of great significance for improving treatment outcomes and developing biomarkers with predictive value. It is increasingly recognized that mechanism of drug resistance in advanced PCa is related to lineage plasticity and tissue differentiation. Specifically, one of the mechanisms by which castration-resistant prostate cancer (CRPC) cells acquire drug resistance and transform into neuroendocrine prostate cancer (NEPC) cells is lineage plasticity. NEPC is a subtype of PCa that is highly aggressive and lethal, with a median survival of only 7 months. With the development of high-throughput RNA sequencing technology, more and more non-coding RNAs have been identified, which play important roles in different diseases through different mechanisms. Several ncRNAs have shown great potential in PCa lineage plasticity and as biomarkers. In the review, the role of ncRNA in PCa lineage plasticity and its use as biomarkers were reviewed.
Collapse
Affiliation(s)
- Wenhui Tan
- Institute of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Changkai Xiao
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Min Ma
- Institute of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Youhan Cao
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhenguo Huang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaolan Wang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Ran Kang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhenfa Li
- Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, 421001, Hunan, China.
| | - Ermao Li
- Institute of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
3
|
Yuan Z, He J, Li Z, Fan B, Zhang L, Man X. Targeting autophagy in urological system cancers: From underlying mechanisms to therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189196. [PMID: 39426690 DOI: 10.1016/j.bbcan.2024.189196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
The urological system, including kidneys, ureters, bladder, urethra and prostate is known to be vital for blood filtration, waste elimination and electrolyte balance. Notably, urological system cancers represent a significant portion of global cancer diagnoses and mortalities. The current therapeutic strategies for early-stage cancer primarily involve resection surgery, which significantly affects the quality of life of patients, whereas advanced-stage cancer often relies on less effective chemo- or radiotherapy. Recently, accumulating evidence has revealed that autophagy, a crucial process in which excess organelles or inclusions within cells are removed to maintain cell homeostasis, has numerous links to urological system cancers. In this review, we focus on summarizing the underlying two-sided mechanisms of autophagy in urological system cancers. We also review the current clinical drugs targeting autophagy, which demonstrate significant potential in improving treatment outcomes for urological system cancers. In addition, we provide an overview of the research status of novel small molecule compounds targeting autophagy that are in the preclinical stages of investigation. Furthermore, drug combinations based on autophagy modulation strategies in urological system cancers are systematically summarized and discussed. These findings provide comprehensive new insight for the future discovery of more autophagy-related drug candidates.
Collapse
Affiliation(s)
- Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiani He
- Department of Urology, Department of Surgical Oncology and Breast Surgery, Institute of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Bo Fan
- Department of Urology, Institute of Precision Drug Innovation and Cancer Center, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Department of Urology, Institute of Precision Drug Innovation and Cancer Center, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Xiaojun Man
- Department of Urology, Department of Surgical Oncology and Breast Surgery, Institute of Urology, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
4
|
Luo H, He H, Liu Z, Liu Y, Hou F, Xie Y, Zhang L, Lu J, Tang S, Zhong W. Identifying CDCA3 as a pivotal biomarker for predicting outcomes and immunotherapy efficacy in pan-renal cell carcinoma. Transl Androl Urol 2024; 13:1955-1970. [PMID: 39434731 PMCID: PMC11491202 DOI: 10.21037/tau-24-233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/08/2024] [Indexed: 10/23/2024] Open
Abstract
Background Renal cell carcinoma (RCC) is a heterogeneous disease. Identifying effective biomarkers is crucial for improving prognostic accuracy and therapy outcomes. This study investigates cell division cycle-associated 3 (CDCA3) as a novel biomarker for prognostic assessment and immunotherapy response in RCC. Methods This study analyzed multi-omics data from The Cancer Genome Atlas (TCGA) for kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), and kidney chromophobe (KICH) subtypes to evaluate CDCA3 expression and its clinical implications. Functional enrichment and immune infiltration analyses were performed using bioinformatics tools gene set enrichment analysis (GSEA) and xCell. The prognostic value of CDCA3 was assessed through Cox regression and Kaplan-Meier survival analysis. Immunohistochemistry (IHC) was employed to confirm CDCA3 expression at the protein level in RCC samples. Results Higher CDCA3 expression correlated with poor survival outcomes and reduced response to programmed cell death protein 1 (PD-1) blockade therapies. Statistical analysis indicated that CDCA3 was an independent prognostic factor for poor survival in RCC. CDCA3 was consistently overexpressed in RCC tissues compared to normal tissues and was associated with adverse clinical features, including high Th2 cell infiltration and suppression of immune pathways. Conclusions CDCA3 is a promising biomarker for RCC, offering insights into the tumor's prognosis and potential response to immunotherapy. The strong association between CDCA3 expression and poor therapeutic outcomes suggests that CDCA3 could be targeted in future therapeutic strategies.
Collapse
Affiliation(s)
- Hongwei Luo
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Urology, The Central Hospital of Shaoyang, Shaoyang, China
| | - Huichan He
- Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zezhen Liu
- Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuting Liu
- Department of Urology, The Central Hospital of Shaoyang, Shaoyang, China
| | - Feifei Hou
- Department of Urology, The Central Hospital of Shaoyang, Shaoyang, China
| | - Yao Xie
- Department of Urology, The Central Hospital of Shaoyang, Shaoyang, China
| | - Le Zhang
- Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Jianming Lu
- Department of Andrology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shan Tang
- Department of Urology, The Central Hospital of Shaoyang, Shaoyang, China
| | - Weide Zhong
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Xu Y, Gao Z, Sun X, Li J, Ozaki T, Shi D, Yu M, Zhu Y. The role of circular RNA during the urological cancer metastasis: exploring regulatory mechanisms and potential therapeutic targets. Cancer Metastasis Rev 2024; 43:1055-1074. [PMID: 38558156 DOI: 10.1007/s10555-024-10182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
Metastasis is a major contributor to treatment failure and death in urological cancers, representing an important biomedical challenge at present. Metastases form as a result of cancer cells leaving the primary site, entering the vasculature and lymphatic vessels, and colonizing clones elsewhere in the body. However, the specific regulatory mechanisms of action underlying the metastatic process of urological cancers remain incompletely elucidated. With the deepening of research, circular RNAs (circRNAs) have been found to not only play a significant role in tumor progression and prognosis but also show aberrant expression in various tumor metastases, consequently impacting tumor metastasis through multiple pathways. Therefore, circRNAs are emerging as potential tumor markers and treatment targets. This review summarizes the research progress on elucidating how circRNAs regulate the urological cancer invasion-metastasis cascade response and related processes, as well as their role in immune microenvironment remodeling and circRNA vaccines. This body of work highlights circRNA regulation as an emerging therapeutic target for urological cancers, which should motivate further specific research in this regard.
Collapse
Affiliation(s)
- Yan Xu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Zhipeng Gao
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110001, China
| | - Jun Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Du Shi
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Meng Yu
- Department of Laboratory Animal Science, China Medical University, No. 77 Puhe Road, Shenyang, 110122, Liaoning, China.
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
6
|
Dushnitzky S, Ishtayeh H, Ashkenazi A. The new kids on the block: RNA-binding proteins regulate autophagy in disease. FEBS J 2024; 291:3811-3819. [PMID: 38825737 DOI: 10.1111/febs.17195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/24/2024] [Indexed: 06/04/2024]
Abstract
Mammalian autophagy is a highly regulated and conserved cellular homeostatic process. Its existence allows the degradation of self-components to mediate cell survival in different stress conditions. Autophagy is involved in the regulation of cellular metabolic needs, protecting the cell or tissue from starvation through the degradation and recycling of cytoplasmic materials and organelles to basic molecular building blocks. It also plays a critical role in eliminating damaged or harmful proteins, organelles, and intracellular pathogens. Thus, a deterioration of the process may result in pathological conditions, such as aging-associated disorders and cancer. Understanding the crucial role of autophagy in maintaining the normal physiological function of cells, tissue, or organs has led to copious and expansive research regarding the regulation of this process. So far, most of the research has revolved around transcriptional and post-translational regulation. Here, we discuss the regulation of autophagy-related (ATG) mRNA transcripts by RNA-binding proteins (RBPs). This analysis focuses on how RBPs modulate autophagy in disease. A deeper understanding of the involvement of RBPs in autophagy can facilitate further research and treatment of a variety of human diseases.
Collapse
Affiliation(s)
- Shai Dushnitzky
- The Department of Cell and Developmental Biology, Faculty of Medical & Health Sciences, Tel Aviv University, Israel
| | - Hasan Ishtayeh
- The Department of Cell and Developmental Biology, Faculty of Medical & Health Sciences, Tel Aviv University, Israel
| | - Avraham Ashkenazi
- The Department of Cell and Developmental Biology, Faculty of Medical & Health Sciences, Tel Aviv University, Israel
- Sagol School of Neuroscience, Tel Aviv University, Israel
| |
Collapse
|
7
|
Ma S, Xu Y, Qin X, Tao M, Gu X, Shen L, Chen Y, Zheng M, Qin S, Wu G, Ju S. RUNX1, FUS, and ELAVL1-induced circPTPN22 promote gastric cancer cell proliferation, migration, and invasion through miR-6788-5p/PAK1 axis-mediated autophagy. Cell Mol Biol Lett 2024; 29:95. [PMID: 38956466 PMCID: PMC11218243 DOI: 10.1186/s11658-024-00610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND An increasing number of studies have demonstrated the association of circular RNAs (circRNAs) with the pathological processes of various diseases and their involvement in the onset and progression of multiple cancers. Nevertheless, the functional roles and underlying mechanisms of circRNAs in the autophagy regulation of gastric cancer (GC) have not been fully elucidated. METHODS We used transmission electron microscopy and the mRFP-GFP-LC3 dual fluorescent autophagy indicator to investigate autophagy regulation. The cell counting kit-8 assay, colony formation assay, 5-ethynyl-2'-deoxyuridine incorporation assay, Transwell assay, and Western blot assay were conducted to confirm circPTPN22's influence on GC progression. Dual luciferase reporter assays validated the binding between circPTPN22 and miR-6788-5p, as well as miR-6788-5p and p21-activated kinase-1 (PAK1). Functional rescue experiments assessed whether circPTPN22 modulates PAK1 expression by competitively binding miR-6788-5p, affecting autophagy and other biological processes in GC cells. We investigated the impact of circPTPN22 on in vivo GC tumors using a nude mouse xenograft model. Bioinformatics tools predicted upstream regulatory transcription factors and binding proteins of circPTPN22, while chromatin immunoprecipitation and ribonucleoprotein immunoprecipitation assays confirmed the binding status. RESULTS Upregulation of circPTPN22 in GC has been shown to inhibit autophagy and promote cell proliferation, migration, and invasion. Mechanistically, circPTPN22 directly binds to miR-6788-5p, subsequently regulating the expression of PAK1, which activates protein kinase B (Akt) and extracellular signal-regulated kinase (Erk) phosphorylation. This modulation ultimately affects autophagy levels in GC cells. Additionally, runt-related transcription factor 1 (RUNX1) negatively regulates circPTPN22 expression, while RNA-binding proteins such as FUS (fused in sarcoma) and ELAVL1 (recombinant ELAV-like protein 1) positively regulate its expression. Inhibition of the autophagy pathway can increase FUS expression, further upregulating circPTPN22 in GC cells, thereby exacerbating the progression of GC. CONCLUSION Under the regulation of the transcription factor RUNX1 and RNA-binding proteins FUS and ELAVL1, circPTPN22 activates the phosphorylation of Akt and Erk through the miR-6788-5p/PAK1 axis, thereby modulating autophagy in GC cells. Inhibition of autophagy increases FUS, which in turn upregulates circPTPN22, forming a positive feedback loop that ultimately accelerates the progression of GC.
Collapse
Affiliation(s)
- Shuo Ma
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
- Diagnostics Department, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yanhua Xu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Xinyue Qin
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
| | - Mei Tao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
| | - Xinliang Gu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
| | - Lei Shen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
| | - Yinhao Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Ming Zheng
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
| | - Shiyi Qin
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China.
- Diagnostics Department, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
8
|
Sakaue T, Koga H, Iwamoto H, Nakamura T, Masuda A, Tanaka T, Suzuki H, Suga H, Hirai S, Hisaka T, Naito Y, Ohta K, Nakamura KI, Selvendiran K, Okabe Y, Torimura T, Kawaguchi T. Pancreatic Juice-Derived microRNA-4516 and microRNA-4674 as Novel Biomarkers for Pancreatic Ductal Adenocarcinoma. GASTRO HEP ADVANCES 2024; 3:761-772. [PMID: 39280916 PMCID: PMC11401553 DOI: 10.1016/j.gastha.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/24/2024] [Indexed: 09/18/2024]
Abstract
Background and Aims Precise diagnostic biomarkers are urgently required for pancreatic ductal adenocarcinoma (PDAC). Therefore, the aim of this study was to identify PDAC-specific exosomal microRNAs (Ex-miRs) from pancreatic juice (PJ) and evaluate their diagnostic potential. Methods Exosomes in PJ and serum were extracted using ultracentrifugation and confirmed morphologically and biochemically. PDAC-specific Ex-miRs were identified using our original miR arrays, in which "Ex-miRs derived from the PJ of patients with chronic pancreatitis (CP)" were subtracted from Ex-miRs commonly expressed in both "human PDAC cell lines" and "the PJ of patients with PDAC." We verified the expression of these miRs using quantitative real-time reverse transcription polymerase chain reaction. Changes in serum Ex-miR levels were assessed in 2 patients with PDAC who underwent curative resection. In situ hybridization was performed to directly visualize PDAC-specific miR expression in cancer cells. Results We identified novel Ex-miR-4516 and Ex-miR-4674 from the PJ of patients with PDAC, and they showed 80.0% and 81.8% sensitivity, 80.8% and 73.3% specificity, and 90.9% and 80.8% accuracy, respectively. The sensitivity, specificity, and accuracy of a triple assay of Ex-miR-4516/4674/PJ cytology increased to 93.3%, 81.8%, and 88.5%, respectively. In serum samples (n = 88), the sensitivity, specificity, and accuracy of Ex-miR-4516 were 97.5%, 34.3%, and 68%, respectively. Presurgical levels of serum-derived Ex-miR-4516 in 2 patients with relatively early disease stages declined after curative resection. In situ hybridization demonstrated that Ex-miR-4516 expression exclusively occurred in cancer cells. Conclusion Liquid assays using the in situ-proven Ex-miR-4516 may have a high potential for detecting relatively early-stage PDAC and monitoring its clinical course.
Collapse
Affiliation(s)
- Takahiko Sakaue
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
- Division of Gynecologic Oncology, Department of Obstetrics/Gynecology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
| | - Hideki Iwamoto
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
| | - Toru Nakamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
| | - Atsutaka Masuda
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
| | - Toshimitsu Tanaka
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
- Center for Multidisciplinary Treatment of Cancer, Kurume University Hospital, Kurume, Japan
| | - Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
| | - Hideya Suga
- Department of Gastroenterology and Hepatology, Yanagawa Hospital, Yanagawa, Japan
| | - Shingo Hirai
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Toru Hisaka
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Yoshiki Naito
- Department of Clinical Laboratory Medicine, Kurume University Hospital, Kurume, Japan
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| | - Karuppaiyah Selvendiran
- Division of Gynecologic Oncology, Department of Obstetrics/Gynecology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Yoshinobu Okabe
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takuji Torimura
- Department of Gastroenterology, Omuta City Hospital, Omuta, Japan
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
9
|
Zhang W, Yang Q, Qian D, Zhao K, Tang C, Ju S. Deregulation of circRNA hsa_circ_0009109 promotes tumor growth and initiates autophagy by sponging miR-544a-3p in gastric cancer. Gastroenterol Rep (Oxf) 2024; 12:goae008. [PMID: 38425655 PMCID: PMC10902679 DOI: 10.1093/gastro/goae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/26/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Background Autophagy death of cancer cells is detrimental to apoptosis induced by therapeutic drugs, which promotes tumor progression to a certain extent. Increasing reports have demonstrated the regulatory role of circular RNAs (circRNAs) in autophagy. Here, we aimed to determine the role of hsa_circ_0009109 in autophagy in gastric cancer (GC). Methods The effects of hsa_circ_0009109 on autophagy were examined using quantitative real-time polymerase chain reaction (qPCR), transmission electron microscopy, Western blot, and immunofluorescence. The mechanism of hsa_circ_0009109 regulating the miR-544a-3p/bcl-2 axis was analysed using fluorescence in situ hybridization, dual-luciferase reporter, and rescue experiments. Results Functional testing indicated that hsa_circ_0009109 was significantly down-expressed in GC tissues and cell lines. A reduction in cytoplasmic-derived hsa_circ_0009109 could promote GC progression by accelerating cell proliferation, enhancing migration and invasion, inhibiting apoptosis, and accelerating the cell cycle progression. Besides, hsa_circ_0009109 was found to exert the effect of an autophagy inhibitor such as 3-Methyladenine (3-MA), which was manifested by the weakening of the immunofluorescence of LC3B and the reduction in autophagy-related proteins after overexpression of hsa_circ_0009109, while increased autophagosomes were observed after interference with hsa_circ_0009109. Subsequently, the crosstalk between hsa_circ_0009109 and miR-544a-3p/bcl-2 was verified using dual-luciferase reporter assay. The autophagy status was altered under the regulation of the hsa_circ_0009109-targeted miR-544a-3p/bcl-2 axis. Conclusions The hsa_circ_0009109 mediated a novel autophagy regulatory network through targeting the miR-544a-3p/bcl-2 axis, which may shed new light on the exploration of therapeutic targets for the clinical treatment of GC.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P. R. China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P. R. China
| | - Qian Yang
- Center of Clinical Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Dongchen Qian
- Department of Anesthesia and Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P. R. China
| | - Keli Zhao
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Chenxue Tang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P. R. China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P. R. China
| |
Collapse
|
10
|
Liu Y, Xin Y, Shang X, Tian Z, Xue G. CircSEMA6A upregulates PRRG4 by targeting MiR-520h and recruiting ELAVL1 to affect cell invasion and migration in papillary thyroid carcinoma. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e210541. [PMID: 38394156 PMCID: PMC10948040 DOI: 10.20945/2359-4292-2021-0541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 09/07/2022] [Indexed: 02/25/2024]
Abstract
Objective As the most prevalent type of thyroid malignancy, papillary thyroid carcinoma (PTC) accounts for over 80% of all thyroid cancers. Circular RNAs (circRNAs) have been found to regulate multiple cancers, including PTC. Materials and methods Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to analyse RNA and protein levels. Fluorescence in situ hybridization (FISH) was used to detect the distribution of the target genes. Functional experiments and animal experiments were implemented to analyse the biological functions of target genes in vitro and in vivo. Luciferase reporter, RNA pulldown, RNA binding protein immunoprecipitation (RIP) and mRNA stability assays were used to probe the underlying mechanisms. Results CircSEMA6Awas found to be upregulated in PTC tissues and cells, and its circular structure was verified. CircSEMA6A promotes PTC cell migration and invasion. Moreover, circSEMA6A functions as a competing endogenous RNA (ceRNA) to upregulate proline rich and Gla domain 4 (PRRG4) expression by sponging microRNA-520h (miR-520h). CircSEMA6A recruits ELAV1 to stabilize PRRG4 mRNA and drives PTC progression via PRRG4. Conclusion CircSEMA6A upregulates PRRG4 by targeting miR-520h and recruiting ELAVL1 to affect the invasion and migration of PTC cells, offering insight into the molecular mechanisms of PTC.
Collapse
Affiliation(s)
- Yachao Liu
- Department of Otolaryngol Head & Neck Surg, the First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei, Peoples R China,
| | - Yunchao Xin
- Department of Otolaryngol Head & Neck Surg, the First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei, Peoples R China
| | - Xiaoling Shang
- Department of Otolaryngol Head & Neck Surg, the First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei, Peoples R China
| | - Zedong Tian
- Department of Otolaryngol Head & Neck Surg, the First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei, Peoples R China
| | - Gang Xue
- Department of Otolaryngol Head & Neck Surg, the First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei, Peoples R China
| |
Collapse
|
11
|
Yang Y, Li P, Li X, Zhu Y, Guo X. Brucine D restrains colorectal cancer tumorigenesis and autophagy by downregulating circ_0068464. Chem Biol Drug Des 2024; 103:e14407. [PMID: 38040413 DOI: 10.1111/cbdd.14407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023]
Abstract
Bruceine D (BD) from Brucea javanica (L) exerts an antitumor effect in several human cancers. At present, it has not been reported whether BD inhibits the malignancy of colorectal cancer (CRC) cells. Therefore, investigating the role and regulatory mechanisms of BD in CRC is the main thrust of this study. Effect of BD on CRC cell viability, proliferation, apoptosis, invasion, and autophagy was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, 5-ethynyl-2'-deoxyuridine, flow cytometry, transwell invasion, and western blotting assays. Expression changes of has_circ_0068464 (circ_0068464) were detected using real time quantitative polymerase chain reaction. The molecular mechanisms related to circ_0068464 were predicted through online prediction websites Starbase 2.0, circinteractome, and CircBank and validated using dual-luciferase reporter and RNA pull-down assays. The tumorigenic ability of BD and circ_0068464 on CRC was confirmed by xenograft experiments. The results showed that BD lessened CRC cell proliferation, invasion, autophagy, and prompted cell apoptosis. Circ_0068464 was overexpressed in CRC samples and cells. BD led to a significant reduction in circ_0068464 levels in cells of this carcinoma, but circ_0068464 overexpression partially rescued these effects urged by BD. Also, the combination of BD and circ_0068464 silencing decreased xenograft tumor growth compared to BD alone. Importantly, circ_0068464 could regulate ATG5 expression by functioning as a miR-520h molecular sponge. In conclusion, BD might suppress CRC growth by inhibiting the circ_0068464/miR-520h/ATG5 axis, providing a new perspective for the molecular pathogenesis of CRC and preliminarily indicating that BD may be a promising drug for CRC treatment.
Collapse
Affiliation(s)
- Yong Yang
- Department Anus & Intestine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peng Li
- Department Anus & Intestine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojia Li
- Department Anus & Intestine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Zhu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiutian Guo
- Department Anus & Intestine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Lin L, Zhao Y, Zheng Q, Zhang J, Li H, Wu W. Epigenetic targeting of autophagy for cancer: DNA and RNA methylation. Front Oncol 2023; 13:1290330. [PMID: 38148841 PMCID: PMC10749975 DOI: 10.3389/fonc.2023.1290330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023] Open
Abstract
Autophagy, a crucial cellular mechanism responsible for degradation and recycling of intracellular components, is modulated by an intricate network of molecular signals. Its paradoxical involvement in oncogenesis, acting as both a tumor suppressor and promoter, has been underscored in recent studies. Central to this regulatory network are the epigenetic modifications of DNA and RNA methylation, notably the presence of N6-methyldeoxyadenosine (6mA) in genomic DNA and N6-methyladenosine (m6A) in eukaryotic mRNA. The 6mA modification in genomic DNA adds an extra dimension of epigenetic regulation, potentially impacting the transcriptional dynamics of genes linked to autophagy and, especially, cancer. Conversely, m6A modification, governed by methyltransferases and demethylases, influences mRNA stability, processing, and translation, affecting genes central to autophagic pathways. As we delve deeper into the complexities of autophagy regulation, the importance of these methylation modifications grows more evident. The interplay of 6mA, m6A, and autophagy points to a layered regulatory mechanism, illuminating cellular reactions to a range of conditions. This review delves into the nexus between DNA 6mA and RNA m6A methylation and their influence on autophagy in cancer contexts. By closely examining these epigenetic markers, we underscore their promise as therapeutic avenues, suggesting novel approaches for cancer intervention through autophagy modulation.
Collapse
Affiliation(s)
- Luobin Lin
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yuntao Zhao
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Qinzhou Zheng
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiayang Zhang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Huaqin Li
- School of Health Sciences, Guangzhou Xinhua University, Guangzhou, Guangdong, China
| | - Wenmei Wu
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Wang C, Zhang M, Liu Y, Cui D, Gao L, Jiang Y. CircRNF10 triggers a positive feedback loop to facilitate progression of glioblastoma via redeploying the ferroptosis defense in GSCs. J Exp Clin Cancer Res 2023; 42:242. [PMID: 37723588 PMCID: PMC10507871 DOI: 10.1186/s13046-023-02816-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Glioma exhibit heterogeneous susceptibility for targeted ferroptosis. How circRNAs alterations in glioma promote iron metabolism and ferroptosis defense remains unclarified. METHODS The highly enriched circRNAs in glioblastoma (GBM) were obtained through analysis of sequencing datasets. Quantitative real-time PCR (qRT-PCR) was used to determine the expression of circRNF10 in glioma and normal brain tissue. Both gain-of-function and loss-of-function studies were used to assess the effects of circRNF10 on ferroptosis using in vitro and in vivo assays. The hypothesis that ZBTB48 promotes ferroptosis defense was established using bioinformatics analysis and functional assays. RNA pull-down and RNA immunoprecipitation (RIP) assays were performed to examine the interaction between circRNF10 and target proteins including ZBTB48, MKRN3 and IGF2BP3. The posttranslational modification mechanism of ZBTB48 was verified using coimmunoprecipitation (co-IP) and ubiquitination assays. The transcription activation of HSPB1 and IGF2BP3 by ZBTB48 was confirmed through luciferase reporter gene and chromatin immunoprecipitation (ChIP) assays. The stabilizing effect of IGF2BP3 on circRNF10 was explored by actinomycin D assay. Finally, a series of in vivo experiments were performed to explore the influences of circRNF10 on the glioma progression. RESULTS A novel circular RNA, hsa_circ_0028912 (named circRNF10), which is significantly upregulated in glioblastoma tissues and correlated with patients' poor prognosis. Through integrated analysis of the circRNA-proteins interaction datasets and sequencing results, we reveal ZBTB48 as a transcriptional factor binding with circRNF10, notably promoting upregulation of HSPB1 and IGF2BP3 expression to remodel iron metabolism and facilitates the launch of a circRNF10/ZBTB48/IGF2BP3 positive feedback loop in GSCs. Additionally, circRNF10 can competitively bind to MKRN3 and block E3 ubiquitin ligase activity to enhance ZBTB48 expression. Consequently, circRNF10-overexpressed glioma stem cells (GSCs) display lower Fe2+ accumulation, selectively priming tumors for ferroptosis evading. CONCLUSION Our research presents abnormal circRNAs expression causing a molecular and metabolic change of glioma, which we leverage to discover a therapeutically exploitable vulnerability to target ferroptosis.
Collapse
Affiliation(s)
- Chengbin Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Minjie Zhang
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yingliang Liu
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Daming Cui
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Yang Jiang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
14
|
Chen W, Liu Y, Li L, Liang B, Wang S, Xu X, Xing D, Wu X. The potential role and mechanism of circRNAs in foam cell formation. Noncoding RNA Res 2023; 8:315-325. [PMID: 37032721 PMCID: PMC10074414 DOI: 10.1016/j.ncrna.2023.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023] Open
Abstract
Atherosclerosis is a significant risk factor for coronary heart disease (CHD) and myocardial infarction (MI). Atherosclerosis develops during foam cell generation, which is caused by an imbalance in cholesterol uptake, esterification, and efflux. LOX-1, SR-A1, and CD36 all increased cholesterol uptake. ACAT1 and ACAT2 promote free cholesterol (FC) esterification to cholesteryl esters (CE). The hydrolysis of CE to FC was aided by nCEH. FC efflux was promoted by ABCA1, ABCG1, ADAM10, and apoA-I. SR-BI promotes not only cholesterol uptake but also FC efflux. Circular RNAs (circRNAs), which are single-stranded RNAs with a closed covalent circular structure, have emerged as promising biomarkers and therapeutic targets for atherosclerosis due to their highly tissue, cell, and disease state-specific expression profiles. Numerous studies have shown that circRNAs regulate foam cell formation, acting as miRNA sponges to influence atherosclerosis development by regulating the expression of SR-A1, CD36, ACAT2, ABCA1, ABCG1, ADAM10, apoA-I, SR-B1. Several circRNAs, including circ-Wdr91, circ 0004104, circRNA0044073, circRNA_0001805, circDENND1B, circRSF1, circ 0001445, and circRNA 102682, are potential biomarkers for atherosclerosis to better evaluate cardiovascular risk. It is difficult to deliver synthetic therapeutic circRNAs to the desired target tissues. Nanotechnology, such as GA-RM/GZ/PL, may be an important solution to this problem. In this review, we focus on the potential role and mechanism of circRNA/miRNA axis in foam cell formation in the hopes of discovering new targets for the diagnosis, prevention, and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wujun Chen
- Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China
| | - Yihui Liu
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, School of Medical Imaging, Weifang Medical University, Weifang, Shandong, 261031, China
| | - Ling Li
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Bing Liang
- Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China
| | - Shuai Wang
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, School of Medical Imaging, Weifang Medical University, Weifang, Shandong, 261031, China
| | - Xiaodan Xu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Corresponding author.
| | - Dongming Xing
- Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Corresponding author. Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China.
| | - Xiaolin Wu
- Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China
- Corresponding author. Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China.
| |
Collapse
|
15
|
Wang Q, Gou X, Liu L, Zhang T, Yuan H, Zhao Y, Xie Y, Zhou J, Song K. HnRNPAB is an independent prognostic factor in non‑small cell lung cancer and is involved in cell proliferation and metastasis. Oncol Lett 2023; 25:215. [PMID: 37153057 PMCID: PMC10157350 DOI: 10.3892/ol.2023.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/15/2023] [Indexed: 05/09/2023] Open
Abstract
Heterogeneous nuclear ribonucleoprotein A/B (hnRNPAB) is an RNA binding protein that is closely associated with the biological function and metabolism of RNA, which is involved in the malignant transformation of various tumor cells. However, the role and mechanisms of hnRNPAB in non-small cell lung cancer (NSCLC) are still unclear. In the present study, the expression levels of hnRNPAB in NSCLC and normal tissues were analyzed using the human protein atlas database and UALCAN database. The clinical significance of hnRNPAB was assayed using the data of NSCLC cases from The Cancer Genome Atlas database. Subsequently, two stable NSCLC cell lines with hnRNPAB knockdown were constructed and the effects of hnRNPAB silencing on cell viability, migration, invasion and epithelial-mesenchymal transition (EMT) were identified. Genes associated with hnRNPAB expression in NSCLC were screened using the Linked Omics database and verified by quantitative real-time PCR (RT-qPCR). The database analysis indicated that hnRNPAB was mainly expressed in the nucleus of NSCLC cells. Compared with the normal tissues, hnRNPAB expression was overexpressed in NSCLC tissues and was closely associated with the overall survival, sex, tumor-node-metastases classification, and poor prognosis of patients with lung adenocarcinoma. Functionally, knockdown of hnRNPAB inhibited the proliferation, migration, invasion and EMT of NSCLC cells and arrested the cell cycle at G1 phase. Mechanistically, the bioinformatics analysis and RT-qPCR verification demonstrated that hnRNPAB knockdown led to a significant expression change of genes associated with tumorigenesis. In conclusion, the present study indicated that hnRNPAB played an important role in the malignant transformation of NSCLC, supporting the significance of hnRNPAB as a novel potential therapeutic target for the early diagnosis and prognosis of NSCLC.
Collapse
Affiliation(s)
- Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Correspondence to: Professor Qinrong Wang or Professor Kewei Song, Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 9 Beijing Road, Guiyang, Guizhou 550004, P.R. China, E-mail:
| | - Xuanjing Gou
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Lingling Liu
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Hang Yuan
- DNA Laboratory, Forensic Center of Public Security of Xiangyang, Xiangyang, Hubei 441000, P.R. China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Kewei Song
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Department of Sport and Health, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Correspondence to: Professor Qinrong Wang or Professor Kewei Song, Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 9 Beijing Road, Guiyang, Guizhou 550004, P.R. China, E-mail:
| |
Collapse
|
16
|
Tan X, Cai Z, Chen G, Cai C, Chen J, Liang Y, Zhuo Y, Liu J, Huang L, Ouyang B, Wei Y, Jia Z, Deng J, Zhong W, Lu J. Identification and verification of an ALYREF-involved 5-methylcytosine based signature for stratification of prostate cancer patients and prediction of clinical outcome and response to therapies. Discov Oncol 2023; 14:62. [PMID: 37155024 PMCID: PMC10167087 DOI: 10.1007/s12672-023-00671-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
OBJECTIVES Due to the heterogeneity of PCa, the clinical indicators used for PCa can't satisfy risk prognostication and personalized treatment. It is imperative to develop novel biomarkers for prognosis prediction and therapy response in PCa. Accumulating evidence shows that non-mutational epigenetic reprogramming, independent from genomic instability and mutation, serves as a newly added hallmark in cancer progression. METHODS In this study, we integrated multi-center cohorts (N > 1300) to develop a RNA 5-methylcytosine regulator-based signature, the m5C score. We performed unsupervised clustering and LASSO regression to identify novel m5C-related subtypes and calculate the m5C score. Then we assessed the role of m5C cluster and m5C score in several clinical aspects such as prognosis in various molecular subtypes, responses to chemotherapy, androgen receptor signaling inhibitor (ARSI) therapy and immunotherapy in PCa. Finally, we validated the cancer-promoting performance of ALYREF through clinical data analysis and experiments in vivo and in vitro. RESULTS The investigation revealed that the m5C score could accurately predict the biochemical recurrence (BCR) in different subtypes (the PAM50 subtypes and immunophenotypes) and the responses to chemotherapy, ARSI therapy, and immunotherapy (PD1/PD-L1). A high m5C score indicated a poor BCR prognosis in every subtype of PCa, unfavorable responses in ARSI therapy and immunotherapy (PD1/PD-L1). Moreover, the m5C reader gene termed ALYREF, yielding the highest weighed coefficient, promoted PCa progression through in silico analysis and experimental validations (in vivo and in vitro). CONCLUSIONS The m5C signature can function in many aspects of PCa, such as the development and prognosis of the disease, and multiple therapy responses. Further, the m5C reader, ALYREF, was identified as a prognostic biomarker and a potential therapeutic target for PCa. The m5C signature could act as a brand-new tool for predicting the prognosis of patients in different molecular subtypes and patients' therapy responses and promoting customized treatments.
Collapse
Affiliation(s)
- Xiao Tan
- Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
- Department of Urology, School of Clinical Medicine, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhouda Cai
- Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Guo Chen
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Chao Cai
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, 510120, Guangdong, China
| | - Jiahong Chen
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, 516001, Guangdong, China
| | - Yingke Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Yangjia Zhuo
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Jianming Liu
- Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Liangliang Huang
- Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Bin Ouyang
- Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Yanni Wei
- Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Junhong Deng
- Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China.
| | - Weide Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China.
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, 510120, Guangdong, China.
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| | - Jianming Lu
- Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China.
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China.
| |
Collapse
|
17
|
Zhang ZH, Wang Y, Zhang Y, Zheng SF, Feng T, Tian X, Abudurexiti M, Wang ZD, Zhu WK, Su JQ, Zhang HL, Shi GH, Wang ZL, Cao DL, Ye DW. The function and mechanisms of action of circular RNAs in Urologic Cancer. Mol Cancer 2023; 22:61. [PMID: 36966306 PMCID: PMC10039696 DOI: 10.1186/s12943-023-01766-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/17/2023] [Indexed: 03/27/2023] Open
Abstract
Kidney, bladder, and prostate cancer are the three major tumor types of the urologic system that seriously threaten human health. Circular RNAs (CircRNAs), special non-coding RNAs with a stabile structure and a unique back-splicing loop-forming ability, have received recent scientific attention. CircRNAs are widely distributed within the body, with important biologic functions such as sponges for microRNAs, as RNA binding proteins, and as templates for regulation of transcription and protein translation. The abnormal expression of circRNAs in vivo is significantly associated with the development of urologic tumors. CircRNAs have now emerged as potential biomarkers for the diagnosis and prognosis of urologic tumors, as well as targets for the development of new therapies. Although we have gained a better understanding of circRNA, there are still many questions to be answered. In this review, we summarize the properties of circRNAs and detail their function, focusing on the effects of circRNA on proliferation, metastasis, apoptosis, metabolism, and drug resistance in kidney, bladder, and prostate cancers.
Collapse
Affiliation(s)
- Zi-Hao Zhang
- Qingdao Institute, School of Life Medicine, Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Qingdao, 266500, China
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Yue Wang
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Ya Zhang
- Department of Nephrology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Sheng-Feng Zheng
- Qingdao Institute, School of Life Medicine, Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Qingdao, 266500, China
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Tao Feng
- Qingdao Institute, School of Life Medicine, Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Qingdao, 266500, China
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Xi Tian
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Mierxiati Abudurexiti
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
- Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China
| | - Zhen-Da Wang
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Wen-Kai Zhu
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Jia-Qi Su
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Hai-Liang Zhang
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Guo-Hai Shi
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Zi-Liang Wang
- Institute of Cancer Research, Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Da-Long Cao
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Ding-Wei Ye
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China.
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
18
|
Zheng M, Xu L, Wei C, Guan W. CircRTN1 stimulates HMGB1 to regulate the malignant progression of papillary thyroid cancer by sponging miR-101-3p. Hormones (Athens) 2023; 22:281-293. [PMID: 36826778 DOI: 10.1007/s42000-023-00440-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND The important role played by circular RNA (circRNA) in promoting the progression of papillary thyroid cancer (PTC) is attracting ever more attention among medical researchers. However, what the precise contribution is of circRTN1 in PTC progression remains unclear. The study was designed to analyze the role and mechanism of circRTN1 in regulating PTC progression. METHODS Human PTC cell lines (TPC-1 and IHH-4) and human thyroid normal cells (Nthy-ori 3-1) were used for in vitro assays. mRNA or protein expression of circRTN1, miR-101-3p, and high mobility group box 1 (HMGB1) were detected by quantitative real-time polymerase chain reaction or western blot. Cell proliferation was investigated by cell counting kit-8 assay, cell colony formation assay, and 5-ethynyl-2'-deoxyuridine assay. Wound-healing assay and transwell invasion assay were conducted to evaluate cell migration and invasion. Dual-luciferase reporter assay and RNA immunoprecipitation assay were applied to verify the target relations between circRTN1, miR-101-3p, and HMGB1. A xenograft tumor model was established to demonstrate the effect of circRTN1 on tumor formation in vivo. An immunohistochemistry assay was used to detect protein expression of HMGB1, ki-67, E-cadherin, and vimentin. RESULTS In comparison with healthy thyroid tissues and cells, PTC tissues and cells displayed high circRTN1 RNA expression and high HMGB1 mRNA and protein expression but low miR-101-3p expression. Silencing of circRTN1 suppressed PTC cell proliferation, migration, and invasion in vitro. MiR-101-3p was a target of circRTN1, and the knockdown of miR-101-3p relieved circRTN1 absence-mediated suppressive effects on PTC cell malignancy. HMGB1 was identified as a target gene of miR-101-3p, and overexpressed HMGB1 almost reverted the inhibitory impacts induced by miR-101-3p mimic in PTC cells. Moreover, circRTN1 silencing hampered tumor formation in vivo. CONCLUSION CircRTN1 depletion impeded PTC cell malignancy via the miR-101-3p/HMGB1 pathway, which provided a possible circRNA-targeted therapeutic strategy for PTC.
Collapse
Affiliation(s)
- Mei Zheng
- Department of Endocrinology, The First People's Hospital of Jingmen City, No.168 Xiangshan Avenue, Jingmen City, Hubei Province, 448000, People's Republic of China
| | - Lingli Xu
- Department of Endocrinology, The First People's Hospital of Jingmen City, No.168 Xiangshan Avenue, Jingmen City, Hubei Province, 448000, People's Republic of China
| | - Cuifeng Wei
- Department of Endocrinology, The First People's Hospital of Jingmen City, No.168 Xiangshan Avenue, Jingmen City, Hubei Province, 448000, People's Republic of China
| | - Wenzhen Guan
- Department of Endocrinology, The First People's Hospital of Jingmen City, No.168 Xiangshan Avenue, Jingmen City, Hubei Province, 448000, People's Republic of China.
| |
Collapse
|
19
|
Yang R, Ma L, Wan J, Li Z, Yang Z, Zhao Z, Ming L. Ferroptosis-associated circular RNAs: Opportunities and challenges in the diagnosis and treatment of cancer. Front Cell Dev Biol 2023; 11:1160381. [PMID: 37152286 PMCID: PMC10157116 DOI: 10.3389/fcell.2023.1160381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Ferroptosis is an emerging form of non-apoptotic regulated cell death which is different from cell death mechanisms such as autophagy, apoptosis and necrosis. It is characterized by iron-dependent lipid peroxide accumulation. Circular RNA (circRNA) is a newly studied evolutionarily conserved type of non-coding RNA with a covalent closed-loop structure. It exhibits universality, conservatism, stability and particularity. At present, the functions that have been studied and found include microRNA sponge, protein scaffold, transcription regulation, translation and production of peptides, etc. CircRNA can be used as a biomarker of tumors and is a hotspot in RNA biology research. Studies have shown that ferroptosis can participate in tumor regulation through the circRNA molecular pathway and then affect cancer progression, which may become a direction of cancer diagnosis and treatment in the future. This paper reviews the molecular biological mechanism of ferroptosis and the role of circular RNA in tumors and summarizes the circRNA related to ferroptosis in tumors, which may inspire research prospects for the precise prevention and treatment of cancer in the future.
Collapse
Affiliation(s)
- Ruotong Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Zhuofang Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Zhengwu Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Zhuochen Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, China
- *Correspondence: Liang Ming,
| |
Collapse
|
20
|
Myc-mediated circular RNA circMcph1/miR-370-3p/Irak2 axis is a progressive regulator in hepatic fibrosis. Life Sci 2022; 312:121182. [PMID: 36435226 DOI: 10.1016/j.lfs.2022.121182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022]
Abstract
AIMS Treating hepatic fibrosis (HF) is a major challenge worldwide. However, the biological functions and regulatory mechanisms of circular RNAs (circRNAs) remain unclear in HF. The present study aimed to elucidate the novel role of circMcph1 in HF. MAIN METHODS HF mouse model was established by injecting CCl4 intraperitoneally and validated using hematoxylin and eosin staining, immunohistochemistry, and serological tests in vivo. RAW264.7 cells were treated with lipopolysaccharide (LPS) and interferon-γ (IFN-γ) in vitro inflammatory damage model. Gel electrophoresis, DNA sequencing, RNase R and actinomycin D treatment, random 6 primers and oligo dT primers assay, nuclear and cytoplasmic fractionation assay, and fluorescence in situ hybridization were performed to identify the characteristics of circMcph1. Functional assays such as ELISA, flow cytometry, and adeno-associated virus administration in vivo and liposome delivery gene therapy in vitro were used to determine the functional effects of circMcph1/miR-370-3p/interleukin-1 receptor-associated kinase 2 (Irak2) axis. Mechanistic assays such as luciferase reporter analysis, and chromatin immunoprecipitation revealed the molecular mechanism of the Myc/circMcph1/miR-370-3p/Irak2 axis in HF. KEY FINDINGS CircMcph1 expression was upregulated in liver tissues and primary Kupffer cells of CCl4-induced HF mice, as well as in LPS and IFN-γ-treated RAW264.7 cells. Knockdown of circMcph1 ameliorated liver fibrogenesis and inflammatory damage in HF mice and reduced the inflammatory response in LPS and IFN-γ-treated RAW264.7 cells. Mechanically, circMcph1 mediated by Myc regulated the expression of Irak2 by sponging miR-370-3p in HF. SIGNIFICANCE The study findings suggested that the Myc/circMcph1/miR-370-3p/Irak2 axis might be a novel identifier and therapeutic target for HF.
Collapse
|
21
|
Yuan J, Feng Z, Wang Q, Han L, Guan S, Liu L, Ye H, Xu L, Han X. 3’UTR of SARS-CoV-2 spike gene hijack host miR-296 or miR-520h to disturb cell proliferation and cytokine signaling. Front Immunol 2022; 13:924667. [PMID: 36238276 PMCID: PMC9552351 DOI: 10.3389/fimmu.2022.924667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has becoming globally public health threat. Recently studies were focus on SARS-CoV-2 RNA to design vaccine and drugs. It was demonstrated that virus RNA could play as sponge to host noncoding RNAs to regulate cellular processes. Bioinformatic research predicted a series of motif on SARS-CoV-2 genome where are targets of human miRNAs. In this study, we used dual-luciferase reporter assays to validate the interaction between 3’UTR of SARS-CoV-2 S (S-3’UTR) gene and bioinformatic predicted targeting miRNAs. The growth of 293T cells and HUVECs with overexpressed S-3’UTR was determined, while miRNAs and IL6, TNF-α levels were checked in this condition. Then, miR-296 and miR-602 mimic were introduced into 293T cells and HUVECs with overexpressed S-3’UTR, respectively, to reveal the underlying regulation mechanism. In results, we screened 19 miRNAs targeting the S-3’UTR, including miR-296 and miR-602. In 293T cell, S-3’UTR could inhibit 293T cell growth through down-regulation of miR-296. By reducing miR-602, S-3’UTR could induce HUVECs cell proliferation, alter the cell cycle, reduce apoptosis, and enhanced IL6 and TNF-αlevel. In conclusion, SARS-CoV-2 RNA could play as sponge of host miRNA to disturb cell growth and cytokine signaling. It suggests an important clue for designing COVID-19 drug and vaccine.
Collapse
Affiliation(s)
- Jinjin Yuan
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Ziheng Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Qiaowen Wang
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Lifen Han
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Shenchan Guan
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Lijuan Liu
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Hanhui Ye
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- *Correspondence: Xiao Han, ; Lili Xu, ; Hanhui Ye,
| | - Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- *Correspondence: Xiao Han, ; Lili Xu, ; Hanhui Ye,
| | - Xiao Han
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- *Correspondence: Xiao Han, ; Lili Xu, ; Hanhui Ye,
| |
Collapse
|
22
|
Yuan Y, Zhang X, Fan X, Peng Y, Jin Z. The emerging roles of circular RNA-mediated autophagy in tumorigenesis and cancer progression. Cell Death Dis 2022; 8:385. [PMID: 36104321 PMCID: PMC9474543 DOI: 10.1038/s41420-022-01172-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022]
Abstract
AbstractCircular RNA (circRNA) is characterized by a specific covalently closed ring structure. The back-splicing of precursor mRNA is the main way of circRNA generation, and various cis/trans-acting elements are involved in regulating the process. circRNAs exhibit multiple biological functions, including serving as sponges of microRNAs, interacting with proteins to regulate their stabilities and abilities, and acting as templates for protein translation. Autophagy participates in many physiological and pathological processes, especially it plays a vital role in tumorigenesis and carcinoma progression. Increasing numbers of evidences have revealed that circRNAs are implicated in regulating autophagy during tumor development. Until now, the roles of autophagy-associated circRNAs in carcinoma progression and their molecular mechanisms remain unclear. Here, the emerging regulatory roles and mechanisms of circRNAs in autophagy were summarized. Furtherly, the effects of autophagy-associated circRNAs on cancer development were described. We also prospected the potential of autophagy-associated circRNAs as novel therapeutic targets of tumors and as biomarkers for cancer diagnosis and prognosis.
Collapse
|
23
|
Zhou X, Lin J, Wang F, Chen X, Zhang Y, Hu Z, Jin X. Circular RNA-regulated autophagy is involved in cancer progression. Front Cell Dev Biol 2022; 10:961983. [PMID: 36187468 PMCID: PMC9515439 DOI: 10.3389/fcell.2022.961983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/03/2022] [Indexed: 12/05/2022] Open
Abstract
Circular RNAs (circRNAs) are a sort of long, non-coding RNA molecules with a covalently closed continuous ring structure without 5'-3' polarity and poly-A tail. The modulative role of circRNAs in malignant diseases has been elucidated by many studies in recent years via bioinformatics and high-throughput sequencing technologies. Generally, circRNA affects the proliferative, invasive, and migrative capacity of malignant cells via various mechanisms, exhibiting great potential as novel biomarkers in the diagnoses or treatments of malignancies. Meanwhile, autophagy preserves cellular homeostasis, serving as a vital molecular process in tumor progression. Mounting studies have demonstrated that autophagy can not only contribute to cancer cell survival but can also induce autophagic cell death in specific conditions. A growing number of research studies have indicated that there existed abundant associations between circRNAs and autophagy. Herein, we systemically reviewed and discussed recent studies on this topic in different malignancies and concluded that the circRNA–autophagy axis played crucial roles in the proliferation, metastasis, invasion, and drug or radiation resistance of different tumor cells.
Collapse
|
24
|
Huang Y, Li Y, Lin W, Fan S, Chen H, Xia J, Pi J, Xu JF. Promising Roles of Circular RNAs as Biomarkers and Targets for Potential Diagnosis and Therapy of Tuberculosis. Biomolecules 2022; 12:biom12091235. [PMID: 36139074 PMCID: PMC9496049 DOI: 10.3390/biom12091235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, remains one of the most threatening infectious diseases worldwide. A series of challenges still exist for TB prevention, diagnosis and treatment, which therefore require more attempts to clarify the pathological and immunological mechanisms in the development and progression of TB. Circular RNAs (circRNAs) are a large class of non-coding RNA, mostly expressed in eukaryotic cells, which are generated by the spliceosome through the back-splicing of linear RNAs. Accumulating studies have identified that circRNAs are widely involved in a variety of physiological and pathological processes, acting as the sponges or decoys for microRNAs and proteins, scaffold platforms for proteins, modulators for transcription and special templates for translation. Due to the stable and widely spread characteristics of circRNAs, they are expected to serve as promising prognostic/diagnostic biomarkers and therapeutic targets for diseases. In this review, we briefly describe the biogenesis, classification, detection technology and functions of circRNAs, and, in particular, outline the dynamic, and sometimes aberrant changes of circRNAs in TB. Moreover, we further summarize the recent progress of research linking circRNAs to TB-related pathogenetic processes, as well as the potential roles of circRNAs as diagnostic biomarkers and miRNAs sponges in the case of Mtb infection, which is expected to enhance our understanding of TB and provide some novel ideas about how to overcome the challenges associated TB in the future.
Collapse
Affiliation(s)
- Yifan Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaojiao Xia
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| |
Collapse
|
25
|
Qi F, Wang X, Zhao S, Wang C, Sun R, Wang H, Du P, Wang J, Wang X, Jiang G. miR‑let‑7c‑3p targeting on Egr‑1 contributes to the committed differentiation of leukemia cells into monocyte/macrophages. Oncol Lett 2022; 24:273. [PMID: 35782903 PMCID: PMC9247672 DOI: 10.3892/ol.2022.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022] Open
Abstract
In preliminary experiments, it was found that the expression of early growth response-1 (Egr-1) was upregulated during the committed differentiation of leukemia cells into monocytes/macrophages. The cross-analysis of gene chip detection and database prediction indicated that Egr-1 was associated with upstream microRNA (miR)-let-7c-3p, thus the present study focused on the role of the miR-let-7c-3p/Egr-1 signaling axis in the committed differentiation of leukemia cells into monocytes/macrophages. Phorbol 12-myristate 13-acetate (PMA) was used to induce the directed differentiation of human K562 leukemia cells into monocytes/macrophages and the differentiation of K562 leukemia cells was determined by cell morphology observation and expression of differentiation antigens CD11b and CD14 by flow cytometry. The expression levels of Egr-1 and miR-let-7c-3p were detected by reverse transcription-quantitative PCR and the protein expression of Egr-1 was detected by western blotting. The effect of Egr-1 on the differentiation of K562 cells was detected by short interfering (si)RNA interference assay. A dual-luciferase reporter assay was used to detect target binding of miR-let-7c-3p on the 3′UTR of Egr-1. Cell transfection of miR-let-7c-3p mimics and inhibitors was used to modulate the expression of miR-let-7c-3p, as indicated by RT-qPCR assays. Western blotting was also used to examine the effect of miR-let-7c-3p on Egr-1 expression. The PMA-induced differentiation of K562 cells was transfected with miR-let-7c-3p and the expression of differentiation antigen was detected by flow cytometry. A differentiation model of K562 leukemia cells into monocytes/macrophages was induced by PMA, which was indicated by morphological observations and upregulation of CD11b and CD14 antigens. The gene or protein expression of Egr-1 was significantly higher compared with that of the control group, while the expression of miR-let-7c-3p was significantly lower compared with that of the control group. siRNA interference experiments showed that the expression of cell differentiation antigen CD14 in the 100 µg/ml PMA + si-Egr-1 group was significantly lower compared with that in the 100 µg/ml PMA + si-ctrl group. The dual luciferase reporter gene results showed that the luciferase activity of the co-transfected mimic and Egr-1 WT groups was significantly lower than that of the NC control group, while the luciferase activity of the co-transfected mimic and Egr-1 MUT groups was comparable to that of the NC control group. Therefore, the dual-luciferase reporter gene assay confirmed that miR-let-7c-3p can target Egr-1. Western blotting showed that the expression of Egr-1 following transfection with miR-let-7c-3p inhibitor was significantly higher compared with that of the negative control and the expression of Egr-1 after transfection with miR-let-7c-3p mimic was significantly lower than that of the negative control. Following exposure to PMA, the expressions of CD11b and CD14 in the miR-let-7c-3p inhibitor group were significantly higher than those in the miR-let-7c-3p NC group, as indicated by CD11b and CD14 respectively. In conclusion, miR-let-7c-3p could bind to the 3′UTR of Egr-1 and negatively regulated Egr-1 expression. The miR-let-7c-3p/Egr-1 signaling axis was closely associated with the committed differentiation of K562 cells from leukemia cells to monocytes/macrophages.
Collapse
Affiliation(s)
- Fu Qi
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Xinping Wang
- Department of Laboratory Medicine, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Shouzhen Zhao
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Chaozhe Wang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Ruijing Sun
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Huan Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Pengchao Du
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Jing Wang
- Department of Cellular Immunology, Shandong Yinfeng Academy of Life Science, Jinan, Shandong 250109, P.R. China
| | - Xidi Wang
- Laboratory of Precision Medicine, Zhangqiu District People's Hospital of Jinan Affiliated to Jining Medical University, Jinan, Shandong 250200, P.R. China
| | - Guosheng Jiang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
26
|
Non-coding RNAs associated with autophagy and their regulatory role in cancer therapeutics. Mol Biol Rep 2022; 49:7025-7037. [PMID: 35534587 DOI: 10.1007/s11033-022-07517-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Cancer widely affects the world's health population and ranks second leading cause of death globally. Because of poor prognosis of various types of cancer such as sarcoma, lymphoma, adenomas etc., their high recurrence and metastasis rate and low early diagnosis rate have become concern lately. Role of autophagy in cancer progression is being studied since long. Autophagy is cell's self-degradative mechanism towards stress and has role in degradation of the cytoplasmic macromolecules which has potential to damage other cytosolic molecules. Autophagy can promote as well as inhibit tumorigenesis depending upon the associated protein combinations in cancer cells. Recent studies have shown that non-coding RNAs (ncRNAs) do not code for protein but play essential role in modulation of gene expression. At transcriptional level, different ncRNAs like lncRNAs, miRNAs and circRNAs directly or indirectly affect different stages of autophagy like autophagy-dependent and non-apoptotic cell death in cancer cells. This review focuses on the involvement of ncRNAs in autophagy and the modulation of several cancer signal transduction pathways in cancers such as lung, breast, prostate, pancreatic, thyroid, and kidney cancer.
Collapse
|
27
|
Wang J, Zhou L, Chen B, Yu Z, Zhang J, Zhang Z, Hu C, Bai Y, Ruan X, Wang S, Ouyang J, Wu A, Zhao X. Circular RNA circCSPP1 promotes the occurrence and development of colon cancer by sponging miR-431 and regulating ROCK1 and ZEB1. J Transl Med 2022; 20:58. [PMID: 35101080 PMCID: PMC8805259 DOI: 10.1186/s12967-022-03240-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/08/2022] [Indexed: 12/17/2022] Open
Abstract
Background Colon cancer is a common malignant tumor of the digestive tract, and its incidence is ranked third among gastrointestinal tumors. The present study aims to investigate the role of a novel circular RNA (circCSPP1) in colon cancer and its underlying molecular mechanisms. Methods Bioinformatics analysis and reverse transcription-quantitative PCR were used to detect the expression levels of circCSPP1 in colon cancer tissues and cell lines. The effects of circCSPP1 on the behavior of colon cancer cells were investigated using CCK-8, transwell and clonogenic assays. Bioinformatics analysis along with luciferase, fluorescence in situ hybridization and RNA pull-down assays were used to reveal the interaction between circCSPP1, microRNA (miR)-431, Rho associated coiled-coil containing protein kinase 1 (ROCK1) and zinc finger E-box binding homeobox 1 (ZEB1). Results It was found that circCSPP1 expression was significantly upregulated in colon cancer tissues and cell lines. Overexpression of circCSPP1 significantly promoted the proliferation, migration and invasion of colon cancer cells, whereas silencing of circCSPP1 exerted opposite effects. Mechanistically, circCSPP1 was found to bind with miR-431. In addition, ROCK1 and ZEB1 were identified as the target genes of miR-431. Rescue experiments further confirmed the interaction between circCSPP1, miR-431, ROCK1 and ZEB1. Moreover, circCSPP1 promoted the expression level of ROCK1, cyclin D1, cyclin-dependent kinase 4, ZEB1 and Snail, and lowered the E-cadherin expression level. Conclusion Taken together, the findings of the present study indicated that circCSPP1 may function as a competing endogenous RNA in the progression of colon cancer by regulating the miR-431/ROCK1 and miR-431/ZEB1 signaling axes. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03240-x.
Collapse
|