1
|
Morita D, Rosewell Shaw A, Biegert G, Porter C, Woods M, Vasileiou S, Lim B, Suzuki M. Additional expression of T-cell engager in clinically tested oncolytic adeno-immunotherapy redirects tumor-infiltrated, irrelevant T cells against cancer cells to enhance antitumor immunity. J Immunother Cancer 2024; 12:e009741. [PMID: 39653552 PMCID: PMC11629014 DOI: 10.1136/jitc-2024-009741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Oncolytic adenoviruses (OAds) are the most clinically tested viral vectors for solid tumors. However, most clinically tested "Armed" OAds show limited antitumor effects in patients with various solid tumors even with increased dosages and multiple injections. We developed a binary oncolytic/helper-dependent adenovirus system (CAdVEC), in which tumors are coinfected with an OAd and a non-replicating helper-dependent Ad (HDAd). We recently demonstrated that a single low-dose CAdVEC expressing interleukin-12, programmed death-ligand 1 blocker, and HSV thymidine kinase safety switch (CAdTrio) induces significant antitumor effects in patients, including complete response. Similar to previous OAd studies, all patients primarily amplified Ad-specific T cells after treatment however, CAdVEC was still able to induce clinical responses even given at a 100-fold lower dose. METHODS To address the mechanisms of CAdTrio-mediated antitumor effect in patients, we analyzed patients' samples using Enzyme-linked immunosorbent spot (ELISpot) to measure T-cell specificity and quantitative polymerase chain reaction (qPCR) to measure CAdVEC viral genome copies at tumor sites. We then evaluated potential mechanisms of CAdVEC efficacy in vitro using live-cell imaging. Based on those results, we developed a new CAdVEC additionally expressing a T-cell engager molecule targeting CD44v6 to redirect tumor-infiltrating irrelevant T cells against cancer stem cell populations (CAdTetra) for further improvement of local CAdVEC treatment. We tested its efficacy against different cancer types both in vitro and in vivo including Ad pre-immunized humanized mice. RESULTS We found that HDAd-infected cells escape Ad-specific T-cell recognition with enhanced tumor-specific T-cell activity through immunomodulatory transgenes. Since CAdVEC treatment initially amplified Ad-specific T cells in patients, we re-direct these virus-specific T cells to target tumor cells by additionally expressing CD44v6.BiTE from CAdTetra. CAdTetra significantly controlled tumor growth, repolarizing local and systemic responses against cancer cells in both immunologically "hot" and "cold" tumor models and also induced immunologic memory against rechallenged tumors. CONCLUSIONS Our results indicate that CAdTetra effectively induces adaptive T-cell responses against cancer cells by using tumor-infiltrating irrelevant T cells.
Collapse
Affiliation(s)
- Daisuke Morita
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Amanda Rosewell Shaw
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
- Department of Biology, School of Science and Engineering, Benedict College, Columbia, SC, USA
| | - Greyson Biegert
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Caroline Porter
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Mae Woods
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Spyridoula Vasileiou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Bora Lim
- Duncan Cancer Center-Breast, Baylor College of Medicine, Houston, TX, USA
- Breast Medical Oncology, The UT MD Anderson Cancer Center, Houston, TX, USA
| | - Masataka Suzuki
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
2
|
DeBonis J, Veiseh O, Igoshin OA. Uncovering the interleukin-12 pharmacokinetic desensitization mechanism and its consequences with mathematical modeling. CPT Pharmacometrics Syst Pharmacol 2024. [PMID: 39415353 DOI: 10.1002/psp4.13258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024] Open
Abstract
The cytokine interleukin-12 (IL-12) is a potential immunotherapy because of its ability to induce a Th1 immune response. However, success in the clinic has been limited due to a phenomenon called IL-12 desensitization - the trend where repeated exposure to IL-12 leads to reduced IL-12 concentrations (pharmacokinetics) and biological effects (pharmacodynamics). Here, we investigated IL-12 pharmacokinetic desensitization via a modeling approach to (i) validate proposed mechanisms in literature and (ii) develop a mathematical model capable of predicting IL-12 pharmacokinetic desensitization. Two potential causes of IL-12 pharmacokinetic desensitization were identified: increased clearance or reduced bioavailability of IL-12 following repeated doses. Increased IL-12 clearance was previously proposed to occur due to the upregulation of IL-12 receptor on T cells that causes increased receptor-mediated clearance in the serum. However, our model with this mechanism, the accelerated-clearance model, failed to capture trends in clinical trial data. Alternatively, our novel reduced-bioavailability model assumed that upregulation of IL-12 receptor on T cells in the lymphatic system leads to IL-12 sequestration, inhibiting the transport to the blood. This model accurately fits IL-12 pharmacokinetic data from three clinical trials, supporting its biological relevance. Using this model, we analyzed the model parameter space to illustrate that IL-12 desensitization occurs over a robust range of parameter values and to identify the conditions required for desensitization. We next simulated local, continuous IL-12 delivery and identified several methods to mitigate systemic IL-12 exposure. Ultimately, our results provide quantitative validation of our proposed mechanism and allow for accurate prediction of IL-12 pharmacokinetics over repeated doses.
Collapse
Affiliation(s)
- Jonathon DeBonis
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, Texas, USA
- Department of Biosciences, Rice University, Houston, Texas, USA
| |
Collapse
|
3
|
Thoidingjam S, Bhatnagar AR, Sriramulu S, Siddiqui F, Nyati S. Optimizing Pancreatic Cancer Therapy: The Promise of Immune Stimulatory Oncolytic Viruses. Int J Mol Sci 2024; 25:9912. [PMID: 39337402 PMCID: PMC11432658 DOI: 10.3390/ijms25189912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Pancreatic cancer presents formidable challenges due to rapid progression and resistance to conventional treatments. Oncolytic viruses (OVs) selectively infect cancer cells and cause cancer cells to lyse, releasing molecules that can be identified by the host's immune system. Moreover, OV can carry immune-stimulatory payloads such as interleukin-12, which when delivered locally can enhance immune system-mediated tumor killing. OVs are very well tolerated by cancer patients due to their ability to selectively target tumors without affecting surrounding normal tissues. OVs have recently been combined with other therapies, including chemotherapy and immunotherapy, to improve clinical outcomes. Several OVs including adenovirus, herpes simplex viruses (HSVs), vaccinia virus, parvovirus, reovirus, and measles virus have been evaluated in preclinical and clinical settings for the treatment of pancreatic cancer. We evaluated the safety and tolerability of a replication-competent oncolytic adenoviral vector carrying two suicide genes (thymidine kinase, TK; and cytosine deaminase, CD) and human interleukin-12 (hIL12) in metastatic pancreatic cancer patients in a phase 1 trial. This vector was found to be safe and well-tolerated at the highest doses tested without causing any significant adverse events (SAEs). Moreover, long-term follow-up studies indicated an increase in the overall survival (OS) in subjects receiving the highest dose of the OV. Our encouraging long-term survival data provide hope for patients with advanced pancreatic cancer, a disease that has not seen a meaningful increase in OS in the last five decades. In this review article, we highlight several preclinical and clinical studies and discuss future directions for optimizing OV therapy in pancreatic cancer. We envision OV-based gene therapy to be a game changer in the near future with the advent of newer generation OVs that have higher specificity and selectivity combined with personalized treatment plans developed under AI guidance.
Collapse
Affiliation(s)
| | | | | | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI 48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, USA
- Department of Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Shyam Nyati
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI 48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Kato Y, Rice N, Pokrass M, Jeong J, Rodriguez R, Field JJ, Nowyhed H. Nonclinical characterization of ICVB-1042 as a selective oncolytic adenovirus for solid tumor treatment. Commun Biol 2024; 7:1132. [PMID: 39271928 PMCID: PMC11399272 DOI: 10.1038/s42003-024-06839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
ICVB-1042 is an oncolytic adenovirus containing modifications to enhance replication, lysis, and viral spreading in tumor cells. The anti-tumor activity, immune activation, tropism, selectivity, and mechanism of action were evaluated in preparation for a first-in-human study. ICVB-1042 was at least 100-fold more cytotoxic in A549 cells than in normal primary cells tested, demonstrating its high tumor selectivity and a low likelihood of targeting primary tissues. ICVB-1042 administered to mice intravenously or intratumorally was effective in reducing tumor burden. Its intravenous administration also inhibited tumor growth in orthotopic models. ICVB-1042 was well tolerated in mice compared to HAdV-C5 (Wt Ad5), with reduced liver sequestration, supporting safety of the drug for systemic delivery. These preclinical data demonstrating the safety and potency of ICVB-1042 for treatment of various solid tumors support the ongoing clinical investigation (NCT05904236).
Collapse
Affiliation(s)
- Yu Kato
- IconOVir Bio, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
6
|
Wang J, Fang Y, Luo Z, Wang J, Zhao Y. Emerging mRNA Technology for Liver Disease Therapy. ACS NANO 2024; 18:17378-17406. [PMID: 38916747 DOI: 10.1021/acsnano.4c02987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Liver diseases have consistently posed substantial challenges to global health. It is crucial to find innovative methods to effectively prevent and treat these diseases. In recent times, there has been an increasing interest in the use of mRNA formulations that accumulate in liver tissue for the treatment of hepatic diseases. In this review, we start by providing a detailed introduction to the mRNA technology. Afterward, we highlight types of liver diseases, discussing their causes, risks, and common therapeutic strategies. Additionally, we summarize the latest advancements in mRNA technology for the treatment of liver diseases. This includes systems based on hepatocyte growth factor, hepatitis B virus antibody, left-right determination factor 1, human hepatocyte nuclear factor α, interleukin-12, methylmalonyl-coenzyme A mutase, etc. Lastly, we provide an outlook on the potential of mRNA technology for the treatment of liver diseases, while also highlighting the various technical challenges that need to be addressed. Despite these difficulties, mRNA-based therapeutic strategies may change traditional treatment methods, bringing hope to patients with liver diseases.
Collapse
Affiliation(s)
- Ji Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yile Fang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
7
|
Yoon AR, Jiao A, Hong J, Kim B, Yun CO. Tumor microenvironment-modulating oncolytic adenovirus combined with GSK-3β inhibitor enhances antitumor immune response against bladder cancer. Front Immunol 2024; 15:1360436. [PMID: 38812516 PMCID: PMC11133599 DOI: 10.3389/fimmu.2024.1360436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Bladder cancer is a common type of cancer around the world, and the majority of patients are diagnosed with non-muscle-invasive bladder cancer (NMIBC). Although low-risk NMIBC has a good prognosis, the disease recurrence rate and development of treatment-refractory disease remain high in intermediate- to high-risk NMIBC patients. To address these challenges for the treatment of NMIBC, a novel combination therapy composed of an oncolytic adenovirus (oAd) co-expressing interleukin (IL)-12, granulocyte-macrophage colony-stimulating factor (GM-CSF), and relaxin (RLX; HY-oAd) and a clinical-stage glycogen synthase kinase (GSK)-3β inhibitor (9-ING-41; elraglusib) was investigated in the present report. Our findings demonstrate that HY-oAd and 9-ING-41 combination therapy (HY-oAd+9-ING-41) exerted superior inhibition of tumor growth compared with respective monotherapy in a syngeneic NMIBC tumor model. HY-oAd+9-ING-41 induced high-level tumor extracellular matrix (ECM) degradation and a more potent antitumor immune response than the respective monotherapy. In detail, HY-oAd+9-ING-41 induced superior accumulation of intratumoral T cells, prevention of immune cell exhaustion, and induction of tumor-specific adaptive immune response compared to either monotherapy. Collectively, these results demonstrate that the combination of HY-oAd and 9-ING-41 may be a promising approach to elicit a potent antitumor immune response against bladder cancer.
Collapse
Affiliation(s)
- A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, Republic of Korea
| | - Ao Jiao
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - JinWoo Hong
- GeneMedicine Co., Ltd., Seoul, Republic of Korea
| | - Bomi Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, Republic of Korea
- GeneMedicine Co., Ltd., Seoul, Republic of Korea
| |
Collapse
|
8
|
Bhatnagar AR, Siddiqui F, Khan G, Pompa R, Kwon D, Nyati S. Long-Term Follow-Up of Phase I Trial of Oncolytic Adenovirus-Mediated Cytotoxic and Interleukin-12 Gene Therapy for Treatment of Metastatic Pancreatic Cancer. Biomedicines 2024; 12:1065. [PMID: 38791027 PMCID: PMC11118039 DOI: 10.3390/biomedicines12051065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The long-term follow-up findings of the phase I trial evaluating the efficacy of oncolytic adenovirus-mediated cytotoxic and interleukin-12 gene therapy in metastatic pancreatic cancer (mPC) seem very promising. The study employed a replication-competent Adenovector in combination with chemotherapy in a dose-escalation format. The trial demonstrated a clinically meaningful median overall survival (OS) benefit, with patients in the highest dose cohort exhibiting an impressive median OS of 18.4 months. This contrasts starkly with patients receiving lower doses who experienced a median OS of 4.8 and 3.5 months, respectively. Remarkably, subject number 10, who received the highest dose, demonstrated an extraordinary survival of 59.1 months, presenting a compelling case for further exploration. Additionally, this patient displayed complete responses in lung and liver metastases, a rare occurrence in mPC treatment. Statistical analyses supported the observed survival benefit. The unprecedented OS results emphasize the potential of this treatment strategy and pave the way for future investigations into this promising gene therapy approach.
Collapse
Affiliation(s)
- Aseem Rai Bhatnagar
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI 48202, USA; (A.R.B.); (F.S.)
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI 48202, USA; (A.R.B.); (F.S.)
| | - Gazala Khan
- Department of Medical Oncology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Robert Pompa
- Department of Gastroenterology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - David Kwon
- Department of Surgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Shyam Nyati
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI 48202, USA; (A.R.B.); (F.S.)
| |
Collapse
|
9
|
Wang Y, Zhu M, Chi H, Liu Y, Yu G. The combination therapy of oncolytic virotherapy. Front Pharmacol 2024; 15:1380313. [PMID: 38725667 PMCID: PMC11079273 DOI: 10.3389/fphar.2024.1380313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction: Compared to other cancer immunotherapies, oncolytic viruses possess several advantages, including high killing efficiency, excellent targeting capabilities, minimal adverse reactions, and multiple pathways for tumor destruction. However, the efficacy of oncolytic viruses as a monotherapy often falls short of expectations. Consequently, combining oncolytic viruses with traditional treatments to achieve synergistic effects has emerged as a promising direction for the development of oncolytic virus therapies. Methods: This article provides a comprehensive review of the current progress in preclinical and clinical trials exploring the combination therapies involving oncolytic viruses. Results: Specifically, we discuss the combination of oncolytic viruses with immune checkpoint inhibitors, chemotherapy, targeted therapy, and cellular therapy. Discussion: The aim of this review is to offer valuable insights and references for the further advancement of these combination strategies in clinical applications. Further research is necessary to refine the design of combination therapies and explore novel strategies to maximize the therapeutic benefits offered by oncolytic viruses.
Collapse
Affiliation(s)
- Yue Wang
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Mengying Zhu
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
- Department of Clinical Integration of Traditional Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Huanyu Chi
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
- The Second Clinical College of Dalian Medical University, Dalian, China
| | - Yang Liu
- Department of Ophthalmology, First Hospital of China Medical University, Shenyang, China
| | - Guilin Yu
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
10
|
Zeng M, Zhang W, Li Y, Yu L. Harnessing adenovirus in cancer immunotherapy: evoking cellular immunity and targeting delivery in cell-specific manner. Biomark Res 2024; 12:36. [PMID: 38528632 DOI: 10.1186/s40364-024-00581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/09/2024] [Indexed: 03/27/2024] Open
Abstract
Recombinant adenovirus (rAd) regimens, including replication-competent oncolytic adenovirus (OAV) and replication-deficient adenovirus, have been identified as potential cancer therapeutics. OAV presents advantages such as selective replication, oncolytic efficacy, and tumor microenvironment (TME) remodeling. In this perspective, the principles and advancements in developing OAV toolkits are reviewed. The burgeoning rAd may dictate efficacy of conventional cancer therapies as well as cancer immunotherapies, including cancer vaccines, synergy with adoptive cell therapy (ACT), and TME reshaping. Concurrently, we explored the potential of rAd hitchhiking to adoptive immune cells or stem cells, highlighting how this approach facilitates synergistic interactions between rAd and cellular therapeutics at tumor sites. Results from preclinical and clinical trials in which immune and stem cells were infected with rAd have been used to address significant oncological challenges, such as postsurgical residual tumor tissue and metastatic tissue. Briefly, rAd can eradicate tumors through various mechanisms, resulting from tumor immunogenicity, reprogramming of the TME, enhancement of cellular immunity, and effective tumor targeting. In this context, we argue that rAd holds immense potential for enhancing cellular immunity and synergistically improving antitumor effects in combination with novel cancer immunotherapies.
Collapse
Affiliation(s)
- Miao Zeng
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Wei Zhang
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Yisheng Li
- Shenzhen Haoshi Biotechnology Co., Ltd. No, 155 Hongtian Road, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, 518125, China.
| | - Li Yu
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China.
| |
Collapse
|
11
|
Lacinski RA, Dziadowicz SA, Stewart A, Chaharbakhshi E, Akhter H, Pisquiy JJ, Victory JH, Hardham JB, Chew C, Prorock A, Bao Y, Sol-Church K, Hobbs GR, Klein E, Nalesnik MA, Hu G, de Oliveira A, Santiago SP, Lindsey BA. Nanosphere pharmacodynamics improves safety of immunostimulatory cytokine therapy. iScience 2024; 27:108836. [PMID: 38303687 PMCID: PMC10831265 DOI: 10.1016/j.isci.2024.108836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/04/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Systemic administration of interleukin (IL)-12 induces potent anti-tumor immune responses in preclinical cancer models through the systemic activation of effector immune cells and release of proinflammatory cytokines. IL-12-loaded PLGA nanospheres (IL12ns) are hypothesized to improve therapeutic efficacy and thwart unwanted side effects observed in previous human clinical trials. Through the investigation of peripheral blood and local tissue immune responses in healthy BALB/c mice, the immune-protective pharmacodynamics of IL12ns were suggested. Nanospheres increased pro-inflammatory plasma cytokines/chemokines (IFN-γ, IL-6, TNF-α, and CXCL10) without inducing maladaptive transcriptomic signatures in circulating peripheral immune cells. Gene expression profiling revealed activation of pro-inflammatory signaling pathways in systemic tissues, the likely source of these effector cytokines. These data support that nanosphere pharmacodynamics, including shielding IL-12 from circulating immune cells, depositing peripherally in systemic immune tissues, and then slowly eluting bioactive cytokine, thereafter, are essential to safe immunostimulatory therapy.
Collapse
Affiliation(s)
- Ryan A. Lacinski
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Sebastian A. Dziadowicz
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26505, USA
- Bioinformatics Core, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Amanda Stewart
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Edwin Chaharbakhshi
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Halima Akhter
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26505, USA
- Bioinformatics Core, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - John J. Pisquiy
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Jack H. Victory
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Joshua B. Hardham
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Claude Chew
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alyson Prorock
- Genome Analysis & Technology Core, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Yongde Bao
- Genome Analysis & Technology Core, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Katia Sol-Church
- Genome Analysis & Technology Core, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Gerald R. Hobbs
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Edwin Klein
- Division of Laboratory Animal Resources, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Michael A. Nalesnik
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26505, USA
- Bioinformatics Core, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Ana de Oliveira
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Stell P. Santiago
- Department of Pathology, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Brock A. Lindsey
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
12
|
Cini JK, Dexter S, Rezac DJ, McAndrew SJ, Hedou G, Brody R, Eraslan RN, Kenney RT, Mohan P. SON-1210 - a novel bifunctional IL-12 / IL-15 fusion protein that improves cytokine half-life, targets tumors, and enhances therapeutic efficacy. Front Immunol 2023; 14:1326927. [PMID: 38250068 PMCID: PMC10798159 DOI: 10.3389/fimmu.2023.1326927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Background The potential synergy between interleukin-12 (IL-12) and IL-15 holds promise for more effective solid tumor immunotherapy. Nevertheless, previous clinical trials involving therapeutic cytokines have encountered obstacles such as short pharmacokinetics, limited tumor microenvironment (TME) targeting, and substantial systemic toxicity. Methods To address these challenges, we fused single-chain human IL-12 and native human IL-15 in cis onto a fully human albumin binding (FHAB) domain single-chain antibody fragment (scFv). This novel fusion protein, IL12-FHAB-IL15 (SON-1210), is anticipated to amplify the therapeutic impact of interleukins and combination immunotherapies in human TME. The molecule was studied in vitro and in animal models to assess its pharmacokinetics, potency, functional characteristics, safety, immune response, and efficacy. Results SON-1210 demonstrated robust binding affinity to albumin and exhibited the anticipated in vitro activity and tumor model efficacy that might be expected based on decades of research on native IL-12 and IL-15. Notably, in the B16F10 melanoma model (a non-immunogenic, relatively "cold" tumor), the murine counterpart of the construct, which had mouse (m) and human (h) cytokine sequences for the respective payloads (mIL12-FHAB-hIL15), outperformed equimolar doses of the co-administered native cytokines in a dose-dependent manner. A single dose caused a marked reduction in tumor growth that was concomitant with increased IFNγ levels; increased Th1, CTL, and activated NK cells; a shift in macrophages from the M2 to M1 phenotype; and a reduction in Treg cells. In addition, a repeat-dose non-human primate (NHP) toxicology study displayed excellent tolerability up to 62.5 µg/kg of SON-1210 administered three times, which was accompanied by the anticipated increases in IFNγ levels. Toxicokinetic analyses showed sustained serum levels of SON-1210, using a sandwich ELISA with anti-IL-15 for capture and biotinylated anti-IL-12 for detection, along with sustained IFNγ levels, indicating prolonged kinetics and biological activity. Conclusion Collectively, these findings support the suitability of SON-1210 for patient trials in terms of activity, efficacy, and safety, offering a promising opportunity for solid tumor immunotherapy. Linking cytokine payloads to a fully human albumin binding domain provides an indirect opportunity to target the TME using potent cytokines in cis that can redirect the immune response and control tumor growth.
Collapse
Affiliation(s)
- John K. Cini
- Sonnet BioTherapeutics, Inc., Princeton, NJ, United States
| | - Susan Dexter
- Sonnet BioTherapeutics, Inc., Princeton, NJ, United States
| | | | | | - Gael Hedou
- Sonnet BioTherapeutics, CH S.A., Geneva, GE, Switzerland
| | - Rich Brody
- InfinixBio, Inc., Athens, OH, United States
| | | | | | - Pankaj Mohan
- Sonnet BioTherapeutics, Inc., Princeton, NJ, United States
| |
Collapse
|
13
|
Chen P, Paraiso WKD, Cabral H. Revitalizing Cytokine-Based Cancer Immunotherapy through Advanced Delivery Systems. Macromol Biosci 2023; 23:e2300275. [PMID: 37565723 DOI: 10.1002/mabi.202300275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Cytokines can coordinate robust immune responses, holding great promise as therapeutics against infections, autoimmune diseases, and cancers. In cancer treatment, numerous pro-inflammatory cytokines have displayed promising efficacy in preclinical studies. However, their clinical application is hindered by poor pharmacokinetics, significant toxicity and unsatisfactory anticancer efficacy. Thus, while IFN-α and IL-2 are approved for specific cancer treatments, other cytokines still remain subject of intense investigation. To accelerate the application of cytokines as cancer immunotherapeutics, strategies need to be directed to improve their safety and anticancer performance. In this regard, delivery systems could be used to generate innovative therapies by targeting the cytokines or nucleic acids, such as DNA and mRNA, encoding the cytokines to tumor tissues. This review centers on these innovative delivery strategies for cytokines, summarizing key approaches, such as gene delivery and protein delivery, and critically examining their potential and challenges for clinical translation.
Collapse
Affiliation(s)
- Pengwen Chen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | | | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
14
|
Nyati S, Stricker H, Barton KN, Li P, Elshaikh M, Ali H, Brown SL, Hwang C, Peabody J, Freytag SO, Movsas B, Siddiqui F. A phase I clinical trial of oncolytic adenovirus mediated suicide and interleukin-12 gene therapy in patients with recurrent localized prostate adenocarcinoma. PLoS One 2023; 18:e0291315. [PMID: 37713401 PMCID: PMC10503775 DOI: 10.1371/journal.pone.0291315] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/06/2023] [Indexed: 09/17/2023] Open
Abstract
In a phase I dose escalation and safety study (NCT02555397), a replication-competent oncolytic adenovirus expressing yCD, TK and hIL-12 (Ad5-yCD/mutTKSR39rep-hIL-12) was administered in 15 subjects with localized recurrent prostate cancer (T1c-T2) at increasing doses (1 × 1010, to 1 × 1012 viral particles) followed by 7-day treatment of 5-fluorocytosine (5-FC) and valganciclovir (vGCV). The primary endpoint was toxicity through day 30 while the secondary and exploratory endpoints were quantitation of IL-12, IFNγ, CXCL10 and peripheral blood mononuclear cells (PBMC). The study maximum tolerated dose (MTD) was not reached indicating 1012 viral particles was safe. Total 115 adverse events were observed, most of which (92%) were grade 1/2 that did not require any treatment. Adenoviral DNA was detected only in two patients. Increase in IL-12, IFNγ, and CXCL10 was observed in 57%, 93%, and 79% patients, respectively. Serum cytokines demonstrated viral dose dependency, especially apparent in the highest-dose cohorts. PBMC analysis revealed immune system activation after gene therapy in cohort 5. The PSA doubling time (PSADT) pre and post treatment has a median of 1.55 years vs 1.18 years. This trial confirmed that replication-competent Ad5-IL-12 adenovirus (Ad5-yCD/mutTKSR39rep-hIL-12) was well tolerated when administered locally to prostate tumors.
Collapse
Affiliation(s)
- Shyam Nyati
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
- Department of Radiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Hans Stricker
- Vattikuti Urology Institute, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Kenneth N. Barton
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Pin Li
- Department of Public Health Sciences, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Mohamed Elshaikh
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Haythem Ali
- Department of Internal Medicine, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
- College of Human Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Clara Hwang
- Department of Internal Medicine, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - James Peabody
- Vattikuti Urology Institute, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Svend O. Freytag
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
- College of Human Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| |
Collapse
|
15
|
Taylor IP, Lopez JA. Oncolytic adenoviruses and the treatment of pancreatic cancer: a review of clinical trials. J Cancer Res Clin Oncol 2023; 149:8117-8129. [PMID: 37031291 PMCID: PMC10374677 DOI: 10.1007/s00432-023-04735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/31/2023] [Indexed: 04/10/2023]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) remains a common and difficult cancer to treat. Surgical resection and chemotherapy are standard of care and clinical outcomes remain poor. Oncolytic adenoviruses are a unique approach to the treatment of this challenging cancer, aiming to overcome the features of this disease that pose the key obstacles to standard therapies. This paper provides a detailed review of the clinical trials of conditionally-replicative adenoviruses in pancreatic cancer to date, with a brief summary of the past preclinical literature and future prospects of this therapy. METHODS MEDLINE, Embase, and clinicaltrials.gov were searched from inception to December 23rd 2022 for clinical trials of conditionally-replicative adenoviruses used in patients with pancreatic ductal adenocarcinoma. Primary features for review included patient demographics, treatment protocol including dose and administration route, adverse events, patient responses and survival rates. RESULTS The six published clinical trials suggest that objective clinical responses can be achieved with a tolerable level of side effects, even at high viral doses. The more clinically adaptable intravenous route of administration also appears to be as well tolerated as the more challenging intratumoural injections. CONCLUSION Published clinical trials provide data of the safety and some signs of oncolytic activity of conditionally-replicative adenoviruses in patients with pancreatic cancer. Importantly, on the latest trials, the easier intravenous route of administration seems to be well tolerated and safe, providing the opportunity for further clinical evaluation. It is hoped that the ongoing clinical trials will yield more promising results of this therapeutic approach against a currently intractable disease.
Collapse
Affiliation(s)
- Isobel P. Taylor
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
| | - J. Alejandro Lopez
- School of Environment and Sciences, Griffith University, Nathan, Australia
| |
Collapse
|
16
|
Muthukutty P, Yoo SY. Oncolytic Virus Engineering and Utilizations: Cancer Immunotherapy Perspective. Viruses 2023; 15:1645. [PMID: 37631987 PMCID: PMC10459766 DOI: 10.3390/v15081645] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Oncolytic viruses have positively impacted cancer immunotherapy over the past 20 years. Both natural and genetically modified viruses have shown promising results in treating various cancers. Various regulatory authorities worldwide have approved four commercial oncolytic viruses, and more are being developed to overcome this limitation and obtain better anti-tumor responses in clinical trials at various stages. Faster advancements in translating research into the commercialization of cancer immunotherapy and a comprehensive understanding of the modification strategies will widen the current knowledge of future technologies related to the development of oncolytic viruses. In this review, we discuss the strategies of virus engineering and the progress of clinical trials to achieve virotherapeutics.
Collapse
Affiliation(s)
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
17
|
Lin D, Shen Y, Liang T. Oncolytic virotherapy: basic principles, recent advances and future directions. Signal Transduct Target Ther 2023; 8:156. [PMID: 37041165 PMCID: PMC10090134 DOI: 10.1038/s41392-023-01407-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 04/13/2023] Open
Abstract
Oncolytic viruses (OVs) have attracted growing awareness in the twenty-first century, as they are generally considered to have direct oncolysis and cancer immune effects. With the progress in genetic engineering technology, OVs have been adopted as versatile platforms for developing novel antitumor strategies, used alone or in combination with other therapies. Recent studies have yielded eye-catching results that delineate the promising clinical outcomes that OVs would bring about in the future. In this review, we summarized the basic principles of OVs in terms of their classifications, as well as the recent advances in OV-modification strategies based on their characteristics, biofunctions, and cancer hallmarks. Candidate OVs are expected to be designed as "qualified soldiers" first by improving target fidelity and safety, and then equipped with "cold weapons" for a proper cytocidal effect, "hot weapons" capable of activating cancer immunotherapy, or "auxiliary weapons" by harnessing tactics such as anti-angiogenesis, reversed metabolic reprogramming and decomposing extracellular matrix around tumors. Combinations with other cancer therapeutic agents have also been elaborated to show encouraging antitumor effects. Robust results from clinical trials using OV as a treatment congruously suggested its significance in future application directions and challenges in developing OVs as novel weapons for tactical decisions in cancer treatment.
Collapse
Affiliation(s)
- Danni Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yinan Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Thoidingjam S, Sriramulu S, Freytag S, Brown SL, Kim JH, Chetty IJ, Siddiqui F, Movsas B, Nyati S. Oncolytic virus-based suicide gene therapy for cancer treatment: a perspective of the clinical trials conducted at Henry Ford Health. TRANSLATIONAL MEDICINE COMMUNICATIONS 2023; 8:11. [PMID: 37065938 PMCID: PMC10088621 DOI: 10.1186/s41231-023-00144-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Gene therapy manipulates or modifies a gene that provides a new cellular function to treat or correct a pathological condition, such as cancer. The approach of using gene manipulation to modify patient's cells to improve cancer therapy and potentially find a cure is gaining popularity. Currently, there are 12 gene therapy products approved by US-FDA, EMA and CFDA for cancer management, these include Rexin-G, Gendicine, Oncorine, Provange among other. The Radiation Biology Research group at Henry Ford Health has been actively developing gene therapy approaches for improving clinical outcome in cancer patients. The team was the first to test a replication-competent oncolytic virus armed with a therapeutic gene in humans, to combine this approach with radiation in humans, and to image replication-competent adenoviral gene expression/activity in humans. The adenoviral gene therapy products developed at Henry Ford Health have been evaluated in more than 6 preclinical studies and evaluated in 9 investigator initiated clinical trials treating more than100 patients. Two phase I clinical trials are currently following patients long term and a phase I trial for recurrent glioma was initiated in November 2022. This systematic review provides an overview of gene therapy approaches and products employed for treating cancer patients including the products developed at Henry Ford Health.
Collapse
Affiliation(s)
- Shivani Thoidingjam
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
| | - Sushmitha Sriramulu
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
| | - Svend Freytag
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
| | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - Jae Ho Kim
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
| | - Indrin J. Chetty
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - Shyam Nyati
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
19
|
Wang D, Porter CE, Lim B, Rosewell Shaw A, Robertson CS, Woods ML, Xu Y, Biegert GG, Morita D, Wang T, Grilley BJ, Heslop H, Brenner MK, Suzuki M. Ultralow-dose binary oncolytic/helper-dependent adenovirus promotes antitumor activity in preclinical and clinical studies. SCIENCE ADVANCES 2023; 9:eade6790. [PMID: 36989357 PMCID: PMC10058234 DOI: 10.1126/sciadv.ade6790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
We show that a binary oncolytic/helper-dependent adenovirus (CAdVEC) that both lyses tumor cells and locally expresses the proinflammatory cytokine IL-12 and PD-L1 blocking antibody has potent antitumor activity in humanized mouse models. On the basis of these preclinical studies, we treated four patients with a single intratumoral injection of an ultralow dose of CAdVEC (NCT03740256), representing a dose of oncolytic adenovirus more than 100-fold lower than used in previous trials. While CAdVEC caused no significant toxicities, it repolarized the tumor microenvironment with increased infiltration of CD8 T cells. A single administration of CAdVEC was associated with both locoregional and abscopal effects on metastases and, in combination with systemic administration of immune checkpoint antibodies, induced sustained antitumor responses, including one complete and two partial responses. Hence, in both preclinical and clinical studies, CAdVEC is safe and even at extremely low doses is sufficiently potent to induce significant tumor control through oncolysis and immune repolarization.
Collapse
Affiliation(s)
- Daniel Wang
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Caroline E. Porter
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Bora Lim
- Duncan Cancer Center-Breast, Baylor College of Medicine, Houston, TX, USA
| | - Amanda Rosewell Shaw
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Catherine S. Robertson
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Mae L. Woods
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Ya Xu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Greyson G.W. Biegert
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Daisuke Morita
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Tao Wang
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Bambi J. Grilley
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston Methodist Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Helen Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston Methodist Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Malcolm K. Brenner
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston Methodist Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Masataka Suzuki
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
20
|
Novel strategies exploiting interleukin-12 in cancer immunotherapy. Pharmacol Ther 2022; 239:108189. [DOI: 10.1016/j.pharmthera.2022.108189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022]
|
21
|
Araújo NM, Rubio IGS, Toneto NPA, Morale MG, Tamura RE. The use of adenoviral vectors in gene therapy and vaccine approaches. Genet Mol Biol 2022; 45:e20220079. [PMID: 36206378 PMCID: PMC9543183 DOI: 10.1590/1678-4685-gmb-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Adenovirus was first identified in the 1950s and since then this pathogenic group
of viruses has been explored and transformed into a genetic transfer vehicle.
Modification or deletion of few genes are necessary to transform it into a
conditionally or non-replicative vector, creating a versatile tool capable of
transducing different tissues and inducing high levels of transgene expression.
In the early years of vector development, the application in monogenic diseases
faced several hurdles, including short-term gene expression and even a fatality.
On the other hand, an adenoviral delivery strategy for treatment of cancer was
the first approved gene therapy product. There is an increasing interest in
expressing transgenes with therapeutic potential targeting the cancer hallmarks,
inhibiting metastasis, inducing cancer cell death or modulating the immune
system to attack the tumor cells. Replicative adenovirus as vaccines may be even
older and date to a few years of its discovery, application of non-replicative
adenovirus for vaccination against different microorganisms has been
investigated, but only recently, it demonstrated its full potential being one of
the leading vaccination tools for COVID-19. This is not a new vector nor a new
technology, but the result of decades of careful and intense work in this
field.
Collapse
Affiliation(s)
- Natália Meneses Araújo
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil.
| | - Ileana Gabriela Sanchez Rubio
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | | | - Mirian Galliote Morale
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | - Rodrigo Esaki Tamura
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil.
| |
Collapse
|
22
|
Oronsky B, Gastman B, Conley AP, Reid C, Caroen S, Reid T. Oncolytic Adenoviruses: The Cold War against Cancer Finally Turns Hot. Cancers (Basel) 2022; 14:4701. [PMID: 36230621 PMCID: PMC9562194 DOI: 10.3390/cancers14194701] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 11/27/2022] Open
Abstract
Oncolytic viruses, colloquially referred to as "living drugs", amplify themselves and the therapeutic transgenes that they carry to stimulate an immune response both locally and systemically. Remarkable exceptions aside, such as the recent 14-patient trial with the PD-1 inhibitor, dostarlimab, in mismatch repair (MMR) deficient rectal cancer, where the complete response rate was 100%, checkpoint inhibitors are not cure-alls, which suggests the need for a combination partner like oncolytic viruses to prime and augment their activity. This review focuses on adenoviruses, the most clinically investigated of all the oncolytic viruses. It covers specific design features of clinical adenoviral candidates and highlights their potential both alone and in combination with checkpoint inhibitors in clinical trials to turn immunologically "cold" and unresponsive tumors into "hotter" and more responsive ones through a domino effect. Finally, a "mix-and-match" combination of therapies based on the paradigm of the cancer-immunity cycle is proposed to augment the immune responses of oncolytic adenoviruses.
Collapse
Affiliation(s)
| | | | - Anthony P. Conley
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Scott Caroen
- EpicentRx, Torrey Pines, La Jolla, CA 92037, USA
| | - Tony Reid
- EpicentRx, Torrey Pines, La Jolla, CA 92037, USA
| |
Collapse
|
23
|
Spunde K, Korotkaja K, Zajakina A. Recombinant Viral Vectors for Therapeutic Programming of Tumour Microenvironment: Advantages and Limitations. Biomedicines 2022; 10:2142. [PMID: 36140243 PMCID: PMC9495732 DOI: 10.3390/biomedicines10092142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Viral vectors have been widely investigated as tools for cancer immunotherapy. Although many preclinical studies demonstrate significant virus-mediated tumour inhibition in synergy with immune checkpoint molecules and other drugs, the clinical success of viral vector applications in cancer therapy currently is limited. A number of challenges have to be solved to translate promising vectors to clinics. One of the key elements of successful virus-based cancer immunotherapy is the understanding of the tumour immune state and the development of vectors to modify the immunosuppressive tumour microenvironment (TME). Tumour-associated immune cells, as the main component of TME, support tumour progression through multiple pathways inducing resistance to treatment and promoting cancer cell escape mechanisms. In this review, we consider DNA and RNA virus vectors delivering immunomodulatory genes (cytokines, chemokines, co-stimulatory molecules, antibodies, etc.) and discuss how these viruses break an immunosuppressive cell development and switch TME to an immune-responsive "hot" state. We highlight the advantages and limitations of virus vectors for targeted therapeutic programming of tumour immune cell populations and tumour stroma, and propose future steps to establish viral vectors as a standard, efficient, safe, and non-toxic cancer immunotherapy approach that can complement other promising treatment strategies, e.g., checkpoint inhibitors, CAR-T, and advanced chemotherapeutics.
Collapse
Affiliation(s)
| | | | - Anna Zajakina
- Cancer Gene Therapy Group, Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k.1, LV-1067 Riga, Latvia
| |
Collapse
|
24
|
Ji Q, Wu Y, Albers A, Fang M, Qian X. Strategies for Advanced Oncolytic Virotherapy: Current Technology Innovations and Clinical Approaches. Pharmaceutics 2022; 14:1811. [PMID: 36145559 PMCID: PMC9504140 DOI: 10.3390/pharmaceutics14091811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 12/22/2022] Open
Abstract
Oncolytic virotherapy is a type of nanomedicine with a dual antitumor mechanism. Viruses are engineered to selectively infect and lyse cancer cells directly, leading to the release of soluble antigens which induce systemic antitumor immunity. Representative drug Talimogene laherparepvec has showed promising therapeutic effects in advanced melanoma, especially when combined with immune checkpoint inhibitors with moderate adverse effects. Diverse viruses like herpes simplex virus, adenovirus, vaccina virus, and so on could be engineered as vectors to express different transgenic payloads, vastly expanding the therapeutic potential of oncolytic virotherapy. A number of related clinical trials are under way which are mainly focusing on solid tumors. Studies about further optimizing the genome of oncolytic viruses or improving the delivering system are in the hotspot, indicating the future development of oncolytic virotherapy in the clinic. This review introduces the latest progress in clinical trials and pre-clinical studies as well as technology innovations directed at oncolytic viruses. The challenges and perspectives of oncolytic virotherapy towards clinical application are also discussed.
Collapse
Affiliation(s)
- Qing Ji
- Department of Rare and Head & Neck Oncology, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yuchen Wu
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Andreas Albers
- Department of Otolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Meiyu Fang
- Department of Rare and Head & Neck Oncology, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xu Qian
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
25
|
Wang Y, Johnson KCC, Gatti-Mays ME, Li Z. Emerging strategies in targeting tumor-resident myeloid cells for cancer immunotherapy. J Hematol Oncol 2022; 15:118. [PMID: 36031601 PMCID: PMC9420297 DOI: 10.1186/s13045-022-01335-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/09/2022] [Indexed: 12/11/2022] Open
Abstract
Immune checkpoint inhibitors targeting programmed cell death protein 1, programmed death-ligand 1, and cytotoxic T-lymphocyte-associated protein 4 provide deep and durable treatment responses which have revolutionized oncology. However, despite over 40% of cancer patients being eligible to receive immunotherapy, only 12% of patients gain benefit. A key to understanding what differentiates treatment response from non-response is better defining the role of the innate immune system in anti-tumor immunity and immune tolerance. Teleologically, myeloid cells, including macrophages, dendritic cells, monocytes, and neutrophils, initiate a response to invading pathogens and tissue repair after pathogen clearance is successfully accomplished. However, in the tumor microenvironment (TME), these innate cells are hijacked by the tumor cells and are imprinted to furthering tumor propagation and dissemination. Major advancements have been made in the field, especially related to the heterogeneity of myeloid cells and their function in the TME at the single cell level, a topic that has been highlighted by several recent international meetings including the 2021 China Cancer Immunotherapy workshop in Beijing. Here, we provide an up-to-date summary of the mechanisms by which major myeloid cells in the TME facilitate immunosuppression, enable tumor growth, foster tumor plasticity, and confer therapeutic resistance. We discuss ongoing strategies targeting the myeloid compartment in the preclinical and clinical settings which include: (1) altering myeloid cell composition within the TME; (2) functional blockade of immune-suppressive myeloid cells; (3) reprogramming myeloid cells to acquire pro-inflammatory properties; (4) modulating myeloid cells via cytokines; (5) myeloid cell therapies; and (6) emerging targets such as Siglec-15, TREM2, MARCO, LILRB2, and CLEVER-1. There is a significant promise that myeloid cell-based immunotherapy will help advance immuno-oncology in years to come.
Collapse
Affiliation(s)
- Yi Wang
- Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Margaret E Gatti-Mays
- Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- Stefanie Spielman Comprehensive Breast Center, Columbus, OH, USA.
| | - Zihai Li
- Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
26
|
Yun CO, Hong J, Yoon AR. Current clinical landscape of oncolytic viruses as novel cancer immunotherapeutic and recent preclinical advancements. Front Immunol 2022; 13:953410. [PMID: 36091031 PMCID: PMC9458317 DOI: 10.3389/fimmu.2022.953410] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses (OVs) have been gaining attention in the pharmaceutical industry as a novel immunotherapeutic and therapeutic adjuvant due to their ability to induce and boost antitumor immunity through multiple mechanisms. First, intrinsic mechanisms of OVs that enable exploitation of the host immune system (e.g., evading immune detection) can nullify the immune escape mechanism of tumors. Second, many types of OVs have been shown to cause direct lysis of tumor cells, resulting in an induction of tumor-specific T cell response mediated by release of tumor-associated antigens and danger signal molecules. Third, armed OV-expressing immune stimulatory therapeutic genes could be highly expressed in tumor tissues to further improve antitumor immunity. Last, these OVs can inflame cold tumors and their microenvironment to be more immunologically favorable for other immunotherapeutics. Due to these unique characteristics, OVs have been tested as an adjuvant of choice in a variety of therapeutics. In light of these promising attributes of OVs in the immune-oncology field, the present review will examine OVs in clinical development and discuss various strategies that are being explored in preclinical stages for the next generation of OVs that are optimized for immunotherapy applications.
Collapse
Affiliation(s)
- Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, South Korea
- GeneMedicine CO., Ltd., Seoul, South Korea
| | | | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, South Korea
| |
Collapse
|
27
|
Brown M. Engaging Pattern Recognition Receptors in Solid Tumors to Generate Systemic Antitumor Immunity. Cancer Treat Res 2022; 183:91-129. [PMID: 35551657 DOI: 10.1007/978-3-030-96376-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Malignant tumors frequently exploit innate immunity to evade immune surveillance. The priming, function, and polarization of antitumor immunity fundamentally depends upon context provided by the innate immune system, particularly antigen presenting cells. Such context is determined in large part by sensing of pathogen specific and damage associated features by pathogen recognition receptors (PRRs). PRR activation induces the delivery of T cell priming cues (e.g. chemokines, co-stimulatory ligands, and cytokines) from antigen presenting cells, playing a decisive role in the cancer immunity cycle. Indeed, endogenous PRR activation within the tumor microenvironment (TME) has been shown to generate spontaneous antitumor T cell immunity, e.g., cGAS-STING mediated activation of antigen presenting cells after release of DNA from dying tumor cells. Thus, instigating intratumor PRR activation, particularly with the goal of generating Th1-promoting inflammation that stokes endogenous priming of antitumor CD8+ T cells, is a growing area of clinical investigation. This approach is analogous to in situ vaccination, ultimately providing a personalized antitumor response against relevant tumor associated antigens. Here I discuss clinical stage intratumor modalities that function via activation of PRRs. These approaches are being tested in various solid tumor contexts including melanoma, colorectal cancer, glioblastoma, head and neck squamous cell carcinoma, bladder cancer, and pancreatic cancer. Their mechanism (s) of action relative to other immunotherapy approaches (e.g., antigen-defined cancer vaccines, CAR T cells, dendritic cell vaccines, and immune checkpoint blockade), as well as their potential to complement these approaches are also discussed. Examples to be reviewed include TLR agonists, STING agonists, RIG-I agonists, and attenuated or engineered viruses and bacterium. I also review common key requirements for effective in situ immune activation, discuss differences between various strategies inclusive of mechanisms that may ultimately limit or preclude antitumor efficacy, and provide a summary of relevant clinical data.
Collapse
Affiliation(s)
- Michael Brown
- Department of Neurosurgery, Duke University, Durham, NC, USA.
| |
Collapse
|
28
|
Cytokine Responses to Adenovirus and Adenovirus Vectors. Viruses 2022; 14:v14050888. [PMID: 35632630 PMCID: PMC9145601 DOI: 10.3390/v14050888] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
The expression of cytokines and chemokines in response to adenovirus infection is tightly regulated by the innate immune system. Cytokine-mediated toxicity and cytokine storm are known clinical phenomena observed following naturally disseminated adenovirus infection in immunocompromised hosts as well as when extremely high doses of adenovirus vectors are injected intravenously. This dose-dependent, cytokine-mediated toxicity compromises the safety of adenovirus-based vectors and represents a critical problem, limiting their utility for gene therapy applications and the therapy of disseminated cancer, where intravenous injection of adenovirus vectors may provide therapeutic benefits. The mechanisms triggering severe cytokine response are not sufficiently understood, prompting efforts to further investigate this phenomenon, especially in clinically relevant settings. In this review, we summarize the current knowledge on cytokine and chemokine activation in response to adenovirus- and adenovirus-based vectors and discuss the underlying mechanisms that may trigger acute cytokine storm syndrome. First, we review profiles of cytokines and chemokines that are activated in response to adenovirus infection initiated via different routes. Second, we discuss the molecular mechanisms that lead to cytokine and chemokine transcriptional activation. We further highlight how immune cell types in different organs contribute to synthesis and systemic release of cytokines and chemokines in response to adenovirus sensing. Finally, we review host factors that can limit cytokine and chemokine expression and discuss currently available and potential future interventional approaches that allow for the mitigation of the severity of the cytokine storm syndrome. Effective cytokine-targeted interventional approaches may improve the safety of systemic adenovirus delivery and thus broaden the potential clinical utility of adenovirus-based therapeutic vectors.
Collapse
|
29
|
Feola S, Russo S, Ylösmäki E, Cerullo V. Oncolytic ImmunoViroTherapy: A long history of crosstalk between viruses and immune system for cancer treatment. Pharmacol Ther 2021; 236:108103. [PMID: 34954301 DOI: 10.1016/j.pharmthera.2021.108103] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Cancer Immunotherapy relies on harnessing a patient's immune system to fine-tune specific anti-tumor responses and ultimately eradicate cancer. Among diverse therapeutic approaches, oncolytic viruses (OVs) have emerged as a novel form of cancer immunotherapy. OVs are a naturally occurring or genetically modified class of viruses able to selectively kill cancer cells, leaving healthy cells unharmed; in the last two decades, the role of OVs has been redefined to act beyond their oncolytic activity. Indeed, the immunogenic cancer cell death mediated by OVs induces the release of tumor antigens that in turn induces anti-tumor immunity, allowing OVs to act as in situ therapeutic cancer vaccines. Additionally, OVs can be engineered for intratumoral delivery of immunostimulatory molecules such as tumor antigens or cytokines to further enhance anti-tumor response. Moreover, OVs can be used in combination with other cancer immunotherapeutic approaches such as Immune Checkpoint Inhibitors and CAR-T cells. The current review first defines the three main mechanisms of action (MOA) of OVs currently used in cancer therapy that are: i) Oncolysis, ii) OV-induced cancer-specific immune activation, and iii) Exploiting pre-existing anti-viral immunity to enhance cancer therapy. Secondly, we focus on how OVs can induce and/or improve anti-cancer immunity in a specific or unspecific fashion, highlighting the importance of these approaches. Finally, the last part of the review analyses OVs combined with other cancer immunotherapies, revising present and future clinical applications.
Collapse
Affiliation(s)
- S Feola
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland; TRIMM, Translational Immunology Research Program, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Finland
| | - S Russo
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland; TRIMM, Translational Immunology Research Program, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Finland
| | - E Ylösmäki
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland; TRIMM, Translational Immunology Research Program, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Finland
| | - V Cerullo
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland; TRIMM, Translational Immunology Research Program, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Finland; Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University Federico II, S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
30
|
Biegert GWG, Rosewell Shaw A, Suzuki M. Current development in adenoviral vectors for cancer immunotherapy. Mol Ther Oncolytics 2021; 23:571-581. [PMID: 34938857 DOI: 10.1016/j.omto.2021.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Adenoviruses are well characterized and thus easily modified to generate oncolytic vectors that directly lyse tumor cells and can be "armed" with transgenes to promote lysis, antigen presentation, and immunostimulation. Oncolytic adenoviruses (OAds) are safe, versatile, and potent immunostimulants in patients. Since transgene expression is restricted to the tumor, adenoviral transgenes overcome the toxicities and short half-life of systemically administered cytokines, immune checkpoint blockade molecules, and bispecific T cell engagers. While OAds expressing immunostimulatory molecules ("armed" OAds) have demonstrated anti-tumor potential in preclinical solid tumor models, the efficacy has not translated into significant clinical outcomes as a monotherapy. However, OAds synergize with established standards of care and novel immunotherapeutic agents, providing a multifaceted means to address complexities associated with solid tumors. Critically, armed OAds revitalize endogenous and adoptively transferred immune cells while simultaneously enhancing their anti-tumor function. To properly evaluate these novel vectors and reduce the gap in the cycle between bench-to-bedside and back, improving model systems must be a priority. The future of OAds will involve a multidimensional approach that provides immunostimulatory molecules, immune checkpoint blockade, and/or immune engagers in concert with endogenous and exogenous immune cells to initiate durable and comprehensive anti-tumor responses.
Collapse
Affiliation(s)
- Greyson Willis Grossman Biegert
- Department of Medicine, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Amanda Rosewell Shaw
- Department of Medicine, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Masataka Suzuki
- Department of Medicine, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
31
|
Naseer F, Ahmad T, Kousar K, Anjum S. Advanced Therapeutic Options for Treatment of Metastatic Castration Resistant Prostatic Adenocarcinoma. Front Pharmacol 2021; 12:728054. [PMID: 34899292 PMCID: PMC8660108 DOI: 10.3389/fphar.2021.728054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/21/2021] [Indexed: 12/04/2022] Open
Abstract
The initial stage of prostatic adenocarcinoma (PaC) has been treated with surgery and radiation therapy, but the advanced stages need systemic novel treatment. Since 2010, several advanced therapeutic innovations have been introduced in various randomized clinical trials to improve survival and reduce morbidity and mortality. Several of these therapeutics have shown substantial survival assistance globally, even in the advanced stages of metastatic castration-resistant prostatic adenocarcinoma (mCRPC). This article describes advanced PaC therapy regimens including chemotherapeutic options, hormonal therapies (abiraterone, enzalutamide), immunotherapeutic agents, and bone-modifying agents. We discussed various pros and cons of gene therapy approaches including Crispr/Cas9 mediation, oncolytic viruses, suicidal genes, and micro-RNA based antitumor therapy. The mCRPC microenvironment is characterized by elevated prostate-specific antigen (PSA) levels, which ultimately trigger the androgen receptor (AR) and its dependent signaling pathways. The advanced therapeutics target these receptors and inhibit the steroidogenic enzymes that play an important role in increasing testosterone (T) and dihydrotestosterone (DHT) levels in the body. These advanced therapeutic novelties also target AR-independent oncogenic signaling pathways by focusing on DNA damage repair (DDR) pathways and their mechanisms. Some of these options appear to be very attractive strategies for acute and chronic stages of PaC and mCRPC treatment by overcoming the mechanisms of resistance.
Collapse
Affiliation(s)
- Faiza Naseer
- Industrial Biotechnology (IBT), Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Science and Technology, Islamabad, Pakistan.,Basic Medical Sciences, Shifa Tameer e Millat University (STMU), Islamabad, Pakistan
| | - Tahir Ahmad
- Industrial Biotechnology (IBT), Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Science and Technology, Islamabad, Pakistan
| | - Kousain Kousar
- Industrial Biotechnology (IBT), Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Science and Technology, Islamabad, Pakistan
| | - Sadia Anjum
- Department of Biology, University of Hail, Ha'il, Saudi Arabia
| |
Collapse
|
32
|
Vaughan HJ, Green JJ. Recent Advances in Gene Therapy for Cancer Theranostics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20:100300. [PMID: 34738046 PMCID: PMC8562678 DOI: 10.1016/j.cobme.2021.100300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is great interest in developing gene therapies for many disease indications, including cancer. However, successful delivery of nucleic acids to tumor cells is a major challenge, and in vivo efficacy is difficult to predict. Cancer theranostics is an approach combining anti-tumor therapy with imaging or diagnostic capabilities, with the goal of monitoring successful delivery and efficacy of a therapeutic agent in a tumor. Successful theranostics must maintain a high degree of anticancer targeting and efficacy while incorporating high-contrast imaging agents that are nontoxic and compatible with clinical imaging modalities. This review highlights recent advancements in theranostic strategies, including imaging technologies and genetic engineering approaches. Graphical Abstract.
Collapse
Affiliation(s)
- Hannah J. Vaughan
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA
| | - Jordan J. Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA
- Departments of Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, and the Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA
| |
Collapse
|
33
|
Ma YS, Yang XL, Liu YS, Ding H, Wu JJ, Shi Y, Jia CY, Lu GX, Zhang DD, Wang HM, Wang PY, Yu F, Lv ZW, Wang GR, Liu JB, Fu D. Long non-coding RNA NORAD promotes pancreatic cancer stem cell proliferation and self-renewal by blocking microRNA-202-5p-mediated ANP32E inhibition. J Transl Med 2021; 19:400. [PMID: 34551785 PMCID: PMC8456629 DOI: 10.1186/s12967-021-03052-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
Background Cancer stem cells (CSCs) are key regulators in the processes of tumor initiation, progression, and recurrence. The mechanism that maintains their stemness remains enigmatic, although the role of several long noncoding RNAs (lncRNAs) has been highlighted in the pancreatic cancer stem cells (PCSCs). In this study, we first established that PCSCs overexpressing lncRNA NORAD, and then investigated the effects of NORAD on the maintenance of PCSC stemness. Methods Expression of lncRNA NORAD, miR-202-5p and ANP32E in PC tissues and cell lines was quantified after RNA isolation. Dual-luciferase reporter assay, RNA pull-down and RIP assays were performed to verify the interactions among NORAD, miR-202-5p and ANP32E. We then carried out gain- and loss-of function of miR-202-5p, ANP32E and NORAD in PANC-1 cell line, followed by measurement of the aldehyde dehydrogenase activity, cell viability, apoptosis, cell cycle distribution, colony formation, self-renewal ability and tumorigenicity of PC cells. Results LncRNA NORAD and ANP32E were upregulated in PC tissues and cells, whereas the miR-202-5p level was down-regulated. LncRNA NORAD competitively bound to miR-202-5p, and promoted the expression of the miR-202-5p target gene ANP32E thereby promoting PC cell viability, proliferation, and self-renewal ability in vitro, as well as facilitating tumorigenesis of PCSCs in vivo. Conclusion Overall, lncRNA NORAD upregulates ANP32E expression by competitively binding to miR-202-5, which accelerates the proliferation and self-renewal of PCSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03052-5.
Collapse
Affiliation(s)
- Yu-Shui Ma
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Middle Road, Jing'an District, Shanghai, 200072, China.,Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China
| | - Xiao-Li Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Yu-Shan Liu
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China
| | - Hua Ding
- Department of Radiotherapy, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China
| | - Jian-Jun Wu
- Nantong Haimen Yuelai Health Centre, Haimen, 226100, China
| | - Yi Shi
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Middle Road, Jing'an District, Shanghai, 200072, China.,Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China
| | - Cheng-You Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Gai-Xia Lu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Dan-Dan Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Hui-Min Wang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Pei-Yao Wang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Zhong-Wei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Gao-Ren Wang
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China.
| | - Ji-Bin Liu
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China.
| | - Da Fu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Middle Road, Jing'an District, Shanghai, 200072, China.
| |
Collapse
|