1
|
Sakurai F, Iizuka S, Tsukamoto T, Shiota A, Shimizu K, Ohashi K, Mizuguchi H. Transplacental delivery of factor IX Fc-fusion protein ameliorates bleeding phenotype of newborn hemophilia B mice. J Control Release 2024; 374:415-424. [PMID: 39181162 DOI: 10.1016/j.jconrel.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/21/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
Hemophilia B is an inherited hemorrhagic disorder characterized by a deficiency of blood coagulation factor IX (FIX) that results in abnormal blood coagulation. The blood coagulation is already evident in hemophiliacs at the fetal stage, and thus intracranial hemorrhage and other bleeding complications can occur at birth, leading to sequelae. Therefore, it is important to develop effective treatments for hemophiliacs in utero. In this study, in order to transplacentally deliver FIX from pregnant mice to their fetuses, an improved adenovirus (Ad) vector expressing human FIX fused with the IgG Fc domain (FIX Fc fusion protein), which plays a crucial role in neonatal Fc receptor (FcRn)-mediated transcytosis across the placenta, was intravenously administered to E13.5 pregnant mice. Significant levels of FIX Fc fusion protein were detected in 0-day-old newborn mice whose mothers were administered an Ad vector expressing FIX Fc fusion protein. Wild-type FIX overexpressed in the pregnant mice was not delivered to the fetuses. Plasma FIX levels in the newborn mice were relatively well correlated with those in their mothers, although transplacental delivery efficiencies of FIX Fc fusion protein were slightly reduced when the FIX Fc fusion protein was highly expressed in the mother mice. Plasma FIX levels in the newborn mice were about 3.6-6.4% of those in their mothers, Transplacental delivery of FIX Fc fusion protein to their fetuses successfully improved the blood clotting ability in the newborn mice.
Collapse
Affiliation(s)
- Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| | - Shunsuke Iizuka
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Tomohito Tsukamoto
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Aoi Shiota
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kahori Shimizu
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kazuo Ohashi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Ohashi General Internal and Surgery Clinic at Abiko, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan; Laboratory of Functional Organoid for Drug Discovery, Center for Drug Discovery Resources Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan.
| |
Collapse
|
2
|
Onishi R, Ikemoto S, Shiota A, Tsukamoto T, Asayama A, Tachibana M, Sakurai F, Mizuguchi H. Development of a novel adenovirus serotype 35 vector vaccine possessing an RGD peptide in the fiber knob and the E4 orf 4, 6, and 6/7 regions of adenovirus serotype 5. Int J Pharm 2024; 662:124480. [PMID: 39038719 DOI: 10.1016/j.ijpharm.2024.124480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/23/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Adenovirus (Ad) vectors based on human adenovirus serotype 5 (Ad5) have attracted significant attention as vaccine vectors for infectious diseases. However, the effectiveness of Ad5 vectors as vaccines is often inhibited by the anti-Ad5 neutralizing antibodies retained by many adults. To overcome this drawback, we focused on human adenovirus serotype 35 (Ad35) vectors with low seroprevalence in adults. Although Ad35 vectors can circumvent anti-Ad5 neutralizing antibodies, vector yields of Ad35 vectors are often inferior to those of Ad5 vectors. In this study, we developed novel Ad35 vectors containing the Ad5 E4 orf 4, 6, and 6/7 or the Ad5 E4 orf 6 and 6/7 for efficient vector production, and compared their properties. These E4-modified Ad35 vectors efficiently propagated to a similar extent at virus titers comparable to those of Ad5 vectors. An Ad35 vector containing the Ad5 E4 orf 4, 6, and 6/7 mediated more efficient transduction than that containing the Ad5 E4 orf 6 and 6/7 in human cultured cells. Furthermore, insertion of an arginine-glycine-aspartate (RGD) peptide in the fiber region of an Ad35 vector containing the Ad5 E4 orf 4, 6, and 6/7 significantly improved the transgene product-specific antibody production following intramuscular administration in mice. The Ad35 vector containing the RGD peptide mediated efficient vaccine effects even in the mice pre-immunized with an Ad5.
Collapse
Affiliation(s)
- Rika Onishi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Sena Ikemoto
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Aoi Shiota
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Tomohito Tsukamoto
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Akira Asayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masashi Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Gujar S, Pol JG, Kumar V, Lizarralde-Guerrero M, Konda P, Kroemer G, Bell JC. Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy. Nat Protoc 2024; 19:2540-2570. [PMID: 38769145 DOI: 10.1038/s41596-024-00985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/12/2024] [Indexed: 05/22/2024]
Abstract
Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.
Collapse
Affiliation(s)
- Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Jonathan G Pol
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
| | - Vishnupriyan Kumar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Manuela Lizarralde-Guerrero
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Guido Kroemer
- INSERM, U1138, Paris, France.
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
- Université Paris Cité, Paris, France.
- Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France.
- Institut Universitaire de France, Paris, France.
- Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - John C Bell
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada.
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
4
|
Shirazi MMA, Saedi TA, Moghaddam ZS, Nemati M, Shiri R, Negahdari B, Goradel NH. Nanotechnology and nano-sized tools: Newer approaches to circumvent oncolytic adenovirus limitations. Pharmacol Ther 2024; 256:108611. [PMID: 38387653 DOI: 10.1016/j.pharmthera.2024.108611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/03/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Oncolytic adenoviruses (OAds), engineered Ads preferentially infect and lyse tumor cells, have attracted remarkable attention as immunotherapy weapons for the treatment of various malignancies. Despite hopeful successes in preclinical investigations and translation into clinical phases, they face some challenges that thwart their therapeutic effectiveness, including low infectivity of cancer cells, liver sequestration, pre-existing neutralizing antibodies, physical barriers to the spread of Ads, and immunosuppressive TME. Nanotechnology and nano-sized tools provide several advantages to overcome these limitations of OAds. Nano-sized tools could improve the therapeutic efficacy of OAds by enhancing infectivity and cellular uptake, targeting and protecting from pre-existing immune responses, masking and preventing liver tropism, and co-delivery with other therapeutic agents. Herein, we reviewed the constructs of various OAds and their application in clinical trials, as well as the limitations they have faced. Furthermore, we emphasized the potential applications of nanotechnology to solve the constraints of OAds to improve their anti-tumor activities.
Collapse
Affiliation(s)
| | - Tayebeh Azam Saedi
- Department of Genetics, Faculty of Science, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Zahra Samadi Moghaddam
- Department of Medical Biotechnology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Shiri
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, Maragheh University of Medical Sciences, Maragheh, Iran; Arthropod-Borne Diseases Research Centre, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
5
|
Chen L, Ma Z, Xu C, Xie Y, Ouyang D, Song S, Zhao X, Liu F. Progress in oncolytic viruses modified with nanomaterials for intravenous application. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0275. [PMID: 38009779 PMCID: PMC10690878 DOI: 10.20892/j.issn.2095-3941.2023.0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 11/29/2023] Open
Abstract
In oncolytic virus (OV) therapy, a critical component of tumor immunotherapy, viruses selectively infect, replicate within, and eventually destroy tumor cells. Simultaneously, this therapy activates immune responses and mobilizes immune cells, thereby eliminating residual or distant cancer cells. However, because of OVs' high immunogenicity and immune clearance during circulation, their clinical applications are currently limited to intratumoral injections, and their use is severely restricted. In recent years, numerous studies have used nanomaterials to modify OVs to decrease virulence and increase safety for intravenous injection. The most commonly used nanomaterials for modifying OVs are liposomes, polymers, and albumin, because of their biosafety, practicability, and effectiveness. The aim of this review is to summarize progress in the use of these nanomaterials in preclinical experiments to modify OVs and to discuss the challenges encountered from basic research to clinical application.
Collapse
Affiliation(s)
- Liting Chen
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
- Phase I Clinical Trials Center, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110102, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhijun Ma
- Department of General Surgery, Panjin People’s Hospital, Panjin 124221, China
| | - Chen Xu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
- Phase I Clinical Trials Center, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110102, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Youbang Xie
- Department of Hematology and Rheumatology, Qinghai Provincial People’s Hospital, Xining 810007, China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau 999078, China
| | - Shuhui Song
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
- Phase I Clinical Trials Center, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110102, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
- Phase I Clinical Trials Center, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110102, China
| |
Collapse
|
6
|
Matsunaga W, Gotoh A. Adenovirus as a Vector and Oncolytic Virus. Curr Issues Mol Biol 2023; 45:4826-4840. [PMID: 37367056 DOI: 10.3390/cimb45060307] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Adenoviral vectors, both oncolytic viruses and gene delivery vectors, are among the earliest approved and commercialised vectors for gene therapy. Adenoviruses have high cytotoxicity and immunogenicity. Therefore, lentiviruses or adeno-associated viruses as viral vectors and herpes simplex virus as an oncolytic virus have recently drawn attention. Thus, adenoviral vectors are often considered relatively obsolete. However, their high cargo limit and transduction efficiency are significant advantages over newer viral vectors. This review provides an overview of the new-generation adenoviral vectors. In addition, we describe the modification of the fiber knob region that enhances affinity of adenoviral vectors for cancer cells and the utilisation of cancer-cell-specific promoters to suppress expression of unwanted transgenes in non-malignant tissues.
Collapse
Affiliation(s)
- Wataru Matsunaga
- Joint-Use Research Facilities, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Japan
| | - Akinobu Gotoh
- Department of Education for Medical Research Base, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Japan
| |
Collapse
|
7
|
Long L, Gao J, Zhang R. PTTG1 Enhances Oncolytic Adenovirus 5 Entry into Pancreatic Adenocarcinoma Cells by Increasing CXADR Expression. Viruses 2023; 15:v15051153. [PMID: 37243239 DOI: 10.3390/v15051153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Pituitary tumor-transforming gene 1 (PTTG1) is overexpressed in various types of tumors and functions as an oncogene; it could also be a potential target in tumor therapy. Meanwhile, the high mortality of pancreatic adenocarcinoma (PAAD) largely depends on the limited effectiveness of therapy. Based on the promising potential of PTTG1 in cancer treatment, we explored the influence of PTTG1 on the treatment of PAAD in this study. The Cancer Genome Atlas Program (TCGA) data showed that higher expression of PTTG1 was associated with higher clinical stages and worse prognosis of pancreatic cancer. In addition, the CCK-8 assay showed that the IC50 of gemcitabine and 5-fluorouracil (5-FU) was increased in BxPC-3-PTTG1high and MIA PaCa-2-PTTG1high cells. The TIDE algorithm indicated that the immune checkpoint blockades' (ICBs) efficiency is poor in the PTTG1 high group. Furthermore, we found that the efficiency of OAd5 was enhanced in BxPC-3-PTTG1high and MIA PaCa-2-PTTG1high cells and poor in BxPC-3-PTTG1low and MIA PaCa-2-PTTG1low cells. We used the OAd5 expressing GFP for transduction. As a result, the fluorescence intensity was enhanced in BxPC-3-PTTG1high and MIA PaCa-2-PTTG1high cells and decreased in BxPC-3-PTTG1low and MIA PaCa-2-PTTG1low cells 24 h after OAd5 transduction. The fluorescence intensity indicated that PTTG1 increased OAd5 entry. The flow cytometry assay showed that OAd5 receptor CXADR expression was enhanced by PTTG1. PTTG1 failed to further enhance OAd5 transduction in the case of CXADR knockdown. In summary, PTTG1 enhanced OAd5 transduction into pancreatic cancer cells by increasing CXADR expression on the cell surface.
Collapse
Affiliation(s)
- Lu Long
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jian Gao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Ruiyang Zhang
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
8
|
Gryciuk A, Rogalska M, Baran J, Kuryk L, Staniszewska M. Oncolytic Adenoviruses Armed with Co-Stimulatory Molecules for Cancer Treatment. Cancers (Basel) 2023; 15:cancers15071947. [PMID: 37046608 PMCID: PMC10093006 DOI: 10.3390/cancers15071947] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
In clinical trials, adenovirus vectors (AdVs) are commonly used platforms for human gene delivery therapy. High genome capacity and flexibility in gene organization make HAdVs suitable for cloning. Recent advancements in molecular techniques have influenced the development of genetically engineered adenovirus vectors showing therapeutic potential. Increased molecular understanding of the benefits and limitations of HAdVs in preclinical research and clinical studies is a crucial point in the engineering of refined oncolytic vectors. This review presents HAdV species (A-G) used in oncotherapy. We describe the adenovirus genome organizations and modifications, the possibilities oncolytic viruses offer, and their current limitations. Ongoing and ended clinical trials based on oncolytic adenoviruses are presented. This review provides a broad overview of the current knowledge of oncolytic therapy. HAdV-based strategies targeting tumors by employing variable immune modifiers or delivering immune stimulatory factors are of great promise in the field of immune oncologyy This approach can change the face of the fight against cancer, supplying the medical tools to defeat tumors more selectively and safely.
Collapse
Affiliation(s)
- Aleksander Gryciuk
- Department of Microbiology, Molecular Genetics and Genomics, Centre of Advanced Materials and Technology CEZAMAT, Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Marta Rogalska
- Department of Microbiology, Molecular Genetics and Genomics, Centre of Advanced Materials and Technology CEZAMAT, Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Joanna Baran
- Department of Microbiology, Molecular Genetics and Genomics, Centre of Advanced Materials and Technology CEZAMAT, Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Lukasz Kuryk
- Department of Virology, National Institute of Public Health NIH-NRI, 00-791 Warsaw, Poland
- Valo Therapeutics, 00790 Helsinki, Finland
| | - Monika Staniszewska
- Department of Microbiology, Molecular Genetics and Genomics, Centre of Advanced Materials and Technology CEZAMAT, Warsaw University of Technology, 02-822 Warsaw, Poland
| |
Collapse
|
9
|
Li X, Sun X, Wang B, Li Y, Tong J. Oncolytic virus-based hepatocellular carcinoma treatment: Current status, intravenous delivery strategies, and emerging combination therapeutic solutions. Asian J Pharm Sci 2023; 18:100771. [PMID: 36896445 PMCID: PMC9989663 DOI: 10.1016/j.ajps.2022.100771] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/24/2022] [Accepted: 12/04/2022] [Indexed: 12/30/2022] Open
Abstract
Current treatments for advanced hepatocellular carcinoma (HCC) have limited success in improving patients' quality of life and prolonging life expectancy. The clinical need for more efficient and safe therapies has contributed to the exploration of emerging strategies. Recently, there has been increased interest in oncolytic viruses (OVs) as a therapeutic modality for HCC. OVs undergo selective replication in cancerous tissues and kill tumor cells. Strikingly, pexastimogene devacirepvec (Pexa-Vec) was granted an orphan drug status in HCC by the U.S. Food and Drug Administration (FDA) in 2013. Meanwhile, dozens of OVs are being tested in HCC-directed clinical and preclinical trials. In this review, the pathogenesis and current therapies of HCC are outlined. Next, we summarize multiple OVs as single therapeutic agents for the treatment of HCC, which have demonstrated certain efficacy and low toxicity. Emerging carrier cell-, bioengineered cell mimetic- or nonbiological vehicle-mediated OV intravenous delivery systems in HCC therapy are described. In addition, we highlight the combination treatments between oncolytic virotherapy and other modalities. Finally, the clinical challenges and prospects of OV-based biotherapy are discussed, with the aim of continuing to develop a fascinating approach in HCC patients.
Collapse
Affiliation(s)
- Xinguo Li
- The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaonan Sun
- The 4th People's Hospital of Shenyang, Shenyang 110031, China
| | - Bingyuan Wang
- The First Hospital of China Medical University, Shenyang 110001, China
| | - Yiling Li
- The First Hospital of China Medical University, Shenyang 110001, China
| | - Jing Tong
- The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
10
|
Effects of pre-existing anti-adenovirus antibodies on transgene expression levels and therapeutic efficacies of arming oncolytic adenovirus. Sci Rep 2022; 12:21560. [PMID: 36513733 PMCID: PMC9747716 DOI: 10.1038/s41598-022-26030-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Oncolytic adenoviruses (OAds), most of which are based on species C human adenovirus serotype 5 (Ad5) (OAd5), have recently received much attention as potential anticancer agents. High seroprevalence of anti-Ad5 neutralizing antibodies is a major hurdle for Ad5-based gene therapy. However, the impacts of anti-Ad5 neutralizing antibodies on OAd5-mediated transgene expression in the tumor and antitumor effects remain to be fully elucidated. In this study, we examined the impact of anti-Ad5 neutralizing antibodies on the OAd5-mediated antitumor effects and OAd5-mediated transgene expression. The luciferase expression of OAd-tAIB-Luc, which contains the cytomegalovirus promoter-driven luciferase gene, was inhibited in human cultured cells in the presence of human serum. Although the inhibitory effects of human serum possessing the low anti-Ad5 neutralizing antibody titers were overcome by long-term infection, the in vitro tumor cell lysis activities of OAd-tAIB-Luc were entirely attenuated by human serum containing the high titers of anti-Ad5 neutralizing antibodies. OAd-tAIB-Luc-mediated luciferase expression in the subcutaneous tumors 3 days after administration and tumor growth suppression levels following intratumoral administration were significantly lower in mice possessing the high titers of anti-Ad5 neutralizing antibodies, compared to those in control mice. These results suggested that pre-existing anti-Ad5 antibodies attenuated both transgene expression and potential antitumor effects of OAd5 following intratumoral administration.
Collapse
|
11
|
Current landscape and perspective of oncolytic viruses and their combination therapies. Transl Oncol 2022; 25:101530. [PMID: 36095879 PMCID: PMC9472052 DOI: 10.1016/j.tranon.2022.101530] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Oncolytic virotherapy has become an important branch of cancer immunotherapy in clinical practice. Multiple viruses can be engineered to be OVs and armed with anticancer genes to enhance their efficacy. OVs can reshape TME and produce synergistic anticancer efficacy when combined with other therapies. Safety and effectiveness are the main direction of future research and development of OVs.
Oncolytic virotherapy has become an important strategy in cancer immunotherapy. Oncolytic virus (OV) can reshape the tumor microenvironment (TME) through its replication-mediated oncolysis and transgene-produced anticancer effect, inducing an antitumor immune response and creating favorable conditions for the combination of other therapeutic measures. Extensive preclinical and clinical data have suggested that OV-based combination therapy has definite efficacy and promising prospects. Recently, several clinical trials of oncolytic virotherapy combined with immunotherapy have made breakthroughs. This review comprehensively elaborates the OV types and their targeting mechanisms, the selection of anticancer genes armed in OVs, and the therapeutic modes of action and strategies of OVs to provide a theoretical basis for the better design and construction of OVs and the optimization of OV-based therapeutic strategies.
Collapse
|
12
|
Rafati A, Esmaeili Gouvarchin Ghaleh H, Azarabadi A, Masoudi MR, Afrasiab E, Ghorbani Alvanegh A. Stem cells as an ideal carrier for gene therapy: A new approach to the treatment of hepatitis C virus. Transpl Immunol 2022; 75:101721. [PMID: 36150664 DOI: 10.1016/j.trim.2022.101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIM Various chemical drugs have been approved for the treatment of patients with hepatitis C, but most of these treatments are costly, and also have an inadequate response and many side effects. Also, there is no effective vaccine for hepatitis C due to its high genetic diversity. In recent decades, clinical trials have grown dramatically regarding the benefits of stem cell therapy as a modulator of immune system responses and anti-inflammatory drugs. The most promising point in stem cell therapy and similar therapies is that patients with chronic pain and severe injuries are offered drug-free treatment or surgery. In the present study, we examine the various dimensions of the use of stem cells with the approach of gene therapy carriers as a new treatment method in the treatment of Hepatitis C. METHODS Search terms were including gene carrier, stem cell therapy, gene therapy, liver disorders, hepatitis C virus. At first, 1000 article titles related to the mentioned keywords for different diseases were found. After removing duplicate titles and items that did not match the scope of the research, articles that met the criteria for entering the research and had usable information were selected. All abstracts of selected articles were studied by researchers. In the initial review, articles related to the title were identified and categorized based on the type of challenge. CONCLUSION Gene therapy, either directly and in vivo or indirectly and in vitro, requires carriers (vectors) to transfer the gene. These carriers are divided into two groups, viral and non-viral. In indirect gene therapy, living cells are isolated from a person's body and genetically modified. Stem cells have the properties to transfer the desired genes to the patient's body, including the ability to proliferate for a long time and differentiate into the tissue cells in which they are located.
Collapse
Affiliation(s)
- Alireza Rafati
- Department of Medical Genetics, Sirjan School of Medical Sciences, Sirjan, Iran
| | | | - Afsaneh Azarabadi
- Instructor of Nursing, School of Nursing and Midwifery, Urmia University of Medical Sciences
| | - Mahmood Reza Masoudi
- School of Medical Sciences, Emam Reza Hospital Sirjan Faculty of Medical Sciences, Sirjan, Iran
| | - Elmira Afrasiab
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Akbar Ghorbani Alvanegh
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran; Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Su Y, Li J, Ji W, Wang G, Fang L, Zhang Q, Ang L, Zhao M, Sen Y, Chen L, Zheng J, Su C, Qin L. Triple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors. J Immunother Cancer 2022; 10:jitc-2022-004691. [PMID: 35609942 PMCID: PMC9131115 DOI: 10.1136/jitc-2022-004691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 12/23/2022] Open
Abstract
Background Oncolytic virotherapy has become an important branch of cancer immunotherapy. This study investigated the efficacy of an oncolytic adenovirus (OAV), OncoViron, with synergistic mechanisms in the treatment of multiple solid tumors. Methods An OAV, OncoViron, was constructed and investigated by cytological experiments and implanted tumor models of multiple solid tumor cell lines to certify its anticancer efficacy, the synergistic effects of viral oncolysis and transgene anticancer activity of OncoViron, as well as oncolytic virotherapy combined with immunotherapy, were also verified. Results The selective replication of OncoViron mediated high expression of anticancer factors, specifically targeted a variety of solid tumors and significantly inhibited cancer cell proliferation. On a variety of implanted solid tumor models in immunodeficient mice, immunocompetent mice, and humanized mice, OncoViron showed great anticancer effects on its own and in combination with programmed death 1 (PD-1) antibody and chimeric antigen receptor (CAR) T cells. Pathological examination, single-cell sequencing, and spatial transcriptome analysis of animal implanted tumor specimens confirmed that OncoViron significantly altered the gene expression profile of infected cancer cells, not only recruiting a large number of lymphocytes, natural killer cells, and mononuclear macrophages into tumor microenvironment (TME) and activated immune cells, especially T cells but also inducing M1 polarization of macrophages and promoting the release of more immune cytokines, thereby remodeling the TME for coordinating PD-1 antibody or CAR T therapy. Conclusions The chimeric OncoViron is a novel broad-spectrum anticancer product with multiple mechanisms of synergistic and potentiated immunotherapy, creating a good opportunity for combined immunotherapy against solid tumors.
Collapse
Affiliation(s)
- Yinghan Su
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200040, China.,National Center for Liver Cancer (NCLC), Navy Military Medical University, Shanghai 201805, China
| | - Jiang Li
- National Center for Liver Cancer (NCLC), Navy Military Medical University, Shanghai 201805, China.,Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Weidan Ji
- National Center for Liver Cancer (NCLC), Navy Military Medical University, Shanghai 201805, China.,Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Gang Wang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy & Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Lin Fang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy & Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Qin Zhang
- Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Lin Ang
- Department of Pathology, Second People's Hospital of Hefei, Hefei 230011, Anhui, China
| | - Min Zhao
- Department of Pathology, Second People's Hospital of Hefei, Hefei 230011, Anhui, China
| | - Yuan Sen
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy & Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Lei Chen
- National Center for Liver Cancer (NCLC), Navy Military Medical University, Shanghai 201805, China.,Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy & Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Changqing Su
- National Center for Liver Cancer (NCLC), Navy Military Medical University, Shanghai 201805, China .,Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy & Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| |
Collapse
|
14
|
Bots ST, Kemp V, Cramer SJ, van den Wollenberg DJ, Hornsveld M, Lamfers ML, van der Pluijm G, Hoeben RC. Nonhuman Primate Adenoviruses of the Human Adenovirus B Species Are Potent and Broadly Acting Oncolytic Vector Candidates. Hum Gene Ther 2022; 33:275-289. [PMID: 34861769 PMCID: PMC8972008 DOI: 10.1089/hum.2021.216] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
The use of human adenoviruses (hAds) as oncolytic agents has demonstrated considerable potential. However, their efficacy in clinical studies is generally moderate and often varies between patients. This may, in part, be attributable to variable pre-existing neutralizing immunity in patients, which can impact the antitumor efficacy and lead to response heterogeneity. Our aim was to isolate new Ads for the development of oncolytic vectors with low prevalence of neutralizing immunity in the human population. To this end, we isolated a collection of new nonhuman primate (nhp) Ads from stool samples of four great ape species held captive. We elected 12 isolates comprising the broadest genetic variability for further characterization. For three new nhpAds, all classified as the human adenovirus B (HAdV-B) species, no neutralizing activity could be detected when exposed to a preparation of immunoglobulins isolated from a pool of >1,000 donors as a surrogate of population immunity. In addition, the nhpAds of the HAdV-B species showed enhanced oncolytic potency compared to nhpAds of the HAdV-C species as well as to human adenovirus type 5 (HAdV-C5) in vitro when tested in a panel of 29 human cancer cell lines. Next-generation sequencing of the viral genomes revealed higher sequence similarity between hAds and nhpAds of HAdV-B compared to HAdV-C, which might underlie the differences in oncolytic ability. As a proof-of-concept, the Rb-binding domain of the E1A protein of the gorilla-derived HAdV-B nhpAd-lumc007 was deleted, thereby creating a new oncolytic derivative, which demonstrated increased oncolytic potential compared to HAdV-C5. Collectively, our data demonstrate that nhpAds of the HAdV-B species can serve as an alternative for the development of potent oncolytic Ad vectors with limited pre-existing neutralizing immunity in humans.
Collapse
Affiliation(s)
- Selas T.F. Bots
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Vera Kemp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Steve J. Cramer
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Marten Hornsveld
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martine L.M. Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Gabri van der Pluijm
- Department of Urology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
15
|
Liszewski MK, Atkinson JP. Membrane cofactor protein (MCP; CD46): deficiency states and pathogen connections. Curr Opin Immunol 2021; 72:126-134. [PMID: 34004375 PMCID: PMC8123722 DOI: 10.1016/j.coi.2021.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Membrane cofactor protein (MCP; CD46), a ubiquitously expressed complement regulatory protein, serves as a cofactor for serine protease factor I to cleave and inactivate C3b and C4b deposited on host cells. However, CD46 also plays roles in human reproduction, autophagy, modulating T cell activation and effector functions and is a member of the newly identified intracellular complement system (complosome). CD46 also is a receptor for 11 pathogens ('pathogen magnet'). While CD46 deficiencies contribute to inflammatory disorders, its overexpression in cancers and role as a receptor for some adenoviruses has led to its targeting by oncolytic agents and adenoviral-based therapeutic vectors, including coronavirus disease of 2019 (COVID-19) vaccines. This review focuses on recent advances in identifying disease-causing CD46 variants and its pathogen connections.
Collapse
Affiliation(s)
- M Kathryn Liszewski
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|