1
|
Thamjamrassri P, Ariyachet C. Circular RNAs in Cell Cycle Regulation of Cancers. Int J Mol Sci 2024; 25:6094. [PMID: 38892280 PMCID: PMC11173060 DOI: 10.3390/ijms25116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer has been one of the most problematic health issues globally. Typically, all cancers share a common characteristic or cancer hallmark, such as sustaining cell proliferation, evading growth suppressors, and enabling replicative immortality. Indeed, cell cycle regulation in cancer is often found to be dysregulated, leading to an increase in aggressiveness. These dysregulations are partly due to the aberrant cellular signaling pathway. In recent years, circular RNAs (circRNAs) have been widely studied and classified as one of the regulators in various cancers. Numerous studies have reported that circRNAs antagonize or promote cancer progression through the modulation of cell cycle regulators or their associated signaling pathways, directly or indirectly. Mostly, circRNAs are known to act as microRNA (miRNA) sponges. However, they also hold additional mechanisms for regulating cellular activity, including protein binding, RNA-binding protein (RBP) recruitment, and protein translation. This review will discuss the current knowledge of how circRNAs regulate cell cycle-related proteins through the abovementioned mechanisms in different cancers.
Collapse
Affiliation(s)
- Pannathon Thamjamrassri
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Biochemistry Program, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaiyaboot Ariyachet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Snyder K, Dixon CE, Henchir J, Gorse K, Vagni VA, Janesko-Feldman K, Kochanek PM, Jackson TC. Gene knockout of RNA binding motif 5 in the brain alters RIMS2 protein homeostasis in the cerebellum and Hippocampus and exacerbates behavioral deficits after a TBI in mice. Exp Neurol 2024; 374:114690. [PMID: 38218585 PMCID: PMC11178365 DOI: 10.1016/j.expneurol.2024.114690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
RNA binding motif 5 (RBM5) is a tumor suppressor in cancer but its role in the brain is unclear. We used conditional gene knockout (KO) mice to test if RBM5 inhibition in the brain affects chronic cortical brain tissue survival or function after a controlled cortical impact (CCI) traumatic brain injury (TBI). RBM5 KO decreased baseline contralateral hemispheric volume (p < 0.0001) and exacerbated ipsilateral tissue loss at 21 d after CCI in male mice vs. wild type (WT) (p = 0.0019). CCI injury, but not RBM5 KO, impaired beam balance performance (0-5d post-injury) and swim speed on the Morris Water Maze (MWM) (19-20d) (p < 0.0001). RBM5 KO was associated with mild learning impairment in female mice (p = 0.0426), reflected as a modest increase in escape latency early in training (14-18d post-injury). However, KO did not affect spatial memory at 19d post-injury in male or in female mice but it was impaired by CCI in females (p = 0.0061). RBM5 KO was associated with impaired visual function in male mice on the visible platform test at 20d post-injury (p = 0.0256). To explore signaling disturbances in KOs related to behavior, we first cross-referenced known brain-specific RBM5-regulated gene targets with genes in the curated RetNet database that impact vision. We then performed a secondary literature search on RBM5-regulated genes with a putative role in hippocampal function. Regulating synaptic membrane exocytosis 2 (RIMS) 2 was identified as a gene of interest because it regulates both vision and hippocampal function. Immunoprecipitation and western blot confirmed protein expression of a novel ~170 kDa RIMS2 variant in the cerebellum, and in the hippocampus, it was significantly increased in KO vs WT (p < 0.0001), and in a sex-dependent manner (p = 0.0390). Furthermore, male KOs had decreased total canonical RIMS2 levels in the cerebellum (p = 0.0027) and hippocampus (p < 0.0001), whereas female KOs had increased total RIMS1 levels in the cerebellum (p = 0.0389). In summary, RBM5 modulates brain function in mammals. Future work is needed to test if RBM5 dependent regulation of RIMS2 splicing effects vision and cognition, and to verify potential sex differences on behavior in a larger cohort of mice.
Collapse
Affiliation(s)
- Kara Snyder
- University of South Florida, Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Dr, Tampa, FL 33602, United States of America; University of South Florida, Morsani College of Medicine, Department of Molecular Pharmacology & Physiology, 12901 Bruce B Downs Blvd, Tampa, FL 33612, United States of America.
| | - C Edward Dixon
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6(th) floor, Pittsburgh, PA 15224, United States of America.
| | - Jeremy Henchir
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6(th) floor, Pittsburgh, PA 15224, United States of America.
| | - Kiersten Gorse
- University of South Florida, Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Dr, Tampa, FL 33602, United States of America; University of South Florida, Morsani College of Medicine, Department of Molecular Pharmacology & Physiology, 12901 Bruce B Downs Blvd, Tampa, FL 33612, United States of America.
| | - Vincent A Vagni
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6(th) floor, Pittsburgh, PA 15224, United States of America.
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6(th) floor, Pittsburgh, PA 15224, United States of America.
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6(th) floor, Pittsburgh, PA 15224, United States of America.
| | - Travis C Jackson
- University of South Florida, Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Dr, Tampa, FL 33602, United States of America; University of South Florida, Morsani College of Medicine, Department of Molecular Pharmacology & Physiology, 12901 Bruce B Downs Blvd, Tampa, FL 33612, United States of America.
| |
Collapse
|
3
|
Yao X, Liu H, Wang Z, Lu F, Chen W, Feng Q, Miao Y, Zhang J, Wang Y, Chen Y, Xue L, Liu Y, Chen L, Zhang Q. Circular RNA EIF3I promotes papillary thyroid cancer progression by interacting with AUF1 to increase Cyclin D1 production. Oncogene 2023; 42:3206-3218. [PMID: 37697064 DOI: 10.1038/s41388-023-02830-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Circular RNAs (circRNAs) play an important role in regulating the development of human cancers through diverse biological functions. However, the exact molecular mechanisms underlying the role of circRNAs in papillary thyroid cancer (PTC) remain largely unknown. Here, we found that hsa_circ_0011385, designated as circular eukaryotic translation initiation factor 3 subunit I (circEIF3I), preferentially localized in the cytoplasm of PTC cells and was more stable than its linear counterpart, EIF3I. Gain- and loss-of-function studies indicated that circEIF3I promoted PTC progression by facilitating cell proliferation, cell cycle, cell migration, and invasion in vitro, as well as PTC cell proliferation in vivo. Mechanistically, circEIF3I interacted with AU-rich element (ARE) RNA-binding factor 1 (AUF1) in the cytoplasm of PTC cells, thus reducing the degradation of Cyclin D1 mRNA and increasing Cyclin D1 protein production, ultimately resulting in PTC progression. Collectively, our results demonstrate the vital role of circEIF3I in PTC progression, supporting its significance as a potential therapeutic target.
Collapse
Affiliation(s)
- Xuelin Yao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hanyuan Liu
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zhen Wang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Fangting Lu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wenying Chen
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qing Feng
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yahu Miao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jie Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yanlei Wang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ye Chen
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Liping Xue
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yehai Liu
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Liang Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Qiu Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
4
|
Sharko F, Rbbani G, Siriyappagouder P, Raeymaekers JAM, Galindo-Villegas J, Nedoluzhko A, Fernandes JMO. CircPrime: a web-based platform for design of specific circular RNA primers. BMC Bioinformatics 2023; 24:205. [PMID: 37208611 DOI: 10.1186/s12859-023-05331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/11/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are covalently closed-loop RNAs with critical regulatory roles in cells. Tens of thousands of circRNAs have been unveiled due to the recent advances in high throughput RNA sequencing technologies and bioinformatic tools development. At the same time, polymerase chain reaction (PCR) cross-validation for circRNAs predicted by bioinformatic tools remains an essential part of any circRNA study before publication. RESULTS Here, we present the CircPrime web-based platform, providing a user-friendly solution for DNA primer design and thermocycling conditions for circRNA identification with routine PCR methods. CONCLUSIONS User-friendly CircPrime web platform ( http://circprime.elgene.net/ ) works with outputs of the most popular bioinformatic predictors of circRNAs to design specific circular RNA primers. CircPrime works with circRNA coordinates and any reference genome from the National Center for Biotechnology Information database).
Collapse
Affiliation(s)
- Fedor Sharko
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33/2, 119071, Moscow, Russia
- Limited Liability Company ELGENE, Malaya Kalitnikovskaya 16, 109029, Moscow, Russia
- National Research Center "Kurchatov Institute", 1st Akademika Kurchatova Square, 123182, Moscow, Russia
| | - Golam Rbbani
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, PB 1490, 8049, Bodø, Norway
| | | | - Joost A M Raeymaekers
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, PB 1490, 8049, Bodø, Norway
| | - Jorge Galindo-Villegas
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, PB 1490, 8049, Bodø, Norway
| | - Artem Nedoluzhko
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, PB 1490, 8049, Bodø, Norway.
- Paleogenomics Laboratory, European University at Saint Petersburg, 6/1A Gagarinskaya st., 191187, Saint Petersburg, Russia.
| | - Jorge M O Fernandes
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, PB 1490, 8049, Bodø, Norway.
| |
Collapse
|
5
|
Roles of RNA-binding proteins in neurological disorders, COVID-19, and cancer. Hum Cell 2023; 36:493-514. [PMID: 36528839 PMCID: PMC9760055 DOI: 10.1007/s13577-022-00843-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
RNA-binding proteins (RBPs) have emerged as important players in multiple biological processes including transcription regulation, splicing, R-loop homeostasis, DNA rearrangement, miRNA function, biogenesis, and ribosome biogenesis. A large number of RBPs had already been identified by different approaches in various organisms and exhibited regulatory functions on RNAs' fate. RBPs can either directly or indirectly interact with their target RNAs or mRNAs to assume a key biological function whose outcome may trigger disease or normal biological events. They also exert distinct functions related to their canonical and non-canonical forms. This review summarizes the current understanding of a wide range of RBPs' functions and highlights their emerging roles in the regulation of diverse pathways, different physiological processes, and their molecular links with diseases. Various types of diseases, encompassing colorectal carcinoma, non-small cell lung carcinoma, amyotrophic lateral sclerosis, and Severe acute respiratory syndrome coronavirus 2, aberrantly express RBPs. We also highlight some recent advances in the field that could prompt the development of RBPs-based therapeutic interventions.
Collapse
|