1
|
Chattopadhyay S, Hazra R, Mallick A, Gayen S, Roy S. A review exploring the fusion of oncolytic viruses and cancer immunotherapy: An innovative strategy in the realm of cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189110. [PMID: 38754793 DOI: 10.1016/j.bbcan.2024.189110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Oncolytic viruses (OVs) are increasingly recognized as potent tools in cancer therapy, effectively targeting and eradicating oncogenic conditions while sparing healthy cells. They enhance antitumor immunity by triggering various immune responses throughout the cancer cycle. Genetically engineered OVs swiftly destroy cancerous tissues and activate the immune system by releasing soluble antigens like danger signals and interferons. Their ability to stimulate both innate and adaptive immunity makes them particularly attractive in cancer immunotherapy. Recent advancements involve combining OVs with other immune therapies, yielding promising results. Transgenic OVs, designed to enhance immunostimulation and specifically target cancer cells, further improve immune responses. This review highlights the intrinsic mechanisms of OVs and underscores their synergistic potential with other immunotherapies. It also proposes strategies for optimizing armed OVs to bolster immunity against tumors.
Collapse
Affiliation(s)
- Soumyadeep Chattopadhyay
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Rudradeep Hazra
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Arijit Mallick
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India.
| |
Collapse
|
2
|
Suzuki T, Uchida H. Induction of necroptosis in multinucleated giant cells induced by conditionally replicating syncytial oHSV in co-cultures of cancer cells and non-cancerous cells. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200803. [PMID: 38706990 PMCID: PMC11067338 DOI: 10.1016/j.omton.2024.200803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Viral modifications enabling syncytium formation in infected cells can augment lysis by oncolytic herpes simplex viruses (oHSVs) which selectively kill cancer cells. In the case of receptor-retargeted oHSVs (RR-oHSVs) that exclusively enter and spread to cancer cells, anti-tumor effects can be enhanced in a magnitude of >100,000-fold by modifying the virus to a syncytial type (RRsyn-oHSV). However, when syncytia containing non-cancerous cells are induced by conditionally replicating syncytial oHSV (CRsyn-oHSV), syncytial death occurs at an early stage. This results in limited anti-tumor effects of the CRsyn-oHSV. Here, we investigated whether necroptosis is involved in death of the syncytia formed by the fusion of cancer cells and non-cancerous cells. Mixed-lineage kinase domain-like (MLKL), a molecule executing necroptosis, was expressed in all murine cancer cell lines examined, while receptor-interacting protein kinase 3 (RIPK3), which phosphorylates MLKL, was absent from most cell lines. In contrast, RIPK3 was expressed in non-cancerous murine fibroblast cell lines. When a CRsyn-oHSV-infected RIPK3-deficient cancer cell line was co-cultured with the fibroblast cell line, but not with the cancer cells themselves, MLKL was phosphorylated and syncytial death was induced. These results indicate that early necroptosis is induced in multinucleated giant cells formed by CRsyn-oHSV when they also contain non-cancerous cells.
Collapse
Affiliation(s)
- Takuma Suzuki
- Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroaki Uchida
- Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
3
|
Liu T, Guo Y, Liao Y, Liu J. Mechanism-guided fine-tuned microbiome potentiates anti-tumor immunity in HCC. Front Immunol 2023; 14:1333864. [PMID: 38169837 PMCID: PMC10758498 DOI: 10.3389/fimmu.2023.1333864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Microbiome, including bacteria, fungi, and viruses, plays a crucial role in shaping distal and proximal anti-tumor immunity. Mounting evidence showed that commensal microbiome critically modulates immunophenotyping of hepatocellular carcinoma (HCC), a leading cause of cancer-related death. However, their role in anti-tumor surveillance of HCC is still poorly understood. Herein, we spotlighted growing interests in how the microbiome influences the progression and immunotherapeutic responses of HCC via changing local tumor microenvironment (TME) upon translocating to the sites of HCC through different "cell-type niches". Moreover, we summarized not only the associations but also the deep insight into the mechanisms of how the extrinsic microbiomes interplay with hosts to shape immune surveillance and regulate TME and immunotherapeutic responses. Collectively, we provided a rationale for a mechanism-guided fine-tuned microbiome to be neoadjuvant immunotherapy in the near future.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ya Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanxia Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinping Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
4
|
Charles J, Vrionis A, Mansur A, Mathias T, Shaikh J, Ciner A, Jiang Y, Nezami N. Potential Immunotherapy Targets for Liver-Directed Therapies, and the Current Scope of Immunotherapeutics for Liver-Related Malignancies. Cancers (Basel) 2023; 15:2624. [PMID: 37174089 PMCID: PMC10177356 DOI: 10.3390/cancers15092624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Liver cancer, including hepatocellular carcinoma and intrahepatic cholangiocarcinoma, is increasing in incidence and mortality across the globe. An improved understanding of the complex tumor microenvironment has opened many therapeutic doors and led to the development of novel pharmaceuticals targeting cellular signaling pathways or immune checkpoints. These interventions have significantly improved tumor control rates and patient outcomes, both in clinical trials and in real-world practice. Interventional radiologists play an important role in the multidisciplinary team given their expertise in minimally invasive locoregional therapy, as the bulk of these tumors are usually in the liver. The aim of this review is to highlight the immunological therapeutic targets for primary liver cancers, the available immune-based approaches, and the contributions that interventional radiology can provide in the care of these patients.
Collapse
Affiliation(s)
- Jonathan Charles
- Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA; (J.C.); (A.V.); (J.S.)
| | - Andrea Vrionis
- Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA; (J.C.); (A.V.); (J.S.)
| | - Arian Mansur
- Harvard Medical School, Harvard University, Boston, MA 02115, USA;
| | - Trevor Mathias
- School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Jamil Shaikh
- Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA; (J.C.); (A.V.); (J.S.)
- Department of Radiology, Tampa General Hospital, University of South Florida Health, Tampa General Cir, Tampa, FL 33606, USA
| | - Aaron Ciner
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.C.); (Y.J.)
| | - Yixing Jiang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.C.); (Y.J.)
| | - Nariman Nezami
- Division of Vascular and Interventional Radiology, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Experimental Therapeutics Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
The Dilemma of HSV-1 Oncolytic Virus Delivery: The Method Choice and Hurdles. Int J Mol Sci 2023; 24:ijms24043681. [PMID: 36835091 PMCID: PMC9962028 DOI: 10.3390/ijms24043681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Oncolytic viruses (OVs) have emerged as effective gene therapy and immunotherapy drugs. As an important gene delivery platform, the integration of exogenous genes into OVs has become a novel path for the advancement of OV therapy, while the herpes simplex virus type 1 (HSV-1) is the most commonly used. However, the current mode of administration of HSV-1 oncolytic virus is mainly based on the tumor in situ injection, which limits the application of such OV drugs to a certain extent. Intravenous administration offers a solution to the systemic distribution of OV drugs but is ambiguous in terms of efficacy and safety. The main reason is the synergistic role of innate and adaptive immunity of the immune system in the response against the HSV-1 oncolytic virus, which is rapidly cleared by the body's immune system before it reaches the tumor, a process that is accompanied by side effects. This article reviews different administration methods of HSV-1 oncolytic virus in the process of tumor treatment, especially the research progress in intravenous administration. It also discusses immune constraints and solutions of intravenous administration with the intent to provide new insights into HSV-1 delivery for OV therapy.
Collapse
|
6
|
Li X, Sun X, Wang B, Li Y, Tong J. Oncolytic virus-based hepatocellular carcinoma treatment: Current status, intravenous delivery strategies, and emerging combination therapeutic solutions. Asian J Pharm Sci 2023; 18:100771. [PMID: 36896445 PMCID: PMC9989663 DOI: 10.1016/j.ajps.2022.100771] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/24/2022] [Accepted: 12/04/2022] [Indexed: 12/30/2022] Open
Abstract
Current treatments for advanced hepatocellular carcinoma (HCC) have limited success in improving patients' quality of life and prolonging life expectancy. The clinical need for more efficient and safe therapies has contributed to the exploration of emerging strategies. Recently, there has been increased interest in oncolytic viruses (OVs) as a therapeutic modality for HCC. OVs undergo selective replication in cancerous tissues and kill tumor cells. Strikingly, pexastimogene devacirepvec (Pexa-Vec) was granted an orphan drug status in HCC by the U.S. Food and Drug Administration (FDA) in 2013. Meanwhile, dozens of OVs are being tested in HCC-directed clinical and preclinical trials. In this review, the pathogenesis and current therapies of HCC are outlined. Next, we summarize multiple OVs as single therapeutic agents for the treatment of HCC, which have demonstrated certain efficacy and low toxicity. Emerging carrier cell-, bioengineered cell mimetic- or nonbiological vehicle-mediated OV intravenous delivery systems in HCC therapy are described. In addition, we highlight the combination treatments between oncolytic virotherapy and other modalities. Finally, the clinical challenges and prospects of OV-based biotherapy are discussed, with the aim of continuing to develop a fascinating approach in HCC patients.
Collapse
Affiliation(s)
- Xinguo Li
- The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaonan Sun
- The 4th People's Hospital of Shenyang, Shenyang 110031, China
| | - Bingyuan Wang
- The First Hospital of China Medical University, Shenyang 110001, China
| | - Yiling Li
- The First Hospital of China Medical University, Shenyang 110001, China
| | - Jing Tong
- The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
7
|
Butt NUH, Baytas SN. Advancements in Hepatocellular Carcinoma: Potential Preclinical Drugs and their Future. Curr Pharm Des 2023; 29:2-14. [PMID: 36529919 DOI: 10.2174/1381612829666221216114350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 12/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the foremost causes of tumor-affiliated demises globally. The HCC treatment has undergone numerous developments in terms of both drug and non-drug treatments. The United States Food and Drug Administration (FDA) has authorized the usage of a variety of drugs for the treatment of HCC in recent years, involving multi-kinase inhibitors (lenvatinib, regorafenib, ramucirumab, and cabozantinib), immune checkpoint inhibitors (ICIs) (pembrolizumab and nivolumab), and combination therapies like atezolizumab along with bevacizumab. There are currently over a thousand ongoing clinical and preclinical studies for novel HCC drugs, which portrays a competent setting in the field. This review discusses the i. FDA-approved HCC drugs, their molecular targets, safety profiles, and potential disadvantages; ii. The intrial agents/drugs, their molecular targets, and possible benefits compared to alternatives, and iii. The current and future status of potential preclinical drugs with novel therapeutic targets for HCC. Consequently, existing drug treatments and novel strategies with their balanced consumption could ensure a promising future for a universal remedy of HCC in the near future.
Collapse
Affiliation(s)
- Noor-Ul-Huda Butt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkiye
| | - Sultan Nacak Baytas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkiye
| |
Collapse
|
8
|
Li S, Li Q, Ren Y, Yi J, Guo J, Kong X. HSV: The scout and assault for digestive system tumors. Front Mol Biosci 2023; 10:1142498. [PMID: 36926680 PMCID: PMC10011716 DOI: 10.3389/fmolb.2023.1142498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
More than 25% of all malignant tumors are digestive system tumors (DSTs), which mostly include esophageal cancer, gastric cancer, pancreatic cancer, liver cancer, gallbladder cancer and cholangiocarcinoma, and colorectal cancer. DSTs have emerged as one of the prominent reasons of morbidity and death in many nations and areas around the world, posing a serious threat to human life and health. General treatments such as radiotherapy, chemotherapy, and surgical resection can poorly cure the patients and have a bad prognosis. A type of immunotherapy known as oncolytic virus therapy, have recently shown extraordinary anti-tumor effectiveness. One of the viruses that has been the subject of the greatest research in this field, the herpes simplex virus (HSV), has shown excellent potential in DSTs. With a discussion of HSV-1 based on recent studies, we outline the therapeutic effects of HSV on a number of DSTs in this review. Additionally, the critical function of HSV in the detection of cancers is discussed, and some HSV future possibilities are shown.
Collapse
Affiliation(s)
- Sheng Li
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qingbo Li
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Ren
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jia Yi
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinhe Guo
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xianbin Kong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
Wang J, Wu R, Sun JY, Lei F, Tan H, Lu X. An overview: Management of patients with advanced hepatocellular carcinoma. Biosci Trends 2022; 16:405-425. [PMID: 36476621 DOI: 10.5582/bst.2022.01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) has constituted a significant health burden worldwide, and patients with advanced HCC, which is stage C as defined by the Barcelona Clinic Liver Cancer staging system, have a poor overall survival of 6-8 months. Studies have indicated the significant survival benefit of treatment based on sorafenib, lenvatinib, or atezolizumab-bevacizumab with reliable safety. In addition, the combination of two or more molecularly targeted therapies (first- plus second-line) has become a hot topic recently and is now being extensively investigated in patients with advanced HCC. In addition, a few biomarkers have been investigated and found to predict drug susceptibility and prognosis, which provides an opportunity to evaluate the clinical benefits of current therapies. In addition, many therapies other than tyrosine kinase inhibitors that might have additional survival benefits when combined with other therapeutic modalities, including immunotherapy, transarterial chemoembolization, radiofrequency ablation, hepatectomy, and chemotherapy, have also been examined. This review provides an overview on the current understanding of disease management and summarizes current challenges with and future perspectives on advanced HCC.
Collapse
Affiliation(s)
- Jincheng Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China.,Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Japan
| | - Rui Wu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin-Yu Sun
- The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feifei Lei
- Department of Infectious Diseases, Liver Disease Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Huabing Tan
- Department of Infectious Diseases, Liver Disease Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaojie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Omole RK, Oluwatola O, Akere MT, Eniafe J, Agboluaje EO, Daramola OB, Ayantunji YJ, Omotade TI, Torimiro N, Ayilara MS, Adeyemi OI, Salinsile OS. Comprehensive assessment on the applications of oncolytic viruses for cancer immunotherapy. Front Pharmacol 2022; 13:1082797. [PMID: 36569326 PMCID: PMC9772532 DOI: 10.3389/fphar.2022.1082797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
The worldwide burden of cancers is increasing at a very high rate, including the aggressive and resistant forms of cancers. Certain levels of breakthrough have been achieved with the conventional treatment methods being used to treat different forms of cancers, but with some limitations. These limitations include hazardous side effects, destruction of non-tumor healthy cells that are rapidly dividing and developing, tumor resistance to anti-cancer drugs, damage to tissues and organs, and so on. However, oncolytic viruses have emerged as a worthwhile immunotherapeutic option for the treatment of different types of cancers. In this treatment approach, oncolytic viruses are being modeled to target cancer cells with optimum cytotoxicity and spare normal cells with optimal safety, without the oncolytic viruses themselves being killed by the host immune defense system. Oncolytic viral infection of the cancer cells are also being genetically manipulated (either by removal or addition of certain genes into the oncolytic virus genome) to make the tumor more visible and available for attack by the host immune cells. Hence, different variants of these viruses are being developed to optimize their antitumor effects. In this review, we examined how grave the burden of cancer is on a global level, particularly in sub-Saharan Africa, major conventional therapeutic approaches to the treatment of cancer and their individual drawbacks. We discussed the mechanisms of action employed by these oncolytic viruses and different viruses that have found their relevance in the fight against various forms of cancers. Some pre-clinical and clinical trials that involve oncolytic viruses in cancer management were reported. This review also examined the toxicity and safety concerns surrounding the adoption of oncolytic viro-immunotherapy for the treatment of cancers and the likely future directions for researchers and general audience who wants updated information.
Collapse
Affiliation(s)
- Richard Kolade Omole
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria,Microbiology Unit, Department of Applied Sciences, Osun State College of Technology, Esa-Oke, Nigeria,*Correspondence: Richard Kolade Omole,
| | - Oluwaseyi Oluwatola
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States,Department of Immunology, Moffit Cancer Center, Tampa, FL, United States
| | - Millicent Tambari Akere
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH, United States
| | - Joseph Eniafe
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | | | | | - Yemisi Juliet Ayantunji
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria,Advanced Space Technology Applications Laboratory, Cooperative Information Network, National Space Research and Development Agency, Ile-Ife, Nigeria
| | | | - Nkem Torimiro
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Modupe Stella Ayilara
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Oluwole Isaac Adeyemi
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | |
Collapse
|
11
|
Ju F, Luo Y, Lin C, Jia X, Xu Z, Tian R, Lin Y, Zhao M, Chang Y, Huang X, Li S, Ren W, Qin Y, Yu M, Jia J, Han J, Luo W, Zhang J, Fu G, Ye X, Huang C, Xia N. Oncolytic virus expressing PD-1 inhibitors activates a collaborative intratumoral immune response to control tumor and synergizes with CTLA-4 or TIM-3 blockade. J Immunother Cancer 2022; 10:e004762. [PMID: 35688558 PMCID: PMC9189843 DOI: 10.1136/jitc-2022-004762] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Oncolytic viruses (OVs) are capable to inflame the tumor microenvironment (TME) and elicit infiltrating tumor-specific T cell responses. However, OV treatment negatively alters the cancer-immune set point in tumors to attenuate the antitumor immune response, which suggests the necessity of dissecting the immune landscape of the virus-treated tumors and developing novel strategies to maximize the potential of OVs. The aim of this study is to investigate the effect of the single-chain variable fragment (scFv)-armed OVs targeting PD-1 on the TME, and ultimately overcome localized immunosuppression to sensitize tumors to immunotherapies. METHODS A tumor-selective oncolytic herpes simplex virus vector was engineered to encode a humanized scFv against human PD-1 (hPD-1scFv) (YST-OVH). The antitumor efficacy of YST-OVH was explored in multiple therapeutic mouse models. The neurotoxicity and safety of YST-OVH were evaluated in nonhuman primates. The precise dynamics in the TME involved in YST-OVH treatment were dissected using cytometry by time-of-flight (CyTOF). RESULTS The identified hPD-1scFv showed superior T-cell activating activity. Localized delivery of hPD-1scFv by YST-OVH promotes systemic antitumor immunity in humanized PD-1 mouse models of established cancer. Immune profiling of tumors using CyTOF revealed the enhanced antitumor effect of YST-OVH, which largely relied on CD8+ T cell activity by augmenting the tumor infiltration of effector CD8+ T cells and establishment of memory CD8+ T cells and reducing associated CD8+ T cell exhaustion. Furthermore, YST-OVH treatment modified the cancer-immune set point of tumors coupled to coexpression of CTLA-4 and TIM-3 on exhausted CD8+ T cells and high levels of CTLA-4+ Treg cells. A combination approach incorporating anti-CTLA-4 or anti-TIM-3 further improved efficacy by increasing tumor immunogenicity and activating antitumor adaptive immune responses. Moreover, this therapeutic strategy showed no neurotoxicity and was well tolerated in nonhuman primates. The benefit of intratumoral hPD-1scFv expression was also observed in humanized mice bearing human cancer cells. CONCLUSION Localized delivery of PD-1 inhibitors by engineered YST-OVH was a highly effective and safe strategy for cancer immunotherapy. YST-OVH also synergized with CTLA-4 or TIM-3 blockade to enhance the immune response to cancer. These data provide a strong rationale for further clinical evaluation of this novel therapeutic approach.
Collapse
Affiliation(s)
- Fei Ju
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yong Luo
- Yangshengtang Co., Ltd, Hangzhou, China
- Hangzhou Yangshengtang Biopharmaceutical Co., Ltd, Hangzhou, China
| | - Chaolong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Xian Jia
- School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zilong Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yanhua Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Min Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yating Chang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoxuan Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Shaopeng Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Wenfeng Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yaning Qin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Mengqin Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Jizong Jia
- Beijing Wantai Biological Pharmacy, Beijing, China
| | - Jinle Han
- Beijing Wantai Biological Pharmacy, Beijing, China
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Guo Fu
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | | | - Chenghao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
12
|
Trifylli EM, Koustas E, Papadopoulos N, Sarantis P, Aloizos G, Damaskos C, Garmpis N, Garmpi A, Karamouzis MV. An Insight into the Novel Immunotherapy and Targeted Therapeutic Strategies for Hepatocellular Carcinoma and Cholangiocarcinoma. Life (Basel) 2022; 12:life12050665. [PMID: 35629333 PMCID: PMC9146702 DOI: 10.3390/life12050665] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) constitute highly malignant forms of primary liver cancers. Hepatocellular and bile duct carcinogenesis is a multiplex process, caused by various genetic and epigenetic alterations, the influence of environmental factors, as well as the implication of the gut microbiome, which was undervalued in the previous years. The molecular and immunological analysis of the above malignancies, as well as the identification of the crucial role of intestinal microbiota for hepatic and biliary pathogenesis, opened the horizon for novel therapeutic strategies, such as immunotherapy, and enhanced the overall survival of cancer patients. Some of the immunotherapy strategies that are either clinically applied or under pre-clinical studies include monoclonal antibodies, immune checkpoint blockade, cancer vaccines, as well as the utilization of oncolytic viral vectors and Chimeric antigen, receptor-engineered T (CAR-T) cell therapy. In this current review, we will shed light on the recent therapeutic modalities for the above primary liver cancers, as well as on the methods for the enhancement and optimization of anti-tumor immunity.
Collapse
Affiliation(s)
- Eleni-Myrto Trifylli
- 1st Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece; (E.K.); (N.P.); (G.A.)
- Division of Molecular Oncology, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (M.V.K.)
- Correspondence:
| | - Evangelos Koustas
- 1st Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece; (E.K.); (N.P.); (G.A.)
- Division of Molecular Oncology, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (M.V.K.)
| | - Nikolaos Papadopoulos
- 1st Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece; (E.K.); (N.P.); (G.A.)
| | - Panagiotis Sarantis
- Division of Molecular Oncology, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (M.V.K.)
| | - Georgios Aloizos
- 1st Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece; (E.K.); (N.P.); (G.A.)
| | - Christos Damaskos
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Renal Transplantation Unit, Laiko General Hospital, 11527 Athens, Greece
| | - Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11572 Athens, Greece;
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Anna Garmpi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Michalis V. Karamouzis
- Division of Molecular Oncology, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (M.V.K.)
| |
Collapse
|
13
|
Reale A, Calistri A, Altomonte J. Giving Oncolytic Viruses a Free Ride: Carrier Cells for Oncolytic Virotherapy. Pharmaceutics 2021; 13:pharmaceutics13122192. [PMID: 34959474 PMCID: PMC8709025 DOI: 10.3390/pharmaceutics13122192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022] Open
Abstract
Oncolytic viruses (OVs) are an emerging class of therapeutics which combine multiple mechanisms of action, including direct cancer cell-killing, immunotherapy and gene therapy. A growing number of clinical trials have indicated that OVs have an excellent safety profile and provide some degree of efficacy, but to date only a single OV drug, HSV-1 talimogene laherparepvec (T-Vec), has achieved marketing approval in the US and Europe. An important issue to consider in order to accelerate the clinical advancement of OV agents is the development of an effective delivery system. Currently, the most commonly employed OV delivery route is intratumoral; however, to target metastatic diseases and tumors that cannot be directly accessed, it is of great interest to develop effective approaches for the systemic delivery of OVs, such as the use of carrier cells. In general, the ideal carrier cell should have a tropism towards the tumor microenvironment (TME), and it must be susceptible to OV infection but remain viable long enough to allow migration and finally release of the OV within the tumor bed. Mesenchymal stem cells (MSCs) have been heavily investigated as carrier cells due to their inherent tumor tropism, in spite of some disadvantages in biodistribution. This review focuses on the other promising candidate carrier cells under development and discusses their interaction with specific OVs and future research lines.
Collapse
Affiliation(s)
- Alberto Reale
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.R.); (A.C.)
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.R.); (A.C.)
| | - Jennifer Altomonte
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Correspondence:
| |
Collapse
|
14
|
Immunotherapy for Hepatocellular Carcinoma: New Prospects for the Cancer Therapy. Life (Basel) 2021; 11:life11121355. [PMID: 34947886 PMCID: PMC8704694 DOI: 10.3390/life11121355] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death worldwide. HCC patients may benefit from liver transplantation, hepatic resection, radiofrequency ablation, transcatheter arterial chemoembolization, and targeted therapies. The increased infiltration of immunosuppressive immune cells and the elevated expression of immunosuppressive factors in the HCC microenvironment are the main culprits of the immunosuppressive nature of the HCC milieu. The immunosuppressive tumor microenvironment can substantially attenuate antitumoral immune responses and facilitate the immune evasion of tumoral cells. Immunotherapy is an innovative treatment method that has been promising in treating HCC. Immune checkpoint inhibitors (ICIs), adoptive cell transfer (ACT), and cell-based (primarily dendritic cells) and non-cell-based vaccines are the most common immunotherapeutic approaches for HCC treatment. However, these therapeutic approaches have not generally induced robust antitumoral responses in clinical settings. To answer to this, growing evidence has characterized immune cell populations and delineated intercellular cross-talk using single-cell RNA sequencing (scRNA-seq) technologies. This review aims to discuss the various types of tumor-infiltrating immune cells and highlight their roles in HCC development. Besides, we discuss the recent advances in immunotherapeutic approaches for treating HCC, e.g., ICIs, dendritic cell (DC)-based vaccines, non-cell-based vaccines, oncolytic viruses (OVs), and ACT. Finally, we discuss the potentiality of scRNA-seq to improve the response rate of HCC patients to immunotherapeutic approaches.
Collapse
|
15
|
Santos Apolonio J, Lima de Souza Gonçalves V, Cordeiro Santos ML, Silva Luz M, Silva Souza JV, Rocha Pinheiro SL, de Souza WR, Sande Loureiro M, de Melo FF. Oncolytic virus therapy in cancer: A current review. World J Virol 2021; 10:229-255. [PMID: 34631474 PMCID: PMC8474975 DOI: 10.5501/wjv.v10.i5.229] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/19/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
In view of the advancement in the understanding about the most diverse types of cancer and consequently a relentless search for a cure and increased survival rates of cancer patients, finding a therapy that is able to combat the mechanism of aggression of this disease is extremely important. Thus, oncolytic viruses (OVs) have demonstrated great benefits in the treatment of cancer because it mediates antitumor effects in several ways. Viruses can be used to infect cancer cells, especially over normal cells, to present tumor-associated antigens, to activate "danger signals" that generate a less immune-tolerant tumor microenvironment, and to serve transduction vehicles for expression of inflammatory and immunomodulatory cytokines. The success of therapies using OVs was initially demonstrated by the use of the genetically modified herpes virus, talimogene laherparepvec, for the treatment of melanoma. At this time, several OVs are being studied as a potential treatment for cancer in clinical trials. However, it is necessary to be aware of the safety and possible adverse effects of this therapy; after all, an effective treatment for cancer should promote regression, attack the tumor, and in the meantime induce minimal systemic repercussions. In this manuscript, we will present a current review of the mechanism of action of OVs, main clinical uses, updates, and future perspectives on this treatment.
Collapse
Affiliation(s)
- Jonathan Santos Apolonio
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Maria Luísa Cordeiro Santos
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - João Victor Silva Souza
- Universidade Estadual do Sudoeste da Bahia, Campus Vitória da Conquista, Vitória da Conquista 45083-900, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Wedja Rafaela de Souza
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Matheus Sande Loureiro
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
16
|
Suzuki T, Uchida H, Shibata T, Sasaki Y, Ikeda H, Hamada-Uematsu M, Hamasaki R, Okuda K, Yanagi S, Tahara H. Potent anti-tumor effects of receptor-retargeted syncytial oncolytic herpes simplex virus. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:265-276. [PMID: 34553018 PMCID: PMC8426171 DOI: 10.1016/j.omto.2021.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/12/2021] [Indexed: 11/27/2022]
Abstract
Most oncolytic virotherapy has thus far employed viruses deficient in genes essential for replication in normal cells but not in cancer cells. Intra-tumoral injection of such viruses has resulted in clinically significant anti-tumor effects on the lesions in the vicinity of the injection sites but not on distant visceral metastases. To overcome this limitation, we have developed a receptor-retargeted oncolytic herpes simplex virus employing a single-chain antibody for targeting tumor-associated antigens (RR-oHSV) and its modified version with additional mutations conferring syncytium formation (RRsyn-oHSV). We previously showed that RRsyn-oHSV exhibits preserved antigen specificity and an ∼20-fold higher tumoricidal potency in vitro relative to RR-oHSV. Here, we investigated the in vivo anti-tumor effects of RRsyn-oHSV using human cancer xenografts in immunodeficient mice. With only a single intra-tumoral injection of RRsyn-oHSV at very low doses, all treated tumors regressed completely. Furthermore, intra-venous administration of RRsyn-oHSV resulted in robust anti-tumor effects even against large tumors. We found that these potent anti-tumor effects of RRsyn-oHSV may be associated with the formation of long-lasting tumor cell syncytia not containing non-cancerous cells that appear to trigger death of the syncytia. These results strongly suggest that cancer patients with distant metastases could be effectively treated with our RRsyn-oHSV.
Collapse
Affiliation(s)
- Takuma Suzuki
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroaki Uchida
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoko Shibata
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yasuhiko Sasaki
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hitomi Ikeda
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Mika Hamada-Uematsu
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ryota Hamasaki
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Kosaku Okuda
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hideaki Tahara
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Cancer Drug Discovery and Development, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
17
|
Lurje I, Werner W, Mohr R, Roderburg C, Tacke F, Hammerich L. In Situ Vaccination as a Strategy to Modulate the Immune Microenvironment of Hepatocellular Carcinoma. Front Immunol 2021; 12:650486. [PMID: 34025657 PMCID: PMC8137829 DOI: 10.3389/fimmu.2021.650486] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) is a highly prevalent malignancy that develops in patients with chronic liver diseases and dysregulated systemic and hepatic immunity. The tumor microenvironment (TME) contains tumor-associated macrophages (TAM), cancer-associated fibroblasts (CAF), regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC) and is central to mediating immune evasion and resistance to therapy. The interplay between these cells types often leads to insufficient antigen presentation, preventing effective anti-tumor immune responses. In situ vaccines harness the tumor as the source of antigens and implement sequential immunomodulation to generate systemic and lasting antitumor immunity. Thus, in situ vaccines hold the promise to induce a switch from an immunosuppressive environment where HCC cells evade antigen presentation and suppress T cell responses towards an immunostimulatory environment enriched for activated cytotoxic cells. Pivotal steps of in situ vaccination include the induction of immunogenic cell death of tumor cells, a recruitment of antigen-presenting cells with a focus on dendritic cells, their loading and maturation and a subsequent cross-priming of CD8+ T cells to ensure cytotoxic activity against tumor cells. Several in situ vaccine approaches have been suggested, with vaccine regimens including oncolytic viruses, Flt3L, GM-CSF and TLR agonists. Moreover, combinations with checkpoint inhibitors have been suggested in HCC and other tumor entities. This review will give an overview of various in situ vaccine strategies for HCC, highlighting the potentials and pitfalls of in situ vaccines to treat liver cancer.
Collapse
Affiliation(s)
- Isabella Lurje
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Wiebke Werner
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Raphael Mohr
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
18
|
Heinrich S, Castven D, Galle PR, Marquardt JU. Translational Considerations to Improve Response and Overcome Therapy Resistance in Immunotherapy for Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:E2495. [PMID: 32899197 PMCID: PMC7563159 DOI: 10.3390/cancers12092495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Over the last decade, progress in systemic therapies significantly improved the outcome of primary liver cancer. More recently, precision oncological and immunotherapeutic approaches became the focus of intense scientific and clinical research. Herein, preclinical studies showed promising results with high response rates and improvement of overall survival. However, results of phase III clinical trials revealed that only a subfraction of hepatocellular carcinoma (HCC) patients respond to therapy and display only moderate objective response rates. Further, predictive molecular characteristics are largely missing. In consequence, suitable trial design has emerged as a crucial factor for the success of a novel compound. In addition, increasing knowledge from translational studies indicate the importance of targeting the tumor immune environment to overcome resistance to immunotherapy. Thus, combination of different immunotherapies with other treatment modalities including antibodies, tyrosine kinase inhibitors, or local therapies is highly promising. However, the mechanisms of failure to respond to immunotherapy in liver cancer are still not fully understood and the modulation of the immune system and cellular tumor composition is particularly relevant in this context. Altogether, it is increasingly clear that tailoring of immunotherapy and individualized approaches are required to improve efficacy and patient outcome in liver cancer. This review provides an overview of the current knowledge as well as translational considerations to overcome therapy resistance in immunotherapy of primary liver cancer.
Collapse
Affiliation(s)
- Sophia Heinrich
- Laboratory of Human Carcinogenesis, Liver Carcinogenesis Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
- Department of Medicine I, Lichtenberg Research Group for Molecular Hepatocarcinogenesis, University Medical Center, 55131 Mainz, Germany;
| | - Darko Castven
- Department of Medicine I, Lichtenberg Research Group for Molecular Hepatocarcinogenesis, University Medical Center, 55131 Mainz, Germany;
- Lichtenberg Research Group for Molecular Hepatocarcinogenesis, Department of Medicine I, University Medical Center Schleswig Holstein, 23538 Luebeck, Germany
| | - Peter R. Galle
- Department of Medicine I, University Medical Center, 55131 Mainz, Germany
| | - Jens U. Marquardt
- Department of Medicine I, Lichtenberg Research Group for Molecular Hepatocarcinogenesis, University Medical Center, 55131 Mainz, Germany;
- Lichtenberg Research Group for Molecular Hepatocarcinogenesis, Department of Medicine I, University Medical Center Schleswig Holstein, 23538 Luebeck, Germany
| |
Collapse
|
19
|
Chen Z, Xie H, Hu M, Huang T, Hu Y, Sang N, Zhao Y. Recent progress in treatment of hepatocellular carcinoma. Am J Cancer Res 2020; 10:2993-3036. [PMID: 33042631 PMCID: PMC7539784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death worldwide. In the past decade, there have been improvements in non-drug therapies and drug therapies for HCC treatment. Non-drug therapies include hepatic resection, liver transplantation, transarterial chemoembolization (TACE) and ablation. The former two surgical treatments are beneficial for patients with early and mid-stage HCC. As the first choice for non-surgical treatment, different TACE methods has been developed and widely used in combination therapy. Ablation has become an important alternative therapy for the treatment of small HCC or cases of unresectable surgery. Meanwhile, the drugs including small molecule targeted drugs like sorafenib and lenvatinib, monoclonal antibodies such as nivolumab are mainly used for the systematic treatment of advanced HCC. Besides strategies described above are recommended as first-line therapies due to their significant increase in mean overall survival, there are also potential drugs in clinical trials or under preclinical development. In addition, a number of potential preclinical surgical or adjuvant therapies are being studied, such as oncolytic virus, mesenchymal stem cells, biological clock, gut microbiome composition and peptide vaccine, all of which have shown different degrees of inhibition on HCC. With some potential anti-HCC drugs being reported, many promising therapeutic targets in related taxonomic signaling pathways including cell cycle, epigenetics, tyrosine kinase and so on that affect the progression of HCC have also been found. Together, the rational application of existing therapies and drugs as well as the new strategies will bring a bright future for the global cure of HCC in the coming decades.
Collapse
Affiliation(s)
- Zhiqian Chen
- West China School of Pharmacy, Sichuan UniversityChengdu 610041, China
| | - Hao Xie
- West China School of Pharmacy, Sichuan UniversityChengdu 610041, China
| | - Mingming Hu
- West China School of Pharmacy, Sichuan UniversityChengdu 610041, China
| | - Tianyi Huang
- West China School of Pharmacy, Sichuan UniversityChengdu 610041, China
| | - Yanan Hu
- West China School of Pharmacy, Sichuan UniversityChengdu 610041, China
| | - Na Sang
- Cancer Center, West China Hospital, West China Medical School, and Collaborative Innovation Center for Biotherapy, Sichuan UniversityChengdu 610041, China
| | - Yinglan Zhao
- West China School of Pharmacy, Sichuan UniversityChengdu 610041, China
- Cancer Center, West China Hospital, West China Medical School, and Collaborative Innovation Center for Biotherapy, Sichuan UniversityChengdu 610041, China
| |
Collapse
|
20
|
Zhang Y, Xin Q, Zhang JY, Wang YY, Cheng JT, Cai WQ, Han ZW, Zhou Y, Cui SZ, Peng XC, Wang XW, Ma Z, Xiang Y, Su XL, Xin HW. Transcriptional Regulation of Latency-Associated Transcripts (LATs) of Herpes Simplex Viruses. J Cancer 2020; 11:3387-3399. [PMID: 32231745 PMCID: PMC7097949 DOI: 10.7150/jca.40186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex viruses (HSVs) cause cold sores and genital herpes and can establish lifelong latent infection in neurons. An engineered oncolytic HSV (oHSV) has recently been approved to treat tumors in clinics. HSV latency-associated transcripts (LATs) are associated with the latent infection, but LAT transcriptional regulation was seldom reported. For a better treatment of HSV infection and tumors, here we sequenced the LAT encoding DNA and LAT transcription regulatory region of our recently isolated new strain HSV-1-LXMW and did comparative analysis of the sequences together with those of other four HSV-1 and two HSV-2 strains. Phylogenetic analysis of LATs revealed that HSV-1-LXMW is evolutionarily close to HSV-1-17 from MRC University, Glasgow, UK. For the first time, Using a weight matrix-based program Match and multi-sequences alignment of the 6 HSV strains, we identified HSV LAT transcription regulatory sequences that bind to 9 transcription factors: AP-1, C-REL, Comp1, E2F, Hairy, HFH-3, Kr, TCF11/MAFG, v-Myb. Interestingly, these transcription regulatory sequences and factors are either conserved or unique among LATs of HSV-1 and HSV-2, suggesting they are potentially functional. Furthermore, literature analysis found that the transcription factors v-myb and AP-1 family member JunD are functional in regulating HSV gene transcription, including LAT transcription. For the first time, we discovered seven novel transcription factors and their corresponding transcription regulatory sequences of HSV LATs. Based on our findings and other reports, we proposed potential mechanisms of the initiation and maintenance of HSV latent infection. Our findings may have significant implication in our understanding of HSV latency and engineering of better oncolytic HSVs.
Collapse
Affiliation(s)
- Ying Zhang
- The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Qiang Xin
- Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Jun-Yi Zhang
- Department of Neural Surgery, People's Hospital of Dongsheng District of Erdos City, Erdos, Inner Mongolia, 017000, China
| | - Ying-Ying Wang
- The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Jun-Ting Cheng
- The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Wen-Qi Cai
- The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Zi-Wen Han
- The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Yang Zhou
- The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Shu-Zhong Cui
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Xiao-Chun Peng
- The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.,Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Xian-Wang Wang
- The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.,Department of Laboratory Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Zhaowu Ma
- The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Ying Xiang
- The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Xiu-Lan Su
- Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Hong-Wu Xin
- The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| |
Collapse
|