1
|
Zhang Q, Guo S, Ge H, Wang H. The protective role of baicalin regulation of autophagy in cancers. Cytotechnology 2025; 77:33. [PMID: 39760060 PMCID: PMC11699138 DOI: 10.1007/s10616-024-00689-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025] Open
Abstract
Autophagy is a conservative process of self degradation, in which abnormal organelles, proteins and other macromolecules are encapsulated and transferred to lysosomes for subsequent degradation. It maintains the intracellular balance, and responds to cellular conditions such as hunger or stress. To date, there are mainly three types of autophagy: macroautophagy, microautophagy and chaperone-mediated autophagy. Autophagy plays a key role in regulating multiple physiological and pathological processes, such as cell metabolism, development, energy homeostasis, cell death and hunger adaptation, and so on. Increasing evidence indicates that autophagy dysfunction participates in many kinds of cancers, such as liver cancer, pancreatic cancer, prostate cancer, and so on. However, the relevant mechanisms are not yet fully understood. Baicalin is a natural flavonoid compound extracted from the traditional Chinese medicine Scutellaria baicalensis. The research has shown that after oral or intravenous administration of baicalin, it is delivered to various organs through the systemic circulation, with the highest volume in the kidneys and lungs. More and more evidence suggests that baicalin has antioxidant, anticancer, anti-inflammatory, anti-apoptotic, immunomodulatory and antiviral effects. Therefore, baicalin plays an important role in various diseases, such as cancers, lung diseases, liver diseases, cardiovascular diseases, ans so on. However, the relevant mechanisms have not yet been fully clear. Recently, increasing evidence indicates that baicalin participates in different cancer by regulating autophagy. Herein, we reviewed the current knowledge about the role and mechanism of baicalin regulation of autophagy in multiple types of cancers to lay the theoretical foundation for future related researches.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Hangwei Ge
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| |
Collapse
|
2
|
Zinnah KMA, Munna AN, Park SY. Optimizing autophagy modulation for enhanced TRAIL-mediated therapy: Unveiling the superiority of late-stage inhibition over early-stage inhibition to overcome therapy resistance in cancer. Basic Clin Pharmacol Toxicol 2025; 136:e14110. [PMID: 39668304 DOI: 10.1111/bcpt.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/13/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024]
Abstract
Autophagy is a vital mechanism that eliminates large cytoplasmic components via lysosomal degradation to maintain cellular homeostasis. The role of autophagy in cancer treatment has been studied extensively. Autophagy primarily prevents tumour initiation by maintaining genomic stability and preventing cellular inflammation. However, autophagy also supports cancer cell survival and growth by providing essential nutrients for therapeutic resistance. Thus, autophagy has emerged as a promising strategy for overcoming resistance and enhancing anti-cancer therapy. Inhibiting autophagy significantly improves the sensitivity of lung, colorectal, breast, liver and prostate cancer cells to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). This review investigates the intricate interplay between autophagy modulation and TRAIL-based therapy, specifically focussing on comparing the efficacy of late-stage autophagy inhibition versus early-stage inhibition in overcoming cancer resistance. We expose the distinctive advantages of late-stage autophagy inhibition by exploring the mechanisms underlying autophagy's impact on TRAIL sensitivity. Current preclinical and clinical investigations are inspected, showing the potential of targeting late-stage autophagy for sensitizing resistant cancer cells to TRAIL-induced apoptosis. This review emphasizes the significance of optimizing autophagy modulation to enhance TRAIL-mediated therapy and overcome the challenge of treatment resistance in cancer. We offer insights and recommendations for guiding the development of potential therapeutic strategies aimed at overcoming the challenges posed by treatment-resistant cancers.
Collapse
Affiliation(s)
- Kazi Mohammad Ali Zinnah
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
- Faculty of Biotechnology and Genetic Engineering, Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Ali Newaz Munna
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| |
Collapse
|
3
|
Hegde M, P R A, Mumbrekar KD. Exploring baicalein: A natural flavonoid for enhancing cancer prevention and treatment. Heliyon 2024; 10:e40809. [PMID: 39691196 PMCID: PMC11650287 DOI: 10.1016/j.heliyon.2024.e40809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 10/12/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024] Open
Abstract
Despite years of development in cancer therapy, achieving successful cancer treatment remains a major research topic. Primary means of cancer treatment include chemotherapy, radiotherapy, and surgery. However, these modalities are associated with limitations and adverse effects on normal tissues. Therefore, there is a search for novel therapeutic approaches that will increase the efficacy of the available treatment while minimizing side effects. Naturally occurring bioactive chemicals such as flavonoids have long been used in traditional medicine to treat various illnesses. Baicalein, an active ingredient in Scutellaria baicalensis Georgi, is utilised in traditional medicine to treat conditions such as hypertension, cardiovascular disease, inflammation, and infections. This review focuses on summarizing the data available on cancer prevention and treatment usage of baicalein. Baicalein is thought to prevent cancer progression by inducing apoptosis, autophagy, and genome instability, and its ability to promote chemo-potentiation, anti-metastatic effects, and regulate specific signalling molecules and transcription factors. Baicalein can be a promising option for cancer treatment, either alone or in combination with established anticancer drugs.
Collapse
Affiliation(s)
- Madhu Hegde
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Archana P R
- Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
4
|
Zhao K, Zhang J, Zhou L, Sun Z. Scutellaria baicalensis and its flavonoids in the treatment of digestive system tumors. Front Pharmacol 2024; 15:1483785. [PMID: 39654621 PMCID: PMC11625591 DOI: 10.3389/fphar.2024.1483785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Scutellaria baicalensis has been used for the treatment of digestive system disorders for thousands of years in China and other regions. Modern research have revealed its therapeutic efforts in digestive system tumors. Thus, to review the updated progress of S. baicalensis and its main flavonoids in the treatment of digestive system tumors in the past 10 years, this article summarized the therapeutic effect and molecular mechanisms of S. baicalensis and its 5 flavonoids on tumors in oral cavity, esophagus, stomach, colon, liver, pancreas by inhibiting tumor cell proliferation, inducing autophagy, stimulating immune response, and increasing drug sensitivity. In conclusion, S. baicalensis and its flavonoids could be applied to treat digestive system tumors with different type of methods.
Collapse
Affiliation(s)
- Kangning Zhao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinlong Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Zhou
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Sun
- The Second Gastroenterology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Al Azzani M, Nizami ZN, Magramane R, Sekkal MN, Eid AH, Al Dhaheri Y, Iratni R. Phytochemical-mediated modulation of autophagy and endoplasmic reticulum stress as a cancer therapeutic approach. Phytother Res 2024; 38:4353-4385. [PMID: 38961675 DOI: 10.1002/ptr.8283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Autophagy and endoplasmic reticulum (ER) stress are conserved processes that generally promote survival, but can induce cell death when physiological thresholds are crossed. The pro-survival aspects of these processes are exploited by cancer cells for tumor development and progression. Therefore, anticancer drugs targeting autophagy or ER stress to induce cell death and/or block the pro-survival aspects are being investigated extensively. Consistently, several phytochemicals have been reported to exert their anticancer effects by modulating autophagy and/or ER stress. Various phytochemicals (e.g., celastrol, curcumin, emodin, resveratrol, among others) activate the unfolded protein response to induce ER stress-mediated apoptosis through different pathways. Similarly, various phytochemicals induce autophagy through different mechanisms (namely mechanistic target of Rapamycin [mTOR] inhibition). However, phytochemical-induced autophagy can function either as a cytoprotective mechanism or as programmed cell death type II. Interestingly, at times, the same phytochemical (e.g., 6-gingerol, emodin, shikonin, among others) can induce cytoprotective autophagy or programmed cell death type II depending on cellular contexts, such as cancer type. Although there is well-documented mechanistic interplay between autophagy and ER stress, only a one-way modulation was noted with some phytochemicals (carnosol, capsaicin, cryptotanshinone, guangsangon E, kaempferol, and δ-tocotrienol): ER stress-dependent autophagy. Plant extracts are sources of potent phytochemicals and while numerous phytochemicals have been investigated in preclinical and clinical studies, the search for novel phytochemicals with anticancer effects is ongoing from plant extracts used in traditional medicine (e.g., Origanum majorana). Nonetheless, the clinical translation of phytochemicals, a promising avenue for cancer therapeutics, is hindered by several limitations that need to be addressed in future studies.
Collapse
Affiliation(s)
- Mazoun Al Azzani
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Zohra Nausheen Nizami
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rym Magramane
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed N Sekkal
- Department of Surgery, Specialty Orthopedic, Tawam Hospital, Al Ain, United Arab Emirates
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
6
|
Lei C, Yu Y, Zhu Y, Li Y, Ma C, Ding L, Han L, Zhang H. The most recent progress of baicalein in its anti-neoplastic effects and mechanisms. Biomed Pharmacother 2024; 176:116862. [PMID: 38850656 DOI: 10.1016/j.biopha.2024.116862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Problems, such as toxic side effects and drug resistance of chemoradiotherapy, target therapy and immunotherapy accompanying the current anti-cancer treatments, have become bottlenecks limiting the clinical benefit for patients. Therefore, it is urgent to find promising anti-cancer strategies with higher efficacy and lesser side effects. Baicalein, a flavonoid component derived from the Chinese medicine scutellaria baicalensis, has been widely studied for its remarkable anti-cancer activity in multiple types of malignancies both at the molecular and cellular levels. Baicalein exerts its anti-tumor effects by inhibiting angiogenesis, invasion and migration, inducing cell apoptosis and cell cycle arrest, as well as regulating cell autophagy, metabolism, the tumor microenvironment and cancer stem cells with no obvious toxic side effects. The role of classic signaling pathways, such as PI3K/AKT/mTOR, MAPK, AMPK, Wnt/β-catenin, JAK/STAT3, MMP-2/-9, have been highlighted as the major targets for baicalein exerting its anti-malignant potential. Besides, baicalein can regulate the relevant non-coding RNAs, such as lncRNAs, miRNAs and circ-RNAs, to inhibit tumorigenesis and progression. In addition to the mentioned commonalities, baicalein shows some specific anti-tumor characteristics in some specific cancer types. Moreover, the preclinical studies of the combination of baicalein and chemoradiotherapy pave the way ahead for developing baicalein as an adjunct treatment with chemoradiotherapy. Our aim is to summary the role of baicalein in different types of cancer with its mechanisms based on in vitro and in vivo experiments, hoping providing proof for baicalein serving as an effective and safe compound for cancer treatment in clinic in the future.
Collapse
Affiliation(s)
- Chenjing Lei
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yaya Yu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| | - Yanjuan Zhu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, PR China
| | - Yanan Li
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Changju Ma
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Lina Ding
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Ling Han
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China.
| | - Haibo Zhang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
7
|
Zhang W, Wang Y, Yu H, Jin Z, Yuan Y, Liu L, Zhou J. Exploring the mechanism of Erteng-Sanjie capsule in treating gastric and colorectal cancers via network pharmacology and in-vivo validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117945. [PMID: 38428659 DOI: 10.1016/j.jep.2024.117945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/26/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Erteng-Sanjie capsule (ETSJC) has therapeutic effects against gastric cancer (GC) and colorectal cancer (CRC). However, its underlying pharmacological mechanism remains unclear. AIM OF THE STUDY To explore the pharmacological mechanism of ETSJC against GC and CRC via network pharmacology and in-vivo validation. MATERIALS AND METHODS Data on the ingredients of ETSJC were obtained from the TCMSP and HERB databases. Further, details on the related targets of the active ingredients were collected from the HERB and SwissTargetPrediction databases. The targets in GC and CRC, which were screened from the OMIM, GeneCards, and TTD databases, were uploaded to STRING for a separate protein-protein interaction network analysis. The common targets shared by ETSJC, GC, and CRC were then screened. Cytoscape and STRING were used to construct the networks of herbs-compounds-targets and PPI. Metascape was utilized to analyze the enrichment of the GO and KEGG pathways. Molecular docking was used to validate the potential binding mode between the core ingredients and targets. Finally, the predicted results were verified with animal experiment. RESULTS Eight core ingredients (resveratrol, quercetin, luteolin, baicalein, delphinidin, kaempferol, pinocembrin, and naringenin) and six core targets (TP53, SRC, PIK3R1, AKT1, MAPK3, and STAT3) were filtered via network analysis. The molecular mechanism mainly involved the positive regulation of various processes such as cell migration, protein phosphorylation, and the PI3K-Akt signaling pathway. Molecular docking revealed that the core ingredients could be significantly combined with all core targets. The animal experiment revealed that ETSJC could suppress proliferation and promote apoptosis of both GC and CRC tumor cells by regulating the PI3K/Akt signaling pathway. CONCLUSIONS Multiple targets (TP53, SRC, AKT1, and STAT3) were important in GC and CRC. ETSJC could act on these targets and engage in different pathways against GC and CRC. Simultaneously, inhibiting the PI3K/Akt signaling pathway was a promising therapeutic mechanism for treating GC and CRC.
Collapse
Affiliation(s)
- Wencui Zhang
- Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China.
| | - Ying Wang
- Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China.
| | - Han Yu
- Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China.
| | - Zengcai Jin
- Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China.
| | - Yuyao Yuan
- Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China.
| | - Likun Liu
- Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China.
| | - Jing Zhou
- Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China.
| |
Collapse
|
8
|
Wang J, Wu Z, Peng J, You F, Ren Y, Li X, Xiao C. Multiple roles of baicalin and baicalein in the regulation of colorectal cancer. Front Pharmacol 2024; 15:1264418. [PMID: 38375035 PMCID: PMC10875017 DOI: 10.3389/fphar.2024.1264418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
The prevalence of colorectal cancer is increasing worldwide, and despite advances in treatment, colorectal cancer (CRC) remains in the top three for mortality due to several issues, including drug resistance and low efficiency. There is increasing evidence that baicalin and baicalein, novel small molecule inhibitor extracts of the Chinese herb Scutellaria baicalensis, have better anti-colorectal cancer effects and are less likely to induce drug resistance in cancer cells. The present review article explains the anti-proliferative properties of baicalin and baicalein in the context of against CRC. Additionally, it explores the underlying mechanisms by which these compounds modulate diverse signaling pathways associated with apoptosis, cell proliferation, tumor angiogenesis, invasion, metastasis, and tumor microenvironment. Moreover, this review article highlights the inhibitory effect of colorectal inflammatory-cancer transformation and the near-term therapeutic strategy of using them as adjuvant agents in chemotherapy.
Collapse
Affiliation(s)
- Jiamei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihong Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayuan Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yifeng Ren
- Oncology Teaching and Research Department of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Oncology Teaching and Research Department of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Oncology Teaching and Research Department of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Dong X, Leng Y, Tian T, Hu Q, Chen S, Liu Y, Shen L. GALNT2, an O-glycosylating enzyme, is a critical regulator of radioresistance of non-small cell lung cancer: evidence from an integrated multi-omics analysis. Cell Biol Toxicol 2023; 39:3159-3174. [PMID: 37597090 DOI: 10.1007/s10565-023-09825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Radioresistance is the primary reason for radiotherapy failure in non-small cell lung cancer (NSCLC) patients. Glycosylation-related alterations are critically involved in tumor radioresistance. However, the relationship between glycosylation and NSCLC radioresistance is unclear. Here, we generated radioresistant NSCLC cell models by using fractionated irradiation. The aberrant glycosylation involved in NSCLC-related radioresistance was elucidated by transcriptomic, proteomic, and glycomic analyses. We conducted in vitro and in vivo investigations for determining the biological functions of glycosylation. Additionally, its downstream pathways and upstream regulators were inferred and verified. We demonstrated that mucin-type O-glycosylation and the O-glycosylating enzyme GALNT2 were highly expressed in radioresistant NSCLC cells. GALNT2 was found to be elevated in NSCLC tissues; this elevated level showed a remarkable association with response to radiotherapy treatment as well as overall survival. Functional experiments showed that GALNT2 knockdown improved NSCLC radiosensitivity via inducing apoptosis. By using a lectin pull-down system, we revealed that mucin-type O-glycans on IGF1R were modified by GALNT2 and that IGF1R could affect the expression of apoptosis-related genes. Moreover, GALNT2 knockdown-mediated in vitro radiosensitization was enhanced by IGF1R inhibition. According to a miRNA array analysis and a luciferase reporter assay, miR-30a-5p negatively modulated GALNT2. In summary, our findings established GALNT2 as a key contributor to the radioresistance of NSCLC. Therefore, targeting GALNT2 may be a promising therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Xiaoxia Dong
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yahui Leng
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Tian Tian
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Qing Hu
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Shuang Chen
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yufeng Liu
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Li Shen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
10
|
Zhang Z, Zhao Y, Wang Y, Zhao Y, Guo J. Autophagy/ferroptosis in colorectal cancer: Carcinogenic view and nanoparticle-mediated cell death regulation. ENVIRONMENTAL RESEARCH 2023; 238:117006. [PMID: 37669735 DOI: 10.1016/j.envres.2023.117006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/07/2023]
Abstract
The cell death mechanisms have a long history of being evaluated in diseases and pathological events. The ability of triggering cell death is considered to be a promising strategy in cancer therapy, but some mechanisms have dual functions in cancer, requiring more elucidation of underlying factors. Colorectal cancer (CRC) is a disease and malignant condition of colon and rectal that causes high mortality and morbidity. The autophagy targeting in CRC is therapeutic importance and this cell death mechanism can interact with apoptosis in inhibiting or increasing apoptosis. Autophagy has interaction with ferroptosis as another cell death pathway in CRC and can accelerate ferroptosis in suppressing growth and invasion. The dysregulation of autophagy affects the drug resistance in CRC and pro-survival autophagy can induce drug resistance. Therefore, inhibition of protective autophagy enhances chemosensitivity in CRC cells. Moreover, autophagy displays interaction with metastasis and EMT as a potent regulator of invasion in CRC cells. The same is true for ferroptosis, but the difference is that function of ferroptosis is determined and it can reduce viability. The lack of ferroptosis can cause development of chemoresistance in CRC cells and this cell death mechanism is regulated by various pathways and mechanisms that autophagy is among them. Therefore, current review paper provides a state-of-art analysis of autophagy, ferroptosis and their crosstalk in CRC. The nanoparticle-mediated regulation of cell death mechanisms in CRC causes changes in progression. The stimulation of ferroptosis and control of autophagy (induction or inhibition) by nanoparticles can impair CRC progression. The engineering part of nanoparticle synthesis to control autophagy and ferroptosis in CRC still requires more attention.
Collapse
Affiliation(s)
- Zhibin Zhang
- Chengde Medical College, College of Traditional Chinese Medicine, Chengde, Hebei, 067000, China.
| | - Yintao Zhao
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Yuman Wang
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Yutang Zhao
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Jianen Guo
- Chengde Medical College, Chengde, Hebei, 067000, China
| |
Collapse
|
11
|
Wu Q, Yang W, Bi Y, Yao Y, Li C, Li X. Baicalein inhibits apoptosis and autophagy induced by chlorpyrifos exposure to kidney of Cyprinus carpio through activation of PI3K/AKT pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105624. [PMID: 37945259 DOI: 10.1016/j.pestbp.2023.105624] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023]
Abstract
Chlorpyrifos (CPF), a widely used organophosphate pesticide that has caused large-scale contamination globally, has become a major concern. Baicalein (BAI), as a flavonoid extract, shows anti-inflammatory as well as antioxidant activities. The kidneys of fish serve to excrete toxins and are major target organs for environmental contaminants. However, it is not obvious whether BAI can counteract the damage caused by CPF exposure to fish kidneys. Therefore, we conducted a 30-day simulation of CPF poisoning and/or BAI treatment by adding 23.2 μg/L CPF to water and/or 0.15 g/kg BAI to feed. In the transmission electron microscopy results, we observed obvious phenomenon of autophagy and apoptosis in the CPF group, and the TUNEL staining and immunofluorescence of LC3B and p62 double-staining results confirmed that CPF induced autophagy and apoptosis in the kidney of common carp. Furthermore, CPF induced the increase of ROS level and inhibition of PI3K and Nrf2 pathways, which in turn triggered oxidative stress, autophagy and apoptosis in carp kidney according to western blot, RT-qPCR and kit assays. However, addition of BAI significantly alleviated oxidative stress, autophagy and apoptosis due to binding to PI3K protein. Additionally, through phylogenetic tree and structural domain analyses, we also found that the binding sites of BAI and PI3K are conserved in a variety of representative species. These results suggest that BAI antagonizes CPF-caused renal impairments in carp involving the PI3K/AKT pathway and the Nrf2 pathway. Our findings provide new insights into the nephrotoxicity effects of CPF and the potential use of BAI as a detoxification agent for CPF intoxication.
Collapse
Affiliation(s)
- Qian Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Wenrui Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yanju Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Chengzhi Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Caserta S, Genovese C, Cicero N, Toscano V, Gangemi S, Allegra A. The Interplay between Medical Plants and Gut Microbiota in Cancer. Nutrients 2023; 15:3327. [PMID: 37571264 PMCID: PMC10421419 DOI: 10.3390/nu15153327] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
The gut microbiota is a dynamic community of bacteria distributed in the gastroenteric tract and changes in response to diseases, diet, use of antibiotics and probiotics, hygiene status, and other environmental factors. Dysbiosis, a disruption of the normal crosstalk between the host and the microbes, is associated with obesity, diabetes, cancer, and cardiovascular diseases, is linked to a reduction of anti-inflammatory bacteria like Lactobacillus and Roseburia, and to an increase in the growth of proinflammatory species like Ruminococcus gnavus and Bacteroidetes. Some plants possess anticancer properties and various studies have reported that some of these are also able to modulate the gut microbiota. The aim of this work is to evaluate the crucial relationship between medical plants and gut microbiota and the consequences on the onset and progression of cancer. In vivo studies about hematological malignancies showed that beta-glucans tie to endogenous antibeta glucan antibodies and to iC3b, an opsonic fragment of the central complement protein C3, leading to phagocytosis of antibody-targeted neoplastic cells and potentiation of the cytotoxic activity of the innate immune system if administered together with monoclonal antibodies. In conclusion, this review suggests the potential use of medical plants to improve gut dysbiosis and assist in the treatment of cancer.
Collapse
Affiliation(s)
- Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| | - Claudia Genovese
- National Research Council, Institute for Agriculture and Forestry Systems in the Mediterranean, Via Empedocle 58, 95128 Catania, Italy;
| | - Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Valeria Toscano
- National Research Council, Institute for Agriculture and Forestry Systems in the Mediterranean, Via Empedocle 58, 95128 Catania, Italy;
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| |
Collapse
|
13
|
Du YX, Mamun AA, Lyu AP, Zhang HJ. Natural Compounds Targeting the Autophagy Pathway in the Treatment of Colorectal Cancer. Int J Mol Sci 2023; 24:7310. [PMID: 37108476 PMCID: PMC10138367 DOI: 10.3390/ijms24087310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Autophagy is a highly conserved intracellular degradation pathway by which misfolded proteins or damaged organelles are delivered in a double-membrane vacuolar vesicle and finally degraded by lysosomes. The risk of colorectal cancer (CRC) is high, and there is growing evidence that autophagy plays a critical role in regulating the initiation and metastasis of CRC; however, whether autophagy promotes or suppresses tumor progression is still controversial. Many natural compounds have been reported to exert anticancer effects or enhance current clinical therapies by modulating autophagy. Here, we discuss recent advancements in the molecular mechanisms of autophagy in regulating CRC. We also highlight the research on natural compounds that are particularly promising autophagy modulators for CRC treatment with clinical evidence. Overall, this review illustrates the importance of autophagy in CRC and provides perspectives for these natural autophagy regulators as new therapeutic candidates for CRC drug development.
Collapse
Affiliation(s)
| | | | - Ai-Ping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China; (Y.-X.D.); (A.A.M.)
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China; (Y.-X.D.); (A.A.M.)
| |
Collapse
|
14
|
Li J, Chang JY, Jiang ZL, Yin YK, Chen JY, Jin W, Li H, Feng L. Network Pharmacology and in vitro Experimental Verification on Intervention of Quercetin, Present in Chinese Medicine Yishen Qutong Granules, on Esophageal Cancer. Chin J Integr Med 2023; 29:233-243. [PMID: 36094770 DOI: 10.1007/s11655-022-3677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To explore the potential mechanism of Yishen Qutong Granules (YSQTG) for the treatment of esophageal cancer using network pharmacology and experimental research. METHODS The effective components and molecular mechanism of YSQTG in treating esophageal cancer were expounded based on network pharmacology and molecular docking. The key compound was identified by high-performance liquid chromatography and mass spectrometry (HPLC-MS) to verify the malignant phenotype of the key compounds in the treatment of esophageal cancer. Then, the interaction proteins of key compounds were screened by pull-down assay combined with mass spectrometry. RNA-seq was used to screen the differential genes in the treatment of esophageal cancer by key compounds, and the potential mechanism of key compounds on the main therapeutic targets was verified. RESULTS Totally 76 effective compounds of YSQTG were found, as well as 309 related targets, and 102 drug and disease interaction targets. The drug-compound-target network of YSQTG was constructed, suggesting that quercetin, luteolin, wogonin, kaempferol and baicalein may be the most important compounds, while quercetin had higher degree value and degree centrality, which might be the key compound in YSQTG. The HPLC-MS results also showed the stable presence of quercetin in YSQTG. By establishing a protein interaction network, the main therapeutic targets of YSQTG in treating esophageal cancer were Jun proto-oncogene, interleukin-6, tumor necrosis factor, and RELA proto-oncogene. The results of cell function experiments in vitro showed that quercetin could inhibit proliferation, invasion, and clonal formation of esophageal carcinoma cells. Quercetin mainly affected the biological processes of esophageal cancer cells, such as proliferation, cell cycle, and cell metastasis. A total of 357 quercetin interacting proteins were screened, and 531 genes were significantly changed. Further pathway enrichment analysis showed that quercetin mainly affects the metabolic pathway, MAPK signaling pathway, and nuclear factor kappa B (NF- κ B) signaling pathway, etc. Quercetin, the key compound of YSQTG, had stronger binding activity by molecular docking. Pull-down assay confirmed that NF- κ B was a quercetin-specific interaction protein, and quercetin could significantly reduce the protein level of NF- κ B, the main therapeutic target. CONCLUSION YSQTG can be multi-component, multi-target, multi-channel treatment of esophageal cancer, it is a potential drug for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Jie Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jin-Yuan Chang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zheng-Long Jiang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yu-Kun Yin
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia-Yang Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Jin
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hao Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Li Feng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
15
|
Promising Role of the Scutellaria baicalensis Root Hydroxyflavone-Baicalein in the Prevention and Treatment of Human Diseases. Int J Mol Sci 2023; 24:ijms24054732. [PMID: 36902160 PMCID: PMC10003701 DOI: 10.3390/ijms24054732] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Plant roots, due to a high content of natural antioxidants for many years, have been used in herbal medicine. It has been documented that the extract of Baikal skullcap (Scutellaria baicalensis) has hepatoprotective, calming, antiallergic, and anti-inflammatory properties. Flavonoid compounds found in the extract, including baicalein, have strong antiradical activity, which improves overall health and increases feelings of well-being. Plant-derived bioactive compounds with antioxidant activity have for a long time been used as an alternative source of medicines to treat oxidative stress-related diseases. In this review, we summarized the latest reports on one of the most important aglycones with respect to the pharmacological activity and high content in Baikal skullcap, which is 5,6,7-trihydroxyflavone (baicalein).
Collapse
|
16
|
Tuli HS, Bhushan S, Kumar A, Aggarwal P, Sak K, Ramniwas S, Vashishth K, Behl T, Rana R, Haque S, Prieto MA. Autophagy Induction by Scutellaria Flavones in Cancer: Recent Advances. Pharmaceuticals (Basel) 2023; 16:302. [PMID: 37259445 PMCID: PMC9962484 DOI: 10.3390/ph16020302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 07/28/2024] Open
Abstract
In parallel with a steady rise in cancer incidence worldwide, the scientific community is increasingly focused on finding novel, safer and more efficient modalities for managing this disease. Over the past decades, natural products have been described as a significant source of new structural leads for novel drug candidates. Scutellaria root is one of the most studied natural products because of its anticancer potential. Besides just describing the cytotoxic properties of plant constituents, their molecular mechanisms of action in different cancer types are equally important. Therefore, this review article focuses on the role of the Scutellaria flavones wogonin, baicalein, baicalin, scutellarein and scutellarin in regulating the autophagic machinery in diverse cancer models, highlighting these molecules as potential lead compounds for the fight against malignant neoplasms. The knowledge that autophagy can function as a dual-edged sword, acting in both a pro- and antitumorigenic manner, further complicates the issue, revealing an amazing property of flavonoids that behave either as anti- or proautophagic agents.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (University), Mullana, Ambala 133207, India
| | - Sakshi Bhushan
- Department of Botany, Central University of Jammu, Samba 181143, India
| | - Ajay Kumar
- Punjab Biotechnology Incubator (P.B.T.I.), Phase VIII, Mohali 160071, India
| | - Poonam Aggarwal
- The Basic Research Laboratory, Center for Cancer Research, National Institutes of Health, Frederick, MD 20892, USA
| | | | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India
| | - Kanupriya Vashishth
- Advance Cardiac Centre Department of Cardiology, Post Graduate Institute of Medical Education and Rsearch (P.G.I.M.E.R.), Chandigarh 160012, India
| | - Tapan Behl
- Department of Pharmacology, School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, India
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi 122016, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
17
|
Baicalin-Loaded Lipid-Polymer Hybrid Nanoparticles Inhibiting the Proliferation of Human Colon Cancer: Pharmacokinetics and In Vivo Evaluation. Polymers (Basel) 2023; 15:polym15030598. [PMID: 36771901 PMCID: PMC9920659 DOI: 10.3390/polym15030598] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
This research work is focused on pharmacokinetic and biochemical experiments to assess baicalin-loaded lipid-polymer hybrid nanoparticles (LPHNPs) with colon-targeting specificity. The nanoprecipitation method was used to develop the LPHNPs, and the characterized formulation revealed the 184.3 nm particle size, PDI of 0.177, spherical shape, and zeta potential of -19.8 mV. The baicalin LPHNPs are said to be poorly absorbed in the stomach and small intestine, and in vitro drug release tests have shown that the drug is released mostly in the caecal fluid. Additionally, the LPHNPs showed stability and nonsignificant drug loss at 25 °C for 3 months. The least viable population of baicalin-loaded LPHNPs was detected at a lower IC50 value after 48 h, and no cytotoxicity was observed by blank suspension and blank LPHNPs up to the concentration of 100 µg/mL. Apart from this, the pharmacokinetics study showed that baicalin from LPHNPs is much less absorbed and least available in the blood plasma and maximum available in the colon. Concurrently, organ distribution studies demonstrated that baicalin-loaded LPHNPs were distributed more widely in the colon compared to baicalin suspension. Moreover, baicalin-loaded LPHNPs were found to be superior to a baicalin suspension in reducing elevated liver enzyme levels. In a nutshell, baicalin-loaded LPHNPs show superior efficacy and can be maximally localized into the colon rectal cancer along with systemic availability of the drug.
Collapse
|
18
|
Tang HZ, Yang ZP, Lu S, Wang B, Wang YY, Sun XB, Qu JX, Rao BQ. Network pharmacology-based analysis of heat clearing and detoxifying drug JC724 on the treatment of colorectal cancer. World J Gastrointest Oncol 2023; 15:90-101. [PMID: 36684054 PMCID: PMC9850754 DOI: 10.4251/wjgo.v15.i1.90] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 12/21/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Heat-clearing and detoxifying drugs has protective effect on colorectal cancer (CRC). Given the complicated features of Traditional Chinese medicine formulas, network pharmacology is an effective approach for studying the multiple interactions between drugs and diseases.
AIM To systematically explore the anticancer mechanism of heat-clearing and detoxifying drug JC724.
METHODS This study obtained the active compounds and their targets in JC724 from Traditional Chinese Medicine System Pharmacology Database. In addition, the CRC targets were obtained from Drugbank, TTD, DisGeNET and GeneCards databases. We performed transcriptome analysis of differentially expressed genes in CRC treated with JC724. Venn diagram was used to screen the JC724-CRC intersection targets as candidate targets. Core targets were selected by protein-protein interaction network and herb ingredient-target-disease network analysis. The functional and pathway of core targets were analysed by enrichment analysis.
RESULTS We found 174 active ingredients and 283 compound targets from JC724. 940 CRC-related targets were reserved from the four databases and 304 CRC differentially expressed genes were obtained by transcriptome analysis. We constructed the network and found that the five core ingredients were quercetin, β Beta sitosterol, wogonin, kaempferol and baicalein. The core JC724-CRC targets were CYP1A1, HMOX1, CXCL8, NQO1 and FOSL1. JC724 acts on multiple signaling pathways associated with CRC, including the Nrf2 signaling pathway, oxidative stress, and the IL-17 signaling pathway.
CONCLUSION In this study, we systematically analyzed the active ingredients, core targets and main mechanisms of JC724 in the treatment of CRC. This study could bring a new perspective to the heat-clearing and detoxifying therapy of CRC.
Collapse
Affiliation(s)
- Hua-Zhen Tang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Department of Gastrointestinal Surgery, Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Zhen-Peng Yang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Department of Gastrointestinal Surgery, Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Shuai Lu
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Department of Gastrointestinal Surgery, Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Bing Wang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Department of Gastrointestinal Surgery, Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Yu-Ying Wang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Department of Gastrointestinal Surgery, Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Xi-Bo Sun
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, Shandong Province, China
| | - Jin-Xiu Qu
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Department of Gastrointestinal Surgery, Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Ben-Qiang Rao
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Department of Gastrointestinal Surgery, Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| |
Collapse
|
19
|
Rahmani AH, Almatroudi A, Khan AA, Babiker AY, Alanezi M, Allemailem KS. The Multifaceted Role of Baicalein in Cancer Management through Modulation of Cell Signalling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228023. [PMID: 36432119 PMCID: PMC9692503 DOI: 10.3390/molecules27228023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
The roles of medicinal plants or their purified bioactive compounds have attracted attention in the field of health sciences due to their low toxicity and minimal side effects. Baicalein is an active polyphenolic compound, isolated from Scutellaria baicalensis, and plays a significant role in the management of different diseases. Epidemiologic studies have proven that there is an inverse association between baicalein consumption and disease severity. Baicalein is known to display anticancer activity through the inhibition of inflammation and cell proliferation. Additionally, the anticancer potential of baicalein is chiefly mediated through the modulation of various cell-signaling pathways, such as the induction of apoptosis, autophagy, cell cycle arrest, inhibition of angiogenesis, signal transducer and activator of transcription 3, and PI3K/Akt pathways, as well as the regulation of other molecular targets. Therefore, the current review aimed to explore the role of baicalein in different types of cancer along with mechanisms of action. Besides this, the synergistic effects with other anti-cancerous drugs and the nano-formulation based delivery of baicalein have also been discussed.
Collapse
Affiliation(s)
- Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
- Correspondence:
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Malak Alanezi
- Department of Dentistry, Dr. Sulaiman Al Habib Medical Group, Qassim 51431, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| |
Collapse
|
20
|
Wang L, Feng T, Su Z, Pi C, Wei Y, Zhao L. Latest research progress on anticancer effect of baicalin and its aglycone baicalein. Arch Pharm Res 2022; 45:535-557. [DOI: 10.1007/s12272-022-01397-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/11/2022] [Indexed: 11/02/2022]
|
21
|
Investigation of Molecular Mechanism of Banxia Xiexin Decoction in Colon Cancer via Network Pharmacology and In Vivo Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4961407. [PMID: 35815259 PMCID: PMC9270134 DOI: 10.1155/2022/4961407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022]
Abstract
Objective Banxia Xiexin decoction (BXD) is widely used in the treatment of gastrointestinal and other digestive diseases. This study is based on network pharmacology to explore the molecular mechanism of BXD in the treatment of colon cancer. Methods The bioactive components and potential targets of BXD were obtained from public database. The protein-protein interaction (PPI) network of the potential targets of BXD for colon cancer was constructed based on the STRING database, cytoscape software, gene ontology (GO), and kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis of the PPI network. Finally, we established a xenograft nude mouse model to verify the effect of BXD in colon cancer treatment. Results We have acquired a total of 55 bioactive components and 136 cross-targets of BXD. The results of enrichment analysis suggested that the oxidate stress and diet were the key factors of colon cancer occurrence, and AGE-RAGE signaling pathway plays an essential role in the treatment of colon cancer with BXD. Animal experiments revealed that BXD could suppress tumor growth and induce tumor cell apoptosis in the xenograft nude mouse model with HCT116 cells. Conclusion This study uncovered that BXD inhibits the malignant progression of colon cancer that may be related to multiple compounds (berberine, quercetin, baicalein, etc.), multiple targets (Bcl2, Bax, IL6, TNFα, CASP3, etc.), and multiple pathways (human cytomegalovirus infection, AGE-RAGE signaling pathway in diabetic complications, etc.).
Collapse
|
22
|
Aru B, Gümüşgöz Çelik G, Harmandar K, Şahin B, Gürek AG, Atilla D, Yanıkkaya Demirel G. Chemo-photodynamic Activity of Silicon Phthalocyanines Bearing Cyclooxygenase Inhibitors on Colorectal Cancer Cell Lines. ACS APPLIED BIO MATERIALS 2022; 5:3936-3950. [PMID: 35802827 DOI: 10.1021/acsabm.2c00461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Colorectal cancer ranks as the third most lethal cancer worldwide, resulting in over 1 million cases and 900 000 deaths per year. According to population-based studies, administration of long-term non-steroidal anti-inflammatory drugs (NSAIDs) was proven to reduce the risk of a subject developing colorectal cancer. In the present study, the anti-cancer activity of two different NSAIDs, sulindac- (Pc-1) or diclofenac-substituted (Pc-2) asymmetric silicon phthalocyanine derivatives, was evaluated in four different colorectal cancer cell lines bearing various carcinogenic mutations. In this context, the IC50 values of each compound after 24 and 48 h were determined on HCT116, SW480, LoVo, and HT29 cell lines, and the effects of the compounds on programmed cell death pathways apoptosis and autophagy, their impact on cell cycle progression, and the effect of NSAID moieties they bear on COX-1 and COX-2 proteins were analyzed. In addition, the photophysical and photochemical properties of a synthesized Pc derivative bearing axial diclofenac and triethylene glycol groups (Pc-2) have been investigated, and the compound has been characterized by using different analytical techniques. Our results indicated that both compounds inhibit COX protein expression levels, activate apoptosis in all cell lines, and lead to cell cycle arrest in the G2/M phase, depending on the COX expression profiles of the cell lines, indicating that NSAIDs can be coupled with Pc's to achieve increased anti-cancer activity, especially on cancer cells known to have high COX activity.
Collapse
Affiliation(s)
- Başak Aru
- Faculty of Medicine, Immunology Department, Yeditepe University, 34755 Ataşehir, Istanbul, Turkey
| | - Gizem Gümüşgöz Çelik
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | - Kevser Harmandar
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | - Belgin Şahin
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | - Ayşe Gül Gürek
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | - Devrim Atilla
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | | |
Collapse
|
23
|
A Novel Ferroptosis-Related Gene Signature to Predict Prognosis of Esophageal Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:7485435. [PMID: 35813863 PMCID: PMC9270146 DOI: 10.1155/2022/7485435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/07/2022] [Indexed: 12/01/2022]
Abstract
Objective This study aimed to develop a novel ferroptosis-related gene-based prognostic signature for esophageal carcinoma (ESCA). Methods The TCGA-ESCA gene expression profiles and corresponding clinical data were downloaded from the TCGA database. Ferroptosis-related genes were identified from the literature and public databases, which were intersected with the differentially expressed genes between ESCA and normal samples. After univariate Cox regression and random forest analyses, several ferroptosis-related feature genes were identified and used to construct a prognostic signature. Then, the prognostic value of the complex value and the correlation of the complex value with immune cell infiltration were analyzed. Moreover, function analysis, mutation analysis, and molecular docking on the ferroptosis-related feature genes were performed. Results Based on the TCGA dataset and ferroptosis pathway genes, 1929 ferroptosis-related genes were preliminarily selected. Following univariate Cox regression analysis and survival analysis, 14 genes were obtained. Then, random forest analysis identified 10 ferroptosis key genes. These 10 genes were used to construct a prognostic complex value. It was found that low complex value indicated better prognosis compared with high complex value. In different ESCA datasets, there were similar differences in the proportion of immune cell distribution between the high and low complex value groups. Furthermore, TNKS1BP1, AC019100.7, KRI1, BCAP31, and RP11-408E5.5 were significantly correlated with ESCA tumor location, lymph node metastasis, and age of patients. KRI1 had the highest mutation frequency. BCAP31 had the strongest binding ability with small molecules DB12830, DB05812, and DB07307. Conclusion We constructed a novel ferroptosis-related gene signature, which has the potential to predict patient survival and tumor-infiltrating immune cells of ESCA.
Collapse
|
24
|
Chandrashekar N, Pandi A. Baicalein: A review on its anti-cancer effects and mechanisms in lung carcinoma. J Food Biochem 2022; 46:e14230. [PMID: 35543192 DOI: 10.1111/jfbc.14230] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/25/2022]
Abstract
Plant-derived flavonoids are reported to function as potential anti-cancer agents against different types of cancer. Baicalein (BE) is an important flavonoid found in the roots of Scutellaria baicalensis that is popularly used in Chinese medicine as an ingredient in herbal tea preparations to promote wellness. BE has been studied for its several biological effects including antioxidant, anti-inflammatory, anti-hepatotoxic, antiviral, and anti-tumor properties. BE has now been discovered to be an effective agent against lung neoplasm. The molecular factors supporting baicalein's anti-cancer activity against lung cancer and its value to human health are discussed in this article. This would help in identifying BE as a promising competent drug against lung carcinoma. PRACTICAL APPLICATIONS: Baicalein is a flavonoid obtained from the roots of Scutellaria baicalensis. It has been widely used as an antioxidant, anti-inflam5matory, anti-hepatotoxic, antiviral, and anti-cancer agent. Lung cancer is one of the most common malignancies in the world with a high fatality rate. Several studies have found that Baicalein is an important candidate for treating lung cancer. Its mechanism of action includes regulation of cell proliferation, metastasis, apoptosis, autophagy, and so on. Baicalein could be used as a novel anti-cancer drug for the treatment of lung carcinoma.
Collapse
Affiliation(s)
| | - Anandakumar Pandi
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Deoghar, India
| |
Collapse
|
25
|
The role of ALOX15B in heat stress-induced apoptosis of porcine sertoli cells. Theriogenology 2022; 185:6-15. [DOI: 10.1016/j.theriogenology.2022.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 01/03/2023]
|
26
|
Yu CC, Li Y, Cheng ZJ, Wang X, Mao W, Zhang YW. Active Components of Traditional Chinese Medicinal Material for Multiple Myeloma: Current Evidence and Future Directions. Front Pharmacol 2022; 13:818179. [PMID: 35153791 PMCID: PMC8834085 DOI: 10.3389/fphar.2022.818179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by clonal expansion of plasma cells in bone marrow, leading to the overproduction of monoclonal immunoglobulins. The clinical manifestations resulting from monoclonal proteins and malignant cells include signs of end-organ damage, such as hypercalcemia, renal failure, anemia, and bone lesions. Despite improvement in the survival of MM patients with use of myeloma-targeted and immunomodulatory therapies, MM remains an incurable disease. Moreover, patients with relapsed or refractory MM show poor survival outcomes. In recent years, there has been a growing interest in the use of traditional Chinese medicinal materials (TCMMs) for management of a wide spectrum of diseases. The bioactive ingredients derived from TCMMs hold great potential for the development of anticancer drugs. Here we summarize the evidence of the pharmacological effects of the active components in TCMMs on MM, including curcumin, resveratrol, baicalein, berberine, bufalin, cinobufagin, gambogic acid, ginsenoside, icariin, daidzin, formononetin, polysaccharides extracts from Hedyotis difus, and scutellarein. Available evidence indicates that the anti-MM effects of these bioactive ingredients are mediated via regulation of proliferation, apoptosis, autophagy, cell cycle, osteogenic differentiation, and drug resistance. In the future, the underlying mechanisms of the anti-MM effects of these components should be further investigated. Large-scale and well-designed clinical trials are also required to validate the efficacy of these bioactive constituents for MM.
Collapse
Affiliation(s)
- Chao-Chao Yu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yi Li
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zhao-Jun Cheng
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xi Wang
- Department of Oncology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Wei Mao
- Peking University Shenzhen Hospital Hua Wei Clinic, Shenzhen, China
| | - Ying-Wen Zhang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
27
|
Verma E, Kumar A, Devi Daimary U, Parama D, Girisa S, Sethi G, Kunnumakkara AB. Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
28
|
Lee DY, Song MY, Kim EH. Role of Oxidative Stress and Nrf2/KEAP1 Signaling in Colorectal Cancer: Mechanisms and Therapeutic Perspectives with Phytochemicals. Antioxidants (Basel) 2021; 10:743. [PMID: 34067204 PMCID: PMC8151932 DOI: 10.3390/antiox10050743] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer still has a high incidence and mortality rate, according to a report from the American Cancer Society. Colorectal cancer has a high prevalence in patients with inflammatory bowel disease. Oxidative stress, including reactive oxygen species (ROS) and lipid peroxidation, has been known to cause inflammatory diseases and malignant disorders. In particular, the nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-related protein 1 (KEAP1) pathway is well known to protect cells from oxidative stress and inflammation. Nrf2 was first found in the homolog of the hematopoietic transcription factor p45 NF-E2, and the transcription factor Nrf2 is a member of the Cap 'N' Collar family. KEAP1 is well known as a negative regulator that rapidly degrades Nrf2 through the proteasome system. A range of evidence has shown that consumption of phytochemicals has a preventive or inhibitory effect on cancer progression or proliferation, depending on the stage of colorectal cancer. Therefore, the discovery of phytochemicals regulating the Nrf2/KEAP1 axis and verification of their efficacy have attracted scientific attention. In this review, we summarize the role of oxidative stress and the Nrf2/KEAP1 signaling pathway in colorectal cancer, and the possible utility of phytochemicals with respect to the regulation of the Nrf2/KEAP1 axis in colorectal cancer.
Collapse
Affiliation(s)
- Da-Young Lee
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea
| | - Moon-Young Song
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea
| |
Collapse
|
29
|
Lu T, Xu R, Li Q, Zhao JY, Peng B, Zhang H, Guo JD, Zhang SQ, Li HW, Wang J, Zhang LY. Systematic profiling of ferroptosis gene signatures predicts prognostic factors in esophageal squamous cell carcinoma. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:134-143. [PMID: 33981829 PMCID: PMC8080401 DOI: 10.1016/j.omto.2021.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
We developed a predictive model associated with ferroptosis to provide a more comprehensive view of esophageal squamous cell carcinoma (ESCC) immunotherapy. Gene expression data and corresponding clinical outcomes were obtained from the GEO and The Cancer Genome Atlas (TCGA) databases, and a ferroptosis-related gene set was obtained from the FerrDb database. We identified 45 ferroptosis-related genes that were differentially expressed, including enrichment in genes involved in the immune system process. We established a ferroptosis-related gene-based prognostic model based on the results of univariate Cox regression and multivariate Cox regression analyses, with an area under the curve (AUC) of 0.76 (3 years). We found that the patients with low-risk scores showed a higher proportion of CD8+ T cells, CD4+ memory activated T cells, etc. Finally, a predictive ferroptosis-related prognostic nomogram, which included the predictive values of age, gender, grade, TNM stage, and risk score, was established to predict overall survival. In sum, we developed a ferroptosis-related gene-based prognostic model that provides novel insights into the prediction of ESCC prognosis and identifies the relevance of the immune microenvironment for patient outcomes.
Collapse
Affiliation(s)
- Tong Lu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ran Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qi Li
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Jia-Ying Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Bo Peng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Han Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ji-da Guo
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Sheng-Qiang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Hua-Wei Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jun Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Lin-You Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|