1
|
Hu Y, He X, Chen P, Tian XL, Wang R, Song X, Yu XQ, Zhang J. Lung-targeted delivery of PTEN mRNA combined with anti-PD-1-mediated immunotherapy for In Situ lung cancer treatment. Acta Biomater 2025; 194:442-454. [PMID: 39875000 DOI: 10.1016/j.actbio.2025.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
mRNA-based protein replacement therapy has become one of the most widely applied forms of mRNA therapy, with lipid nanoparticles (LNPs) being extensively studied as efficient delivery platforms for mRNA. However, existing LNPs tend to accumulate in the liver or kidneys after intravenous injection, highlighting the need to develop vectors capable of targeting specific organs. In this study, we synthesized a small library of ionizable lipids and identified PPz-2R1 as a promising candidate, exhibiting lung-targeting capabilities, high mRNA transfection efficiency, and good stability through structure-activity relationship studies. In an in situ lung cancer model with PTEN deletion, precise delivery of PTEN mRNA to the lungs restored the cancer-suppressing function of the PTEN protein and successfully alleviated the immunosuppressive tumor microenvironment in the lungs by modulating immune cell activity and cytokine levels. Additionally, the upregulation of PD-L1 expression at the tumor site was triggered. Building on this, in vivo treatment with PTEN mRNA combined with anti-PD-1 therapy was tested in tumor-bearing mice. The results demonstrated that the combined treatment strategy effectively overcame immune escape, promoted T cell infiltration, improved survival rates over 60 days, and significantly inhibited tumor growth. Furthermore, the combination treatment was more effective than either therapy alone. This study presents an effective and practical strategy for the targeted treatment of lung diseases and relevant combination therapies. STATEMENT OF SIGNIFICANCE: Lipid nanoparticles (LNPs) have been extensively studied as efficient delivery vectors for mRNA. However, it remains essential to develop vectors that can specifically target distinct organs. In this study, we designed and synthesized a series of piperazine-containing ionizable lipids and their analogues, which were initially explored as lung-targeting vectors for PTEN mRNA delivery. Through screening in both in vitro and in vivo experiments, we found that the leading LNPs-assisted PTEN mRNA-mediated protein supplementation therapy effectively downregulated Treg expression and activated immune cells, thereby reversing the immunosuppressive tumor microenvironment in a mouse model of lung cancer. Furthermore, when combined with anti-PD-1-mediated immunotherapy, the combination therapy exhibited the strongest tumor growth inhibition. This approach offers a novel strategy for the targeted treatment of lung diseases and associated combination therapies.
Collapse
Affiliation(s)
- Yue Hu
- College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xi He
- College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Ping Chen
- College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xiao-Li Tian
- College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Rong Wang
- College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xiangrong Song
- College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China.
| | - Xiao-Qi Yu
- College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Ji Zhang
- College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
2
|
Khot S, Krishnaveni A, Gharat S, Momin M, Bhavsar C, Omri A. Innovative drug delivery strategies for targeting glioblastoma: overcoming the challenges of the tumor microenvironment. Expert Opin Drug Deliv 2024; 21:1837-1857. [PMID: 39545622 DOI: 10.1080/17425247.2024.2429702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Glioblastoma multiforme(GBM) presents a challenging endeavor in therapeutic management because of its highly aggressive tumor microenvironment(TME). This complex TME, characterized by hypoxia, nutrient deprivation, immunosuppression, stromal barriers, increased interstitial fluid pressure and the presence of the blood-brain barrier(BBB), frequently compromises the efficacy of promising therapeutic strategies. Consequently, a deeper understanding of the TME and the development of innovative methods to overcome its associated challenges are essential for improving treatment outcomes in GBM. AREAS COVERED This review critically evaluates the major obstacles within the GBM TME, focusing on the biological and structural barriers that limit therapeutic delivery and efficacy. Novel approaches designed to address these barriers, including advanced formulation strategies and precise targeting mechanisms, are explored in detail. Additionally, the review highlights the potential of emerging technologies such as 3D-printed models, scaffolds, Robotics and artificial intelligence(AI) techniques and machine learning, in tackling TME- associated hurdles. EXPERT OPINION The integration of these innovative methods presents a promising path for enhancing the specificity and efficacy of GBM therapies. By combining these advanced strategies, the potential for improving patient outcomes in GBM treatment can be significantly enhanced, offering hope for overcoming the limitations posed by the TME.
Collapse
Affiliation(s)
- Sidra Khot
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Anandha Krishnaveni
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
- Director, SVKM's Shri C. B. Patel Research Centre for Chemistry and Biological Science, Mumbai, India
| | - Chintan Bhavsar
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery System Facility, Department of Chemistry and Biochemistry, Laurentian University, Sandbury, Ontario, Canada
| |
Collapse
|
3
|
Karimi-Sani I, Molavi Z, Naderi S, Mirmajidi SH, Zare I, Naeimzadeh Y, Mansouri A, Tajbakhsh A, Savardashtaki A, Sahebkar A. Personalized mRNA vaccines in glioblastoma therapy: from rational design to clinical trials. J Nanobiotechnology 2024; 22:601. [PMID: 39367418 PMCID: PMC11453023 DOI: 10.1186/s12951-024-02882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Glioblastomas (GBMs) are the most common and aggressive malignant brain tumors, presenting significant challenges for treatment due to their invasive nature and localization in critical brain regions. Standard treatment includes surgical resection followed by radiation and adjuvant chemotherapy with temozolomide (TMZ). Recent advances in immunotherapy, including the use of mRNA vaccines, offer promising alternatives. This review focuses on the emerging use of mRNA vaccines for GBM treatment. We summarize recent advancements, evaluate current obstacles, and discuss notable successes in this field. Our analysis highlights that while mRNA vaccines have shown potential, their use in GBM treatment is still experimental. Ongoing research and clinical trials are essential to fully understand their therapeutic potential. Future developments in mRNA vaccine technology and insights into GBM-specific immune responses may lead to more targeted and effective treatments. Despite the promise, further research is crucial to validate and optimize the effectiveness of mRNA vaccines in combating GBM.
Collapse
Affiliation(s)
- Iman Karimi-Sani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Molavi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Naderi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh-Habibeh Mirmajidi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz, 7178795844, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atena Mansouri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Koga T, Kida H, Yamasaki Y, Feril LB, Endo H, Itaka K, Abe H, Tachibana K. Intracranial Gene Delivery Mediated by Albumin-Based Nanobubbles and Low-Frequency Ultrasound. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:285. [PMID: 38334557 PMCID: PMC10856598 DOI: 10.3390/nano14030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Research in the field of high-intensity focused ultrasound (HIFU) for intracranial gene therapy has greatly progressed over the years. However, limitations of conventional HIFU still remain. That is, genes are required to cross the blood-brain barrier (BBB) in order to reach the neurological disordered lesion. In this study, we introduce a novel direct intracranial gene delivery method, bypassing the BBB using human serum albumin-based nanobubbles (NBs) injected through a less invasive intrathecal route via lumbar puncture, followed by intracranial irradiation with low-frequency ultrasound (LoFreqUS). Focusing on both plasmid DNA (pDNA) and messenger RNA (mRNA), our approach utilizes LoFreqUS for deeper tissue acoustic penetration and enhancing gene transfer efficiency. This drug delivery method could be dubbed as the "Spinal Back-Door Approach", an alternative to the "front door" BBB opening method. Experiments showed that NBs effectively responded to LoFreqUS, significantly improving gene transfer in vitro using U-87 MG cell lines. In vivo experiments in mice demonstrated significantly increased gene expression with pDNA; however, we were unable to obtain conclusive results using mRNA. This novel technique, combining albumin-based NBs and LoFreqUS offers a promising, efficient, targeted, and non-invasive solution for central nervous system gene therapy, potentially transforming the treatment landscape for neurological disorders.
Collapse
Affiliation(s)
- Takayuki Koga
- Department of Neurosurgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (T.K.); (H.A.)
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (H.K.); (Y.Y.); (L.B.F.J.); (H.E.)
| | - Hiroshi Kida
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (H.K.); (Y.Y.); (L.B.F.J.); (H.E.)
| | - Yutaro Yamasaki
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (H.K.); (Y.Y.); (L.B.F.J.); (H.E.)
| | - Loreto B. Feril
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (H.K.); (Y.Y.); (L.B.F.J.); (H.E.)
| | - Hitomi Endo
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (H.K.); (Y.Y.); (L.B.F.J.); (H.E.)
| | - Keiji Itaka
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Tokyo 101-0062, Japan;
| | - Hiroshi Abe
- Department of Neurosurgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (T.K.); (H.A.)
| | - Katsuro Tachibana
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (H.K.); (Y.Y.); (L.B.F.J.); (H.E.)
| |
Collapse
|
5
|
Nabian N, Ghalehtaki R, Zeinalizadeh M, Balaña C, Jablonska PA. State of the neoadjuvant therapy for glioblastoma multiforme-Where do we stand? Neurooncol Adv 2024; 6:vdae028. [PMID: 38560349 PMCID: PMC10981465 DOI: 10.1093/noajnl/vdae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor in adults. Despite several investigations in this field, maximal safe resection followed by chemoradiotherapy and adjuvant temozolomide with or without tumor-treating fields remains the standard of care with poor survival outcomes. Many endeavors have failed to make a dramatic change in the outcomes of GBM patients. This study aimed to review the available strategies for newly diagnosed GBM in the neoadjuvant setting, which have been mainly neglected in contrast to other solid tumors.
Collapse
Affiliation(s)
- Naeim Nabian
- Radiation Oncology Research Center, Cancer Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiation Oncology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ghalehtaki
- Radiation Oncology Research Center, Cancer Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiation Oncology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Zeinalizadeh
- Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Carmen Balaña
- B.ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, Badalona, Spain
| | | |
Collapse
|
6
|
Kusaczuk M, Ambel ET, Naumowicz M, Velasco G. Cellular stress responses as modulators of drug cytotoxicity in pharmacotherapy of glioblastoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189054. [PMID: 38103622 DOI: 10.1016/j.bbcan.2023.189054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Despite the extensive efforts to find effective therapeutic strategies, glioblastoma (GBM) remains a therapeutic challenge with dismal prognosis of survival. Over the last decade the role of stress responses in GBM therapy has gained a great deal of attention, since depending on the duration and intensity of these cellular programs they can be cytoprotective or promote cancer cell death. As such, initiation of the UPR, autophagy or oxidative stress may either impede or facilitate drug-mediated cell killing. In this review, we summarize the mechanisms that regulate ER stress, autophagy, and oxidative stress during GBM development and progression to later discuss the involvement of these stress pathways in the response to different treatments. We also discuss how a precise understanding of the molecular mechanisms regulating stress responses evoked by different pharmacological agents could decisively contribute to the design of novel and more effective combinational treatments against brain malignancies.
Collapse
Affiliation(s)
- Magdalena Kusaczuk
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland.
| | - Elena Tovar Ambel
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Instituto de Investigación Sanitaria San Carlos IdISSC, 28040 Madrid, Spain
| | - Monika Naumowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Instituto de Investigación Sanitaria San Carlos IdISSC, 28040 Madrid, Spain.
| |
Collapse
|
7
|
Thang M, Mellows C, Mercer-Smith A, Nguyen P, Hingtgen S. Current approaches in enhancing TRAIL therapies in glioblastoma. Neurooncol Adv 2023; 5:vdad047. [PMID: 37215952 PMCID: PMC10195206 DOI: 10.1093/noajnl/vdad047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Glioblastoma (GBM) is the most prevalent, aggressive, primary brain cancer in adults and continues to pose major medical challenges due in part to its high rate of recurrence. Extensive research is underway to discover new therapies that target GBM cells and prevent the inevitable recurrence in patients. The pro-apoptotic protein tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted attention as an ideal anticancer agent due to its ability to selectively kill cancer cells with minimal toxicity in normal cells. Although initial clinical evaluations of TRAIL therapies in several cancers were promising, later stages of clinical trial results indicated that TRAIL and TRAIL-based therapies failed to demonstrate robust efficacies due to poor pharmacokinetics, resulting in insufficient concentrations of TRAIL at the therapeutic site. However, recent studies have developed novel ways to prolong TRAIL bioavailability at the tumor site and efficiently deliver TRAIL and TRAIL-based therapies using cellular and nanoparticle vehicles as drug loading cargos. Additionally, novel techniques have been developed to address monotherapy resistance, including modulating biomarkers associated with TRAIL resistance in GBM cells. This review highlights the promising work to overcome the challenges of TRAIL-based therapies with the aim to facilitate improved TRAIL efficacy against GBM.
Collapse
Affiliation(s)
- Morrent Thang
- Neuroscience Center, University of North Carolina—Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Clara Mellows
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Alison Mercer-Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Phuong Nguyen
- Michigan State University School of Medicine, East Lansing, Michigan, USA
| | - Shawn Hingtgen
- Corresponding Author: Shawn Hingtgen, PhD, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, NC 27599-7363, USA ()
| |
Collapse
|
8
|
Glioma diagnosis and therapy: Current challenges and nanomaterial-based solutions. J Control Release 2022; 352:338-370. [PMID: 36206948 DOI: 10.1016/j.jconrel.2022.09.065] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Glioma is often referred to as one of the most dreadful central nervous system (CNS)-specific tumors with rapidly-proliferating cancerous glial cells, accounting for nearly half of the brain tumors at an annual incidence rate of 30-80 per a million population. Although glioma treatment remains a significant challenge for researchers and clinicians, the rapid development of nanomedicine provides tremendous opportunities for long-term glioma therapy. However, several obstacles impede the development of novel therapeutics, such as the very tight blood-brain barrier (BBB), undesirable hypoxia, and complex tumor microenvironment (TME). Several efforts have been dedicated to exploring various nanoformulations for improving BBB permeation and precise tumor ablation to address these challenges. Initially, this article briefly introduces glioma classification and various pathogenic factors. Further, currently available therapeutic approaches are illustrated in detail, including traditional chemotherapy, radiotherapy, and surgical practices. Then, different innovative treatment strategies, such as tumor-treating fields, gene therapy, immunotherapy, and phototherapy, are emphasized. In conclusion, we summarize the article with interesting perspectives, providing suggestions for future glioma diagnosis and therapy improvement.
Collapse
|
9
|
El Kheir W, Marcos B, Virgilio N, Paquette B, Faucheux N, Lauzon MA. Drug Delivery Systems in the Development of Novel Strategies for Glioblastoma Treatment. Pharmaceutics 2022; 14:1189. [PMID: 35745762 PMCID: PMC9227363 DOI: 10.3390/pharmaceutics14061189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV glioma considered the most fatal cancer of the central nervous system (CNS), with less than a 5% survival rate after five years. The tumor heterogeneity, the high infiltrative behavior of its cells, and the blood-brain barrier (BBB) that limits the access of therapeutic drugs to the brain are the main reasons hampering the current standard treatment efficiency. Following the tumor resection, the infiltrative remaining GBM cells, which are resistant to chemotherapy and radiotherapy, can further invade the surrounding brain parenchyma. Consequently, the development of new strategies to treat parenchyma-infiltrating GBM cells, such as vaccines, nanotherapies, and tumor cells traps including drug delivery systems, is required. For example, the chemoattractant CXCL12, by binding to its CXCR4 receptor, activates signaling pathways that play a critical role in tumor progression and invasion, making it an interesting therapeutic target to properly control the direction of GBM cell migration for treatment proposes. Moreover, the interstitial fluid flow (IFF) is also implicated in increasing the GBM cell migration through the activation of the CXCL12-CXCR4 signaling pathway. However, due to its complex and variable nature, the influence of the IFF on the efficiency of drug delivery systems is not well understood yet. Therefore, this review discusses novel drug delivery strategies to overcome the GBM treatment limitations, focusing on chemokines such as CXCL12 as an innovative approach to reverse the migration of infiltrated GBM. Furthermore, recent developments regarding in vitro 3D culture systems aiming to mimic the dynamic peritumoral environment for the optimization of new drug delivery technologies are highlighted.
Collapse
Affiliation(s)
- Wiam El Kheir
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Bernard Marcos
- Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Nick Virgilio
- Department of Chemical Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, QC H3T 1J4, Canada;
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Marc-Antoine Lauzon
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Research Center on Aging, 1036 Rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
| |
Collapse
|