1
|
Li Y, Fan A, Zhang Y, Meng W, Pan W, Wu F, Ma Z, Chen W. Circular RNA hsa_circ_0001610 promotes prostate cancer progression by sponging miR-1324 and upregulating PTK6. Gene 2024; 930:148818. [PMID: 39098513 DOI: 10.1016/j.gene.2024.148818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Prostate cancer (PCa) incidence and cancer-related deaths are both high in the male population. Once castration-resistant prostate cancer (CRPC) has developed, PCa can be difficult to manage. Circular RNAs (circRNAs) play essential roles in the regulation of carcinogenesis and cancer progression. In CRPC, however, the potential molecular mechanisms and biological functions of circRNAs are yet to be defined. In this study, we conducted RNA sequencing on four hormone-sensitive prostate cancer (HSPC) tumor tissue samples and three CRPC samples. We recognized hsa_circ_0001610, a novel circRNA that was highly expressed in the cells and tissue of CRPC. We used quantitative real-time PCR (qRT-PCR) to evaluate hsa_circ_0001610 expression. We conducted in vivo and in vitro experiments and found that hsa_circ_0001610 overexpression caused PCa cells to proliferate and migrate and caused enzalutamide resistance. In contrast, the opposite results were found for hsa_circ_0001610 knockdown. We used Western blot, dual-luciferase reporter assays, RNA immunoprecipitation (RIP), qRT-PCR, and rescue experiments to reveal the underlying mechanisms of hsa_circ_0001610. Mechanistically, hsa_circ_0001610 acted as a molecular sponge for miR-1324 and thus reversed its inhibitory effect on its target gene PTK6. As a result, the PTK6 expression was enhanced, which accelerated PCa progression. The findings of this study confirmed that hsa_circ_0001610 drives the progression of PCa through the hsa_circ_0001610/miR-1324/PTK6 axis. Thus, hsa_circ_0001610 is potentially an effective therapeutic target and specific biomarker for advanced PCa.
Collapse
Affiliation(s)
- Yunpeng Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Aoyu Fan
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Yunyan Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Wei Meng
- Lab for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wei Pan
- Lab for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Fan Wu
- Lab for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhongliang Ma
- Lab for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Wei Chen
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200030, China.
| |
Collapse
|
2
|
Limonta P, Marchesi S, Giannitti G, Casati L, Fontana F. The biological function of extracellular vesicles in prostate cancer and their clinical application as diagnostic and prognostic biomarkers. Cancer Metastasis Rev 2024; 43:1611-1627. [PMID: 39316264 PMCID: PMC11554767 DOI: 10.1007/s10555-024-10210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and main causes of cancer-related deaths worldwide. It is characterized by high heterogeneity, ranging from slow-growing tumor to metastatic disease. Since both therapy selection and outcome strongly rely on appropriate patient stratification, it is crucial to differentiate benign from more aggressive conditions using new and improved diagnostic and prognostic biomarkers. Extracellular vesicles (EVs) are membrane-coated particles carrying a specific biological cargo composed of nucleic acids, proteins, and metabolites. Here, we provide an overview of the role of EVs in PCa, focusing on both their biological function and clinical value. Specifically, we summarize the oncogenic role of EVs in mediating the interactions with PCa microenvironment as well as the horizontal transfer of metastatic traits and drug resistance between PCa cells. Furthermore, we discuss the potential usage of EVs as innovative tools for PCa diagnosis and prognosis.
Collapse
Affiliation(s)
- Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Sara Marchesi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Gaia Giannitti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Lavinia Casati
- Department of Health Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy.
| |
Collapse
|
3
|
Ji DN, Jin SD, Jiang Y, Xu FY, Fan SW, Zhao YL, Liu XQ, Sun H, Cheng WZ, Zhang XY, Guan XX, Zhang BW, Du ZM, Wang Y, Wang N, Zhang R, Zhang MY, Xu CQ. CircNSD1 promotes cardiac fibrosis through targeting the miR-429-3p/SULF1/Wnt/β-catenin signaling pathway. Acta Pharmacol Sin 2024; 45:2092-2106. [PMID: 38760544 PMCID: PMC11420342 DOI: 10.1038/s41401-024-01296-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/17/2024] [Indexed: 05/19/2024] Open
Abstract
Cardiac fibrosis is a detrimental pathological process, which constitutes the key factor for adverse cardiac structural remodeling leading to heart failure and other critical conditions. Circular RNAs (circRNAs) have emerged as important regulators of various cardiovascular diseases. It is known that several circRNAs regulate gene expression and pathological processes by binding miRNAs. In this study we investigated whether a novel circRNA, named circNSD1, and miR-429-3p formed an axis that controls cardiac fibrosis. We established a mouse model of myocardial infarction (MI) for in vivo studies and a cellular model of cardiac fibrogenesis in primary cultured mouse cardiac fibroblasts treated with TGF-β1. We showed that miR-429-3p was markedly downregulated in the cardiac fibrosis models. Through gain- and loss-of-function studies we confirmed miR-429-3p as a negative regulator of cardiac fibrosis. In searching for the upstream regulator of miR-429-3p, we identified circNSD1 that we subsequently demonstrated as an endogenous sponge of miR-429-3p. In MI mice, knockdown of circNSD1 alleviated cardiac fibrosis. Moreover, silence of human circNSD1 suppressed the proliferation and collagen production in human cardiac fibroblasts in vitro. We revealed that circNSD1 directly bound miR-429-3p, thereby upregulating SULF1 expression and activating the Wnt/β-catenin pathway. Collectively, circNSD1 may be a novel target for the treatment of cardiac fibrosis and associated cardiac disease.
Collapse
Affiliation(s)
- Dong-Ni Ji
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Sai-di Jin
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Yuan Jiang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Fei-Yong Xu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Shu-Wei Fan
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yi-Lin Zhao
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Xin-Qi Liu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Hao Sun
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Wen-Zheng Cheng
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Xin-Yue Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Xiao-Xiang Guan
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Bo-Wen Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Zhi-Min Du
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Ying Wang
- Center of Chronic Diseases and Drug Research of Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Ning Wang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Rong Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China.
| | - Ming-Yu Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China.
| | - Chao-Qian Xu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
4
|
Zhang Z, Gao Z, Fang H, Zhao Y, Xing R. Therapeutic importance and diagnostic function of circRNAs in urological cancers: from metastasis to drug resistance. Cancer Metastasis Rev 2024; 43:867-888. [PMID: 38252399 DOI: 10.1007/s10555-023-10152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/31/2023] [Indexed: 01/23/2024]
Abstract
Circular RNAs (circRNAs) are a member of non-coding RNAs with no ability in encoding proteins and their aberrant dysregulation is observed in cancers. Their closed-loop structure has increased their stability, and they are reliable biomarkers for cancer diagnosis. Urological cancers have been responsible for high mortality and morbidity worldwide, and developing new strategies in their treatment, especially based on gene therapy, is of importance since these malignant diseases do not respond to conventional therapies. In the current review, three important aims are followed. At the first step, the role of circRNAs in increasing or decreasing the progression of urological cancers is discussed, and the double-edged sword function of them is also highlighted. At the second step, the interaction of circRNAs with molecular targets responsible for urological cancer progression is discussed, and their impact on molecular processes such as apoptosis, autophagy, EMT, and MMPs is highlighted. Finally, the use of circRNAs as biomarkers in the diagnosis and prognosis of urological cancer patients is discussed to translate current findings in the clinic for better treatment of patients. Furthermore, since circRNAs can be transferred to tumor via exosomes and the interactions in tumor microenvironment provided by exosomes such as between macrophages and cancer cells is of importance in cancer progression, a separate section has been devoted to the role of exosomal circRNAs in urological tumors.
Collapse
Affiliation(s)
- Zhibin Zhang
- College of Traditional Chinese Medicine, Chengde Medical College, Chengde, 067000, Hebei, China.
| | - Zhixu Gao
- Chengde Medical College, Chengde, 067000, Hebei, China
| | - Huimin Fang
- Chengde Medical College, Chengde, 067000, Hebei, China
| | - Yutang Zhao
- Chengde Medical College, Chengde, 067000, Hebei, China
| | - Rong Xing
- Chengde Medical College, Chengde, 067000, Hebei, China
| |
Collapse
|
5
|
Cheng X, Yang H, Chen Y, Zeng Z, Liu Y, Zhou X, Zhang C, Xie A, Wang G. METTL3-mediated m 6A modification of circGLIS3 promotes prostate cancer progression and represents a potential target for ARSI therapy. Cell Mol Biol Lett 2024; 29:109. [PMID: 39143552 PMCID: PMC11325714 DOI: 10.1186/s11658-024-00628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been shown to be involved in tumorigenesis and progression. However, the role of circGLIS3 (hsa_circ_0002874) in prostate cancer (PCa) has yet not been reported. METHODS Candidate circRNA were determined through comprehensive analysis of public datasets, PCa cell lines, and tissues data. A series of cellular functional assays, including CCK-8, colony formation, wound healing, and transwell assays were performed. Subsequently, RNA sequencing, RNA immunoprecipitation, methylated RNA immunoprecipitation, microRNA pulldown, luciferase reporter assay, and western blot were used to explore the underlying molecular mechanisms. Moreover, the xenograft tumor mouse model was established to elucidate the function of circGLIS3. RESULTS CircGLIS3, derived from exon 2 of the parental GLIS3 gene, was identified as a novel oncogenic circRNA in PCa that was closely associated with the biochemical recurrence. Its expression levels were upregulated in PCa tissues and cell lines as well as enzalutamide high-resistant cells. The cellular functional assays revealed that circGLIS3 promoted PCa cell proliferation, migration, and invasion. METTL3-mediated N6-methyladenosine (m6A) modification maintained its upregulation by enhancing its stability. Mechanically, CircGLIS3 sponged miR-661 to upregulate MDM2, thus regulating the p53 signaling pathway to promote cell proliferation, migration, and invasion. Furthermore, in vitro and in vivo experiments, the knockdown of circGLIS3 improved the response of PCa cells to ARSI therapies such as enzalutamide. CONCLUSIONS METTL3-mediated m6A modification of circGLIS3 regulates the p53 signaling pathway via the miR-661/MDM2 axis, thereby facilitating PCa progression. Meanwhile, this study unveils a promising potential target for ARSI therapy for PCa.
Collapse
Affiliation(s)
- Xiaofeng Cheng
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China
| | - Heng Yang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China
| | - Yujun Chen
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China
| | - Zhenhao Zeng
- Department of Urology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, Jiangxi, China
| | - Yifu Liu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China
| | - Xiaochen Zhou
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China
| | - An Xie
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China.
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China.
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China.
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China.
| |
Collapse
|
6
|
Urabe F. The relevance of circRNAs in serum of patients undergoing prostate biopsy. Int J Urol 2024; 31:581. [PMID: 38469670 DOI: 10.1111/iju.15452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Affiliation(s)
- Fumihiko Urabe
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Wang Q, Cheng B, Singh S, Tao Y, Xie Z, Qin F, Shi X, Xu J, Hu C, Tan W, Li H, Huang H. A protein-encoding CCDC7 circular RNA inhibits the progression of prostate cancer by up-regulating FLRT3. NPJ Precis Oncol 2024; 8:11. [PMID: 38225404 PMCID: PMC10789799 DOI: 10.1038/s41698-024-00503-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
Circular RNAs (circRNAs) are a family of endogenous RNAs that have become a focus of biological research in recent years. Emerging evidence has revealed that circRNAs exert biological functions by acting as transcriptional regulators, microRNA sponges, and binding partners with RNA-binding proteins. However, few studies have identified coding circRNAs, which may lead to a hidden repertoire of proteins. In this study, we unexpectedly discovered a protein-encoding circular RNA circCCDC7(15,16,17,18,19) while we were searching for prostate cancer related chimeric RNAs. circCCDC7(15,16,17,18,19) is derived from exon 19 back spliced to exon 15 of the CCDC7 gene. It is significantly downregulated in patients with high Gleason score. Prostate cancer patients with decreased circCCDC7(15,16,17,18,19) expression have a worse prognosis, while linear CCDC7 had no such association. Overexpressed circCCDC7(15,16,17,18,19) inhibited prostate cancer cell migration, invasion, and viability, supporting classification of circCCDC7(15,16,17,18,19) as a bona fide tumor suppressor gene. We provide evidence that its tumor suppressive activity is driven by the protein it encodes, and that circCCDC7(15,16,17,18,19) encodes a secretory protein. Consistently, conditioned media from circCCDC7(15,16,17,18,19) overexpressing cells has the same tumor suppressive activity. We further demonstrate that the tumor suppressive activity of circCCDC7(15,16,17,18,19) is at least partially mediated by FLRT3, whose expression also negatively correlates with Gleason score and clinical prognosis. In conclusion, circCCDC7(15,16,17,18,19) functions as a tumor suppressor in prostate cancer cells through the circCCDC7-180aa secretory protein it encodes, and is a promising therapeutic peptide for prostate cancer.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Bisheng Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Sandeep Singh
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yiran Tao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhongqiu Xie
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Fujun Qin
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Xinrui Shi
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jingjing Xu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chenxi Hu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| |
Collapse
|
8
|
Dong X, Chen X, Zhao Y, Wu Q, Ren Y. CircTMEM87A promotes the tumorigenesis of gastric cancer by regulating the miR-1276/SLC7A11 axis. J Gastroenterol Hepatol 2024; 39:121-132. [PMID: 38037531 DOI: 10.1111/jgh.16402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/27/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Gastric cancer (GC) is a common malignancy with high incidence and mortality, and its pathogenesis involves the regulation of circular RNAs (circRNAs). However, the molecular mechanism of circTMEM87A in GC malignant progression is uncertain. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expressions of circTMEM87A, miR-1276, and solute carrier family 7 membrane 11 (SLC7A11). Western blot was applied to detect protein expression levels of EMT-related proteins (vimentin and E-cadherin) and SLC7A11. Cell counting kit-8 assay (CCK8) and thymidine analog 5-ethynyl-2'-deoxyuridine (EdU) were performed to assess cell proliferation. Apoptosis was investigated using flow cytometry. Transwell assay and wound healing assay were carried out to examine the migration of MKN-7 and AGS cells. The Cellular ROS Assay Kit, Iron Assay Kit, and GSH/GSSG Ratio Detection Assay Kit were utilized to monitor lipid ROS level, iron level, and GSH/GSSG ratio, respectively. The interaction between miR-1276 and circTMEM87A or SLC7A11 was investigated using dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. A xenograft mouse model was constructed to explore the function of circTMEM87A in tumor formation in vivo. RESULTS CircTMEM87A and SLC7A11 were upregulated, while miR-1276 was downregulated in GC tissues and cells. Knockdown of circTMEM87A suppressed the proliferation and migration and promoted apoptosis and ferroptosis of GC cells. CircTMEM87A served as a sponge for miR-1276, and miR-1276 inhibitor relieved the circTMEM87A knockdown-induced effects on GC cell phenotypes. Similarly, SLC7A11, a downstream gene of miR-1276, rescued miR-1276 overexpression-induced effects on GC cell function. Furthermore, circTMEM87A knockdown inhibited GC cell tumor phenotypes in vivo. CONCLUSION CircTMEM87A promoted the proliferation and migration and inhibited apoptosis and ferroptosis of GC cells by increasing SLC7A11 expression through binding to miR-1276.
Collapse
Affiliation(s)
- Xueguang Dong
- Department of Clinical Laboratory, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, 271100, Shandong, China
| | - Xiumei Chen
- Department of Clinical Laboratory, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, 271100, Shandong, China
| | - Yuanhao Zhao
- Department of Clinical Laboratory, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, 271100, Shandong, China
| | - Qunyan Wu
- Department of Clinical Laboratory, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, 271100, Shandong, China
| | - Yuguo Ren
- Department of Clinical Laboratory, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, 271100, Shandong, China
| |
Collapse
|
9
|
Pudova E, Kobelyatskaya A, Emelyanova M, Snezhkina A, Fedorova M, Pavlov V, Guvatova Z, Dalina A, Kudryavtseva A. Non-Coding RNAs and the Development of Chemoresistance to Docetaxel in Prostate Cancer: Regulatory Interactions and Approaches Based on Machine Learning Methods. Life (Basel) 2023; 13:2304. [PMID: 38137905 PMCID: PMC10744715 DOI: 10.3390/life13122304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Chemotherapy based on taxane-class drugs is the gold standard for treating advanced stages of various oncological diseases. However, despite the favorable response trends, most patients eventually develop resistance to this therapy. Drug resistance is the result of a combination of different events in the tumor cells under the influence of the drug, a comprehensive understanding of which has yet to be determined. In this review, we examine the role of the major classes of non-coding RNAs in the development of chemoresistance in the case of prostate cancer, one of the most common and socially significant types of cancer in men worldwide. We will focus on recent findings from experimental studies regarding the prognostic potential of the identified non-coding RNAs. Additionally, we will explore novel approaches based on machine learning to study these regulatory molecules, including their role in the development of drug resistance.
Collapse
Affiliation(s)
- Elena Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Marina Emelyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiya Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladislav Pavlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Zulfiya Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia
| | - Alexandra Dalina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
10
|
Zhan J, Yang J, Zheng J, Qi Y, Ye Y, Chen X, Wei X. CircMIRLET7BHG, upregulated in an m6A-dependent manner, induces the nasal epithelial barrier dysfunction in allergic rhinitis pathogenesis. Int Immunopharmacol 2023; 125:111162. [PMID: 37976602 DOI: 10.1016/j.intimp.2023.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE Allergic rhinitis (AR) remains a frequent aspiratory allergic inflammatory disorder with a high incidence. Circular RNAs (circRNAs) have been revealed to participate in the pathogenesis of AR. This study investigated the biological function of circMIRLET7BHG (hsa_circ_0008668) in AR progression. METHODS Ovalbumin (OVA)-exposed human nasal epithelial cell line (HNEpC) and mice were adopted as the in vitro and in vivo models of AR. Immunofluorescence staining was used to determine epithelial tight junction protein expression. Target molecule levels were assessed by RT-qPCR and Western blotting. Localization of circMIRLET7BHG and IGF2BP1 was observed by RNA-FISH and immunofluorescence. Epithelial barrier damage was determined by transepithelial electrical resistance and fluorescein isothiocyanate-dextran (FD4) permeability. Serum concentrations of IgE, sIgE, IFN-γ, IL-4, and IL-5 were detected by ELISA. Apoptosis, pathological changes, and eosinophil infiltration in nasal mucosa tissues were evaluated by TUNEL, H&E, and Sirius red staining, respectively. Molecular mechanism was analyzed by RNA pull-down, RIP, and MeRIP assays. RESULTS An increased expression of circMIRLET7BHG was found in AR patients and experimental models. Down-regulation of circMIRLET7BHG attenuated OVA-induced allergic symptoms via relieving epithelial thicknesses, eosinophil infiltration, apoptosis, and inflammatory response in mice. Subsequently, circMIRLET7BHG deficiency prevented OVA-induced epithelial barrier dysfunction by reducing epithelial permeability, and inhibiting tight junction proteins. Mechanistically, methyltransferase-like 3 (METTL3) enhanced circMIRLET7BHG expression via m6A methylation, which enhanced ADAM10 mRNA stability via interaction with IGF2BP1. CONCLUSION METTL3-mediated m6A modification increased circMIRLET7BHG expression that consequently raised ADAM10 mRNA stability via interplay with IGF2BP1, thereby promoting AR by inducing epithelial barrier dysfunction.
Collapse
Affiliation(s)
- Jiabin Zhan
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19, Xiuhua Road, Haikou City, Hainan Province 570311, P.R. China
| | - Jie Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19, Xiuhua Road, Haikou City, Hainan Province 570311, P.R. China
| | - Jing Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19, Xiuhua Road, Haikou City, Hainan Province 570311, P.R. China
| | - Yanyan Qi
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19, Xiuhua Road, Haikou City, Hainan Province 570311, P.R. China
| | - Yi Ye
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19, Xiuhua Road, Haikou City, Hainan Province 570311, P.R. China
| | - Xiaoqian Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19, Xiuhua Road, Haikou City, Hainan Province 570311, P.R. China
| | - Xin Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19, Xiuhua Road, Haikou City, Hainan Province 570311, P.R. China.
| |
Collapse
|
11
|
Majumder A. Targeting Homocysteine and Hydrogen Sulfide Balance as Future Therapeutics in Cancer Treatment. Antioxidants (Basel) 2023; 12:1520. [PMID: 37627515 PMCID: PMC10451792 DOI: 10.3390/antiox12081520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
A high level of homocysteine (Hcy) is associated with oxidative/ER stress, apoptosis, and impairment of angiogenesis, whereas hydrogen sulfide (H2S) has been found to reverse this condition. Recent studies have shown that cancer cells need to produce a high level of endogenous H2S to maintain cell proliferation, growth, viability, and migration. However, any novel mechanism that targets this balance of Hcy and H2S production has yet to be discovered or exploited. Cells require homocysteine metabolism via the methionine cycle for nucleotide synthesis, methylation, and reductive metabolism, and this pathway supports the high proliferative rate of cancer cells. Although the methionine cycle favors cancer cells for their survival and growth, this metabolism produces a massive amount of toxic Hcy that somehow cancer cells handle very well. Recently, research showed specific pathways important for balancing the antioxidative defense through H2S production in cancer cells. This review discusses the relationship between Hcy metabolism and the antiapoptotic, antioxidative, anti-inflammatory, and angiogenic effects of H2S in different cancer types. It also summarizes the historical understanding of targeting antioxidative defense systems, angiogenesis, and other protective mechanisms of cancer cells and the role of H2S production in the genesis, progression, and metastasis of cancer. This review defines a nexus of diet and precision medicine in targeting the delicate antioxidative system of cancer and explores possible future therapeutics that could exploit the Hcy and H2S balance.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
12
|
Du J, Zhuo Y, Sun X, Nie M, Yang J, Luo X, Gu H. hsa_circ_0000285 sponging miR-582-3p promotes neuroblastoma progression by regulating the Wnt/β-catenin signaling pathway. Open Med (Wars) 2023; 18:20230726. [PMID: 37465351 PMCID: PMC10350891 DOI: 10.1515/med-2023-0726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 07/20/2023] Open
Abstract
Circular RNA has been reported to play a key role in neuroblastoma (NB); however, the role of circ_0000285 in NB remains unclear. The aim of this study was to elucidate the role of circ_0000285 in NB. We studied the expression patterns of miR-582-3p and circ_0000285 in NB tissues and cells using real-time quantitative polymerase chain reaction. The expression of proteins associated with apoptosis (Bax and Bcl-2) and the proteins associated with Wnt/β-catenin (Wnt, p-Gsk-3β, Gsk-3β, β-catenin, and C-myc) were quantified by western blotting. In vivo animal models were prepared for the functional verification of circ_0000285 on tumor growth. The potential binding of circ_0000285 to miR-582-3p was ascertained using dual-luciferase reporter and RNA-binding protein immunoprecipitation experiments. Noticeable upregulation of circ_0000285 expression was observed in NB tumor samples and cell lines. In vivo and in vitro experiments indicated that the absence of circ_0000285 repressed NB cell proliferation and migration, provoked apoptosis, and impaired the activity of Wnt/β-catenin signaling. miR-582-3p is targeted by circ_0000285 and is poorly expressed in NB cells. The additional repression of miR-582-3p in NB cells after circ_0000285 silencing largely recovered circ_0000285 silencing-suppressed NB cell proliferation and migration and enhanced apoptosis. The absence of miR-582-3p restored Wnt/β-catenin signaling activity impaired by the knockdown of circ_0000285. circ_0000285 functions as an miR-582-3p sponge to strengthen Wnt/β-catenin signaling activity, thus exacerbating NB development.
Collapse
Affiliation(s)
- Jun Du
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Yingquan Zhuo
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Xu Sun
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Meilan Nie
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Jiafei Yang
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Xi Luo
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Huajian Gu
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, No. 16
Beijing Road, Yunyan District, Guiyang, Guizhou 550004, China
| |
Collapse
|
13
|
Vahabzadeh G, Khalighfard S, Alizadeh AM, Yaghobinejad M, Mardani M, Rastegar T, Barati M, Roudbaraki M, Esmati E, Babaei M, Kazemian A. A systematic method introduced a common lncRNA-miRNA-mRNA network in the different stages of prostate cancer. Front Oncol 2023; 13:1142275. [PMID: 37251950 PMCID: PMC10215985 DOI: 10.3389/fonc.2023.1142275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction The present study aimed to investigate the interaction of the common lncRNA-miRNA-mRNA network involved in signaling pathways in different stages of prostate cancer (PCa) by using bioinformatics and experimental methods. Methods Seventy subjects included sixty PCa patients in Local, Locally Advanced, Biochemical Relapse, Metastatic, and Benign stages, and ten healthy subjects were entered into the current study. The mRNAs with significant expression differences were first found using the GEO database. The candidate hub genes were then identified by analyzing Cytohubba and MCODE software. Cytoscape, GO Term, and KEGG software determined hub genes and critical pathways. The expression of candidate lncRNAs, miRNAs, and mRNAs was then assessed using Real-Time PCR and ELISA techniques. Results 4 lncRNAs, 5 miRNAs, and 15 common target genes were detected in PCa patients compared with the healthy group. Unlike the tumor suppressors, the expression levels of common onco-lncRNAs, oncomiRNAs, and oncogenes showed a considerable increase in patients with advanced stages; Biochemical Relapse and Metastatic, in comparison to the primary stages; Local and Locally Advanced. Additionally, their expression levels significantly increased with a higher Gleason score than a lower one. Conclusion Identifying a common lncRNA-miRNA-mRNA network associated with prostate cancer may be clinically valuable as potential predictive biomarkers. They can also serve as novel therapeutic targets for PCa patients.
Collapse
Affiliation(s)
- Gelareh Vahabzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Yaghobinejad
- Department of Anatomy, School of Medicine Tehran University of Medical Sciences, Tehran, Iran
| | - Mahta Mardani
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morad Roudbaraki
- Laboratory of Cell Physiology, Inserm U1003, University of Lille, Villeneuve d’Ascq, France
| | - Ebrahim Esmati
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Babaei
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Kazemian
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Hashemi M, Zandieh MA, Talebi Y, Rahmanian P, Shafiee SS, Nejad MM, Babaei R, Sadi FH, Rajabi R, Abkenar ZO, Rezaei S, Ren J, Nabavi N, Khorrami R, Rashidi M, Hushmandi K, Entezari M, Taheriazam A. Paclitaxel and docetaxel resistance in prostate cancer: Molecular mechanisms and possible therapeutic strategies. Biomed Pharmacother 2023; 160:114392. [PMID: 36804123 DOI: 10.1016/j.biopha.2023.114392] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Prostate cancer is among most malignant tumors around the world and this urological tumor can be developed as result of genomic mutations and their accumulation during progression towards advanced stage. Due to lack of specific symptoms in early stages of prostate cancer, most cancer patients are diagnosed in advanced stages that tumor cells display low response to chemotherapy. Furthermore, genomic mutations in prostate cancer enhance the aggressiveness of tumor cells. Docetaxel and paclitaxel are suggested as well-known compounds for chemotherapy of prostate tumor and they possess a similar function in cancer therapy that is based on inhibiting depolymerization of microtubules, impairing balance of microtubules and subsequent delay in cell cycle progression. The aim of current review is to highlight mechanisms of paclitaxel and docetaxel resistance in prostate cancer. When oncogenic factors such as CD133 display upregulation and PTEN as tumor-suppressor shows decrease in expression, malignancy of prostate tumor cells enhances and they can induce drug resistance. Furthermore, phytochemicals as anti-tumor compounds have been utilized in suppressing chemoresistance in prostate cancer. Naringenin and lovastatin are among the anti-tumor compounds that have been used for impairing progression of prostate tumor and enhancing drug sensitivity. Moreover, nanostructures such as polymeric micelles and nanobubbles have been utilized in delivery of anti-tumor compounds and decreasing risk of chemoresistance development. These subjects are highlighted in current review to provide new insight for reversing drug resistance in prostate cancer.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Yasmin Talebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sareh Sadat Shafiee
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Melina Maghsodlou Nejad
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Roghayeh Babaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Hasani Sadi
- General Practitioner, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
15
|
Sadrkhanloo M, Paskeh MDA, Hashemi M, Raesi R, Motahhary M, Saghari S, Sharifi L, Bokaie S, Mirzaei S, Entezari M, Aref AR, Salimimoghadam S, Rashidi M, Taheriazam A, Hushmandi K. STAT3 signaling in prostate cancer progression and therapy resistance: An oncogenic pathway with diverse functions. Biomed Pharmacother 2023; 158:114168. [PMID: 36916439 DOI: 10.1016/j.biopha.2022.114168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
The categorization of cancers demonstrates that prostate cancer is the most common malignancy in men and it causes high death annually. Prostate cancer patients are diagnosed mainly via biomarkers such as PSA test and patients show poor prognosis. Prostate cancer cells rapidly diffuse into different parts of body and their metastasis is also a reason for death. Current therapies for prostate cancer patients include chemotherapy, surgery and radiotherapy as well as targeted therapy. The progression of prostate cancer cells is regulated by different factors that STAT3 signaling is among them. Growth factors and cytokines such as IL-6 can induce STAT3 signaling and it shows carcinogenic impact. Activation of STAT3 signaling occurs in prostate cancer and it promotes malignant behavior of tumor cells. Induction of STAT3 signaling increases glycolysis and proliferation of prostate cancer cells and prevents apoptosis. Furthermore, STAT3 signaling induces EMT mechanism in increasing cancer metastasis. Activation of STAT3 signaling stimulates drug resistance and the limitation of current works is lack of experiment related to role of STAT3 signaling in radio-resistance in prostate tumor. Calcitriol, capsazepine and β-elemonic are among the compounds capable of targeting STAT3 signaling and its inhibition in prostate cancer therapy. In addition to natural products, small molecules targeting STAT3 signaling have been developed in prostate cancer therapy.
Collapse
Affiliation(s)
- Mehrdokht Sadrkhanloo
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Laleh Sharifi
- Uro-oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc., 6, Tide Street, Boston, MA 02210, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
16
|
Ghamlouche F, Yehya A, Zeid Y, Fakhereddine H, Fawaz J, Liu YN, Al-Sayegh M, Abou-Kheir W. MicroRNAs as clinical tools for diagnosis, prognosis, and therapy in prostate cancer. Transl Oncol 2023; 28:101613. [PMID: 36608541 PMCID: PMC9827391 DOI: 10.1016/j.tranon.2022.101613] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed cancers among men worldwide. Despite the presence of accumulated clinical strategies for PCa management, limited prognostic/sensitive biomarkers are available to follow up on disease occurrence and progression. MicroRNAs (miRNAs) are small non-coding RNAs that control gene expression through post-transcriptional regulation of their complementary target messenger RNA (mRNA). MiRNAs modulate fundamental biological processes and play crucial roles in the pathology of various diseases, including PCa. Multiple evidence proved an aberrant miRNA expression profile in PCa, which is actively involved in the carcinogenic process. The robust and pleiotropic impact of miRNAs on PCa suggests them as potential candidates to help more understand the molecular landscape of the disease, which is likely to provide tools for early diagnosis and prognosis as well as additional therapeutic strategies to manage prostate tumors. Here, we emphasize the most consistently reported dysregulated miRNAs and highlight the contribution of their altered downstream targets with PCa hallmarks. Also, we report the potential effectiveness of using miRNAs as diagnostic/prognostic biomarkers in PCa and the high-throughput profiling technologies that are being used in their detection. Another key aspect to be discussed in this review is the promising implication of miRNAs molecules as therapeutic tools and targets for fighting PCa.
Collapse
Affiliation(s)
- Fatima Ghamlouche
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Amani Yehya
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Yousef Zeid
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hiam Fakhereddine
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Jhonny Fawaz
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Yen-Nien Liu
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi 2460, United Arab Emirates.
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon.
| |
Collapse
|
17
|
Miao S, Wang L, Guan S, Gu T, Wang H, Shangguan W, Wang W, Liu Y, Liang X. Integrated whole transcriptome analysis for the crucial regulators and functional pathways related to cardiac fibrosis in rats. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:5413-5429. [PMID: 36896551 DOI: 10.3934/mbe.2023250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
BACKGROUND Cardiac fibrosis has gradually gained significance in the field of cardiovascular disease; however, its specific pathogenesis remains unclear. This study aims to establish the regulatory networks based on whole-transcriptome RNA sequencing analyses and reveal the underlying mechanisms of cardiac fibrosis. METHODS An experimental model of myocardial fibrosis was induced using the chronic intermittent hypoxia (CIH) method. Expression profiles of long non-coding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA) were acquired from right atrial tissue samples of rats. Differentially expressed RNAs (DERs) were identified, and functional enrichment analysis was performed. Moreover, a protein-protein interaction (PPI) network and competitive endogenous RNA (ceRNA) regulatory network that are related to cardiac fibrosis were constructed, and the relevant regulatory factors and functional pathways were identified. Finally, the crucial regulators were validated using qRT-PCR. RESULTS DERs, including 268 lncRNAs, 20 miRNAs, and 436 mRNAs, were screened. Further, 18 relevant biological processes, such as "chromosome segregation, " and 6 KEGG signaling pathways, such as "cell cycle, " were significantly enriched. The regulatory relationship of miRNA-mRNA-KEGG pathways showed eight overlapping disease pathways, including "pathways in cancer." In addition, crucial regulatory factors, such as Arnt2, WNT2B, GNG7, LOC100909750, Cyp1a1, E2F1, BIRC5, and LPAR4, were identified and verified to be closely related to cardiac fibrosis. CONCLUSION This study identified the crucial regulators and related functional pathways in cardiac fibrosis by integrating the whole transcriptome analysis in rats, which might provide novel insights into the pathogenesis of cardiac fibrosis.
Collapse
Affiliation(s)
- Shuai Miao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Lijun Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Siyu Guan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Tianshu Gu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Hualing Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Wenfeng Shangguan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Weiding Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yu Liu
- Taikang Ningbo Hospital, Ningbo 315100, Zhejiang, China
| | - Xue Liang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
18
|
Li J, Cao X, Chu T, Lin K, Chen L, Lv J, Tan Y, Chen M, Li M, Wang K, Zheng Q, Li D. The circHMGCS1-miR-205-5p-ErBB3 axis mediated the Sanggenon C-induced anti-proliferation effects on human prostate cancer. Pharmacol Res 2023; 187:106584. [PMID: 36462326 DOI: 10.1016/j.phrs.2022.106584] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
Prostate cancer (PCa) is associated with a high incidence and metastasis rate globally, resulting in an unsatisfactory prognosis and a huge economic burden due to the current deficient of therapeutic strategies. As the most abundant component of Cortex Mori, Sanggenon C (SC) is well known to possess bioactivities in tumors, but its mechanism is poorly understood. Consequently, we attempted to investigate whether SC could modulate circular RNA(s) levels and hence anti-PCa development. We found that SC dramatically promoted cell apoptosis and induced G0/G1 phase arrest in PCa cell lines via the circHMGCS1-miR-205-5p-ErBB3 axis. In brief, circHMGCS1 is highly expressed in PCa and is positively correlated with the degree of malignancy. Over-expression of circHMGCS1 is not only associated with the proliferation of PCa cells but also blocks SC-induced pro-apoptotic effects. As a verified sponge of circHMGCS1, miR-205-5p is down-regulated in PCa tumors, which negatively regulates PCa cell proliferation by modulating ErBB3 expression. After miR-205-5p mimics or inhibitors were used to transfect PCa cells, the effects of circHMGCS1 OE and SC on PCa cells were completely diminished. Similar to miR-205-5p inhibitors, siErBB3 could oppose SC-triggered pro-apoptotic effects on PCa cells. All these results were confirmed in vivo. Together, SC exerts its anti-tumor effects on PCa by inhibiting circHMGCS1 expression and results in the latter losing the ability to sponge miR-205-5p. Subsequently, unfettered miR-205-5p could mostly down-regulate ErBB3 expression by binding to the 5'UTR of ErBB3 mRNA, which eventually resulted in PCa cell cycle arrest and pro-apoptosis.
Collapse
Affiliation(s)
- Jie Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Xinyue Cao
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Ting Chu
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Kehao Lin
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Lei Chen
- School of Nursing, Binzhou Medical University, 264003, Yantai, China
| | - Junlin Lv
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Yujun Tan
- Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., 273400, Linyi, China
| | - Miaomiao Chen
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Minjing Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Kejun Wang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Qiusheng Zheng
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China.
| | - Defang Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China.
| |
Collapse
|
19
|
Circ-CREBBP inhibits sperm apoptosis via the PI3K-Akt signaling pathway by sponging miR-10384 and miR-143-3p. Commun Biol 2022; 5:1339. [PMID: 36476986 PMCID: PMC9729231 DOI: 10.1038/s42003-022-04263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Male reproductive diseases are becoming increasingly prominent, and sperm quality is an important indicator to reflect these diseases. Seminal plasma extracellular vesicles (SPEVs) are involved in sperm motility. However, their effects on sperm remain unclear. Here, we identified 222 differentially expressed circRNAs in SPEVs between boars with high or low sperm motility. We found that circ-CREBBP promoted sperm motility and inhibited sperm apoptosis by sponging miR-10384 and miR-143-3p. In addition, miR-10384 and miR-143-3p can regulate the expression of MCL1, CREB1 and CREBBP. Furthermore, we demonstrated that MCL1 interacted directly with BAX and that CREBBP interacted with CREB1 in sperm. We showed that inhibition of circ-CREBBP can reduce the expression of MCL1, CREB1 and CREBBP and increase the expression of BAX and CASP3, thus promoting sperm apoptosis. Our results suggest that circ-CREBBP may be a promising biomarker and therapeutic target for male reproductive diseases.
Collapse
|
20
|
Cheng X, Shen C, Liao Z. High Expression of Circular RNA-Mitochondrial tRNA Translation Optimization 1 Assists the Diagnosis of High-Risk Human Papillomavirus Infection in Cervical Cancer. J Low Genit Tract Dis 2022; 26:212-218. [PMID: 35384929 PMCID: PMC9245530 DOI: 10.1097/lgt.0000000000000675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Persistence of high-risk human papillomavirus (HR-HPV) infection is a paramount determinant in cervical cancer (CC) development. Circular RNAs have the potential to be promising biomarkers for various cancers. This study explored circular RNA-mitochondrial tRNA translation optimization 1 (circMTO1) expression in the serum of CC patients and its clinical value in diagnosing CC and predicting HR-HPV infection. MATERIALS AND METHODS In total, 125 CC patients (including 78 cases with HR-HPV) were enrolled, with another 76 healthy people as controls. Serum circMTO1 and miR-199a expressions were detected by reverse transcription-quantitative polymerase chain reaction, and the diagnostic efficacy of circMTO1 for CC and HR-HPV infection was analyzed by the receiver operating characteristic curve. According to the median of serum circMTO1 expression, CC patients were assigned into circMTO1 low/high expression groups to analyze the correlation between circMTO1 and clinical parameters using the Fisher and χ 2 tests. Independent association of circMTO1 with HR-HPV infection in CC was evaluated via logistics multivariate regression analysis. Targeted relationship between miR-199a and circMTO1 was predicted by Starbase Web site and validated via dual-luciferase assay, with their correlation further assessed by Pearson analysis. RESULTS Serum circMTO1 was increased in CC patients and prominently elevated in HR-HPV-positive CC patients, with a level greater than 1.485 assisting CC diagnosis and a level greater than 2.480 assisting HR-HPV-positive diagnosis. The circMTO1 was interrelated to clinical stage, tumor differentiation, lymph node metastasis, invasion depth, and independently linked with HR-HPV infection in CC. Serum miR-199a was downregulated in HR-HPV-positive CC patients and inversely correlated with circMTO1. CONCLUSIONS Serum circMTO1 is upregulated in HR-HPV-positive CC patients and has a diagnostic value for HR-HPV infection in CC.
Collapse
|
21
|
Novel circular RNA circ_0086722 drives tumor progression by regulating the miR-339-5p/STAT5A axis in prostate cancer. Cancer Lett 2022; 533:215606. [DOI: 10.1016/j.canlet.2022.215606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 12/31/2022]
|