1
|
Han S, Paeng KW, Park S, Jung UW, Cha JK, Hong J. Programmed BMP-2 release from biphasic calcium phosphates for optimal bone regeneration. Biomaterials 2021; 272:120785. [PMID: 33819813 DOI: 10.1016/j.biomaterials.2021.120785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 01/09/2023]
Abstract
This study aimed to fabricate a multi-layered biphasic calcium phosphate (BCP) platform for programmed bone morphogenetic protein-2 (BMP-2) release, which means to block the initial burst release and promote releasing during the differentiation phase of osteogenic cells. And it is to confirm in vivo whether this platform has osteogenic inductivity even when extremely low doses of BMP-2 are loaded compared to the conventional soaking method. Our strategy consisted of preparing a multilayer coating on BCP to minimize the contact between BMP-2 and BCP and allow the loading of BMP-2. The multilayer, which is surface-modified on BCP, is composed of an organosilicate and a natural polymer-based layer-by-layer (LbL) film. We applied (3-Aminopropyl)triethoxysilane (APTES) as an organosilicate was used for amine-functionalized BCP and (collagen/heparin)5 film was used to delay and sustain BMP-2 release. The coated multilayer not only reduced the initial burst release by more than 50% but also loaded more BMP-2. For in vivo experiment, histomorphometric analysis, it was observed that the BCP platform loaded with extremely low concentration BMP-2 (0.01 mg/ml) induced a significantly larger amount of new bones at 8 weeks compared to the conventional soaking method in the rabbit calvarium onlay graft model.
Collapse
Affiliation(s)
- Seora Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyeong-Won Paeng
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Sohyeon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ui-Won Jung
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Jae-Kook Cha
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea.
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
2
|
Han SH, Cha M, Jin YZ, Lee KM, Lee JH. BMP-2 and hMSC dual delivery onto 3D printed PLA-Biogel scaffold for critical-size bone defect regeneration in rabbit tibia. Biomed Mater 2020; 16:015019. [DOI: 10.1088/1748-605x/aba879] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
3
|
Burst, Short, and Sustained Vitamin D 3 Applications Differentially Affect Osteogenic Differentiation of Human Adipose Stem Cells. Int J Mol Sci 2020; 21:ijms21093202. [PMID: 32366057 PMCID: PMC7247321 DOI: 10.3390/ijms21093202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Incorporation of 1,25(OH)2 vitamin D3 (vitD3) into tissue-engineered scaffolds could aid the healing of critical-sized bone defects. We hypothesize that shorter applications of vitD3 lead to more osteogenic differentiation of mesenchymal stem cells (MSCs) than a sustained application. To test this, release from a scaffold was mimicked by exposing MSCs to exactly controlled vitD3 regimens. Human adipose stem cells (hASCs) were seeded onto calcium phosphate particles, cultured for 20 days, and treated with 124 ng vitD3, either provided during 30 min before seeding ([200 nM]), during the first two days ([100 nM]), or during 20 days ([10 nM]). Alternatively, hASCs were treated for two days with 6.2 ng vitD3 ([10 nM]). hASCs attached to the calcium phosphate particles and were viable (~75%). Cell number was not affected by the various vitD3 applications. VitD3 (124 ng) applied over 20 days increased cellular alkaline phosphatase activity at Days 7 and 20, reduced expression of the early osteogenic marker RUNX2 at Day 20, and strongly upregulated expression of the vitD3 inactivating enzyme CYP24. VitD3 (124 ng) also reduced RUNX2 and increased CYP24 applied at [100 nM] for two days, but not at [200 nM] for 30 min. These results show that 20-day application of vitD3 has more effect on hASCs than the same total amount applied in a shorter time span.
Collapse
|
4
|
García-García P, Reyes R, Pérez-Herrero E, Arnau MR, Évora C, Delgado A. Alginate-hydrogel versus alginate-solid system. Efficacy in bone regeneration in osteoporosis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111009. [PMID: 32600680 DOI: 10.1016/j.msec.2020.111009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/01/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
In the present study, two different PLGA-Alginate scaffolds, a hydrogel (HY) and a solid sponge (SS), were developed for β-estradiol and BMP-2 sustained delivery for bone regeneration in osteoporosis. β-Estradiol and BMP-2 were encapsulated in PLGA and PLGA-Alginate microspheres respectively. Scaffolds were characterized in vitro in terms of porosity, water uptake, release rate and HY rheological properties. BMP-2 release profiles were also analysed in vivo. The bone regeneration induced by both HY and SS was evaluated using a critical-sized bone defect in an osteoporotic (OP) rat model. Compared to HY, SS presented 30% higher porosity, more than double water absorption capacity and almost negligible mass loss compared to the 40% of HY. Both systems were flexible and fit well the defect shape, however, HY has the advantage of being injectable. Despite both delivery systems had similar composition and release profile, bone repair was around 30% higher with SS than with HY, possibly due to its longer residence time at the defect site. The incorporation of mesenchymal stem cells obtained from OP rats did not result in any improvement or synergistic effect on bone repair.
Collapse
Affiliation(s)
- Patricia García-García
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Ricardo Reyes
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, 38200 La Laguna, Spain; Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna, 38200 La Laguna, Spain
| | - Edgar Pérez-Herrero
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200 La Laguna, Spain; Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna, 38200 La Laguna, Spain
| | - María Rosa Arnau
- Servicio de Estabulario, Universidad de La Laguna, 38200 La Laguna, Spain; Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna, 38200 La Laguna, Spain
| | - Carmen Évora
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200 La Laguna, Spain; Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna, 38200 La Laguna, Spain.
| | - Araceli Delgado
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200 La Laguna, Spain; Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna, 38200 La Laguna, Spain.
| |
Collapse
|
5
|
Maruelli S, Besio R, Rousseau J, Garibaldi N, Amiaud J, Brulin B, Layrolle P, Escriou V, Rossi A, Trichet V, Forlino A. Osteoblasts mineralization and collagen matrix are conserved upon specific Col1a2 silencing. Matrix Biol Plus 2020; 6-7:100028. [PMID: 33543025 PMCID: PMC7852305 DOI: 10.1016/j.mbplus.2020.100028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 11/10/2022] Open
Abstract
Classical osteogenesis imperfecta (OI) is an inherited rare brittle bone disease caused by dominant mutations in the COL1A1 or COL1A2 genes, encoding for the α chains of collagen type I. The definitive cure for the disease will require a gene therapy approach, aimed to correct or suppress the mutant allele. Interestingly, individuals lacking α2(I) chain and synthetizing collagen α1(I)3 homotrimers do not show bone phenotype, making appealing a bone specific COL1A2 silencing approach for OI therapy. To this aim, three different Col1a2-silencing RNAs (siRNAs), −3554, −3825 and −4125, selected at the 3′-end of the murine Col1a2 transcript were tested in vitro and in vivo. In murine embryonic fibroblasts Col1a2-siRNA-3554 was able to efficiently and specifically target the Col1a2 mRNA and to strongly reduce α2(I) chain expression. Its efficiency and specificity were also demonstrated in primary murine osteoblasts, whose mineralization was preserved. The efficiency of Col1a2-siRNA-3554 was proved also in vivo. Biphasic calcium phosphate implants loaded with murine mesenchymal stem cells were intramuscularly transplanted in nude mice and injected with Col1a2-siRNA-3554 three times a week for three weeks. Collagen α2 silencing was demonstrated both at mRNA and protein level and Masson's Trichrome staining confirmed the presence of newly formed collagen matrix. Our data pave the way for further investigation of Col1a2 silencing and siRNA delivery to the bone tissue as a possible strategy for OI therapy. Identification of a specific and efficient Col1a2 siRNA Silencing of Col1a2 allows osteoblasts mineralization. Col1a2 silencing is not impairing matrix deposition in vivo.
Collapse
Key Words
- BCP, biphasic calcium phosphate
- Collagen
- D-MEM, Dulbecco-modified Eagle's medium
- EDS, Ehlers Danlos syndrome
- EGFP, enhanced green fluorescent protein
- FBS, fetal bovine serum
- Gene therapy
- MEF, murine embryonic fibroblast
- MSC, mesenchymal stem cell
- NMD, nonsense mediated RNA decay
- OI, osteogenesis imperfecta
- Osteogenesis imperfecta
- PBS, phosphate buffered saline
- RNAi, RNA interference
- SDS, sodium dodecyl sulphate
- Silencing
- TRAP, tartrate-resistant acid phosphatase
- shRNA, short hairpin RNA
- siRNA
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Silvia Maruelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Julie Rousseau
- INSERM, Université de Nantes, UMR1238, Phy-Os, Bone sarcomas and remodeling of calcified tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - Nadia Garibaldi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Jérôme Amiaud
- INSERM, Université de Nantes, UMR1238, Phy-Os, Bone sarcomas and remodeling of calcified tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - Bénédicte Brulin
- INSERM, Université de Nantes, UMR1238, Phy-Os, Bone sarcomas and remodeling of calcified tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - Pierre Layrolle
- INSERM, Université de Nantes, UMR1238, Phy-Os, Bone sarcomas and remodeling of calcified tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | | | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Valerie Trichet
- INSERM, Université de Nantes, UMR1238, Phy-Os, Bone sarcomas and remodeling of calcified tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
6
|
Decambron A, Devriendt N, Larochette N, Manassero M, Bourguignon M, El-Hafci H, Petite H, Viateau V, Logeart-Avramoglou D. Effect of the Bone Morphogenetic Protein-2 Doses on the Osteogenic Potential of Human Multipotent Stromal Cells- Containing Tissue Engineered Constructs. Tissue Eng Part A 2018; 25:642-651. [PMID: 30311857 DOI: 10.1089/ten.tea.2018.0146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
IMPACT STATEMENT A strategy for improving the efficacy of stem cell-based bone tissue engineering (TE) constructs is to combine bone morphogenetic protein-2 (BMP-2) with multipotent stromal cells (MSC). Previous studies on the potential cooperative effect of BMP-2 with human multipotent stromal cells (hMSCs) on bone formation in vivo have, however, shown contradictory results likely due to the various and/or inappropriate BMP-2 doses. Our results provided evidence that the addition of BMP-2 at low dose only was beneficial to improve the osteogenic potential of hMSCs-containing TE constructs, whereas BMP-2 delivered at high dose overcame the advantage of combining this growth factor with hMSCs. This new knowledge will help in designing improved combination strategies for tissue regeneration with better clinical outcomes.
Collapse
Affiliation(s)
- Adeline Decambron
- 1 B2OA UMR 7052, Univ Paris Diderot , Sorbonne Paris Cité, CNRS, Paris, France .,2 B2OA UMR 7052, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est , Maisons-Alfort, France
| | | | - Nathanael Larochette
- 1 B2OA UMR 7052, Univ Paris Diderot , Sorbonne Paris Cité, CNRS, Paris, France .,2 B2OA UMR 7052, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est , Maisons-Alfort, France
| | - Mathieu Manassero
- 1 B2OA UMR 7052, Univ Paris Diderot , Sorbonne Paris Cité, CNRS, Paris, France .,2 B2OA UMR 7052, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est , Maisons-Alfort, France
| | - Marianne Bourguignon
- 1 B2OA UMR 7052, Univ Paris Diderot , Sorbonne Paris Cité, CNRS, Paris, France .,2 B2OA UMR 7052, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est , Maisons-Alfort, France
| | - Hanane El-Hafci
- 1 B2OA UMR 7052, Univ Paris Diderot , Sorbonne Paris Cité, CNRS, Paris, France .,2 B2OA UMR 7052, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est , Maisons-Alfort, France
| | - Hervé Petite
- 1 B2OA UMR 7052, Univ Paris Diderot , Sorbonne Paris Cité, CNRS, Paris, France .,4 B2OA UMR 7052, Univ Paris Diderot, Sorbonne Paris Cité , CNRS, INSERM, Paris, France
| | - Véronique Viateau
- 1 B2OA UMR 7052, Univ Paris Diderot , Sorbonne Paris Cité, CNRS, Paris, France .,2 B2OA UMR 7052, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est , Maisons-Alfort, France
| | - Delphine Logeart-Avramoglou
- 1 B2OA UMR 7052, Univ Paris Diderot , Sorbonne Paris Cité, CNRS, Paris, France .,2 B2OA UMR 7052, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est , Maisons-Alfort, France
| |
Collapse
|
7
|
Pervasion of beta-tricalcium phosphate with nanodiamond particles yields efficient and safe bone replacement material amenable for biofunctionalization and application in large-size osseous defect healing. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 16:250-257. [PMID: 30267872 DOI: 10.1016/j.nano.2018.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/10/2018] [Indexed: 11/21/2022]
Abstract
Biofunctionalization of scaffold materials can enable the healing of large bone defects. In case of minimally invasive guided-bone regeneration (GBR), limitations are however hard-to-control side effects related to the potential release of biofactors into the systemic environment. Biofactors can be stably bound to nanodiamond particles (ND) through physisorption. We therefore tested the biological and clinical effects of refining beta-tricalcium phosphate (βTCP) with ND in vitro and in vivo. In vitro, βTCP carrying 4% ND resulted in enhanced attachment of mesenchymal stem cells. When assessing GBR after lateral augmentation of the mandible in sheep showed that ND in βTCP resulted in a consistently steady bone formation when compared to pure βTCP, demonstrating the biological inert behavior and the potential clinical safety of ND.
Collapse
|
8
|
Kim BS, Yang SS, Kim CS. Incorporation of BMP-2 nanoparticles on the surface of a 3D-printed hydroxyapatite scaffold using an ε-polycaprolactone polymer emulsion coating method for bone tissue engineering. Colloids Surf B Biointerfaces 2018; 170:421-429. [PMID: 29957531 DOI: 10.1016/j.colsurfb.2018.06.043] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/31/2018] [Accepted: 06/19/2018] [Indexed: 01/12/2023]
Abstract
Hydroxyapatite (HAp)-based three-dimensional (3D) scaffolding is an excellent method for the fabrication of complex-shaped scaffolds to reconstruct bone defects. This study aimed at improving the osteoinductivity and compressive strength of the HAp-based 3D scaffold for bone regeneration. Bone morphogenetic protein-2-loaded nanoparticles (BMP-2/NPs) were prepared by a double emulsion-solvent evaporation method and incorporated onto the surface of 3D scaffolds using ε-polycaprolactone (PCL) and NPs emulsion solution. The surface morphology of the scaffold was characterized using scanning electron microscopy and its biocompatibility and osteogenic effects evaluated in vitro using human mesenchymal stem cells. The in vivo bone regeneration efficiency was determined using a rabbit calvarial bone defect model. We obtained 3D HAp scaffolds with NPs using PCL coating process. BMP-2/NPs were uniformly distributed on the scaffold surface and BMP-2 was gradually released. Furthermore, PCL coating improved the compressive strength of the scaffold. The cell proliferation, adhesion, and osteogenic differentiation properties were improved with PCL_BMP-2/NPs coated scaffold. In vivo experiments showed that the formation of new bone was significantly higher in the PCL_BMP-2/NPs group than in the uncoated scaffold-implanted group. The coating method using PCL and NPs emulsion solutions was useful not only to incorporate BMP-2/NPs onto the surface of the scaffold, but also to improve the compressive strength, which enhanced bone regeneration.
Collapse
Affiliation(s)
- Beom-Su Kim
- Carbon Nano Convergence Technology Center for Next Generation Engineers (CNN), Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Sun-Sik Yang
- Department of Dentistry, Oral and Maxillofacial, Wonkwang University, Iksan, 570-749, Republic of Korea
| | - Cheol Sang Kim
- Carbon Nano Convergence Technology Center for Next Generation Engineers (CNN), Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Division of Mechanical Design Engineering, Chonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
9
|
Biomaterials for Regenerative Medicine: Historical Perspectives and Current Trends. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:1-19. [PMID: 30406362 DOI: 10.1007/5584_2018_278] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Biomaterials are key components in tissue engineering and regenerative medicine applications, with the intended purpose of reducing the burden of disease and enhancing the quality of life of a large number of patients. The success of many regenerative medicine strategies, such as cell-based therapies, artificial organs, and engineered living tissues, is highly dependent on the ability to design or produce suitable biomaterials that can support and guide cells during tissue healing and remodelling processes. This chapter presents an overview about basic research concerning the use of different biomaterials for tissue engineering and regenerative medicine applications. Starting from a historical perspective, the chapter introduces the basic principles of designing biomaterials for tissue regeneration approaches. The main focus is set on describing the main classes of biomaterials that have been applied in regenerative medicine, including natural and synthetic polymers, bioactive ceramics, and composites. For each class of biomaterials, some of the most important physicochemical and biological properties are presented. Finally, some challenges and concerns that remain in this field are presented and discussed.
Collapse
|
10
|
Decambron A, Fournet A, Bensidhoum M, Manassero M, Sailhan F, Petite H, Logeart-Avramoglou D, Viateau V. Low-dose BMP-2 and MSC dual delivery onto coral scaffold for critical-size bone defect regeneration in sheep. J Orthop Res 2017; 35:2637-2645. [PMID: 28401593 DOI: 10.1002/jor.23577] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/06/2017] [Indexed: 02/04/2023]
Abstract
Tissue-engineered constructs (TECs) combining resorbable calcium-based scaffolds and mesenchymal stem cells (MSCs) have the capability to regenerate large bone defects. Inconsistent results have, however, been observed, with a lack of osteoinductivity as a possible cause of failure. This study aimed to evaluate the impact of the addition of low-dose bone morphogenetic protein-2 (BMP-2) to MSC-coral-TECs on the healing of clinically relevant segmental bone defects in sheep. Coral granules were either seeded with autologous MSCs (bone marrow-derived) or loaded with BMP-2. A 25-mm-long metatarsal bone defect was created and stabilized with a plate in 18 sheep. Defects were filled with one of the following TECs: (i) BMP (n = 5); (ii) MSC (n = 7); or (iii) MSC-BMP (n = 6). Radiographic follow-up was performed until animal sacrifice at 4 months. Bone formation and scaffold resorption were assessed by micro-CT and histological analysis. Bone union with nearly complete scaffold resorption was observed in 1/5, 2/7, and 3/6 animals, when BMP-, MSC-, and MSC-BMP-TECs were implanted, respectively. The amount of newly formed bone was not statistically different between groups: 1074 mm3 [970-2478 mm3 ], 1155 mm3 [970-2595 mm3 ], and 2343 mm3 [931-3276 mm3 ] for BMP-, MSC-, and MSC-BMP-TECs, respectively. Increased scaffold resorption rate using BMP-TECs was the only potential side effect observed. In conclusion, although the dual delivery of MSCs and BMP-2 onto a coral scaffold further increased bone formation and bone union when compared to single treatment, results were non-significant. Only 50% of the defects healed, demonstrating the need for further refinement of this strategy before clinical use. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2637-2645, 2017.
Collapse
Affiliation(s)
- Adeline Decambron
- Laboratoire de Bioingénierie et Bioimagerie Ostéo-Articulaire (B2OA-UMR CNRS 7052) Université Paris Diderot, 10 Avenue de Verdun, 75010, Paris, France.,Ecole Nationale Vétérinaire d'Alfort (Université Paris-Est), 7 avenue du général de Gaulle, 94704, Maisons-Alfort Cedex, France
| | - Alexandre Fournet
- Laboratoire de Bioingénierie et Bioimagerie Ostéo-Articulaire (B2OA-UMR CNRS 7052) Université Paris Diderot, 10 Avenue de Verdun, 75010, Paris, France.,Ecole Nationale Vétérinaire d'Alfort (Université Paris-Est), 7 avenue du général de Gaulle, 94704, Maisons-Alfort Cedex, France
| | - Morad Bensidhoum
- Laboratoire de Bioingénierie et Bioimagerie Ostéo-Articulaire (B2OA-UMR CNRS 7052) Université Paris Diderot, 10 Avenue de Verdun, 75010, Paris, France
| | - Mathieu Manassero
- Laboratoire de Bioingénierie et Bioimagerie Ostéo-Articulaire (B2OA-UMR CNRS 7052) Université Paris Diderot, 10 Avenue de Verdun, 75010, Paris, France.,Ecole Nationale Vétérinaire d'Alfort (Université Paris-Est), 7 avenue du général de Gaulle, 94704, Maisons-Alfort Cedex, France
| | - Frédéric Sailhan
- Hopital Cochin, Service d'orthopédie et chirurgie du rachis, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France.,Clinique Arago, 187 Rue Raymond Losserand, 75014, Paris, France
| | - Hervé Petite
- Laboratoire de Bioingénierie et Bioimagerie Ostéo-Articulaire (B2OA-UMR CNRS 7052) Université Paris Diderot, 10 Avenue de Verdun, 75010, Paris, France
| | - Delphine Logeart-Avramoglou
- Laboratoire de Bioingénierie et Bioimagerie Ostéo-Articulaire (B2OA-UMR CNRS 7052) Université Paris Diderot, 10 Avenue de Verdun, 75010, Paris, France
| | - Véronique Viateau
- Laboratoire de Bioingénierie et Bioimagerie Ostéo-Articulaire (B2OA-UMR CNRS 7052) Université Paris Diderot, 10 Avenue de Verdun, 75010, Paris, France.,Ecole Nationale Vétérinaire d'Alfort (Université Paris-Est), 7 avenue du général de Gaulle, 94704, Maisons-Alfort Cedex, France
| |
Collapse
|
11
|
Horstmann PF, Raina DB, Isaksson H, Hettwer W, Lidgren L, Petersen MM, Tägil M. Composite Biomaterial as a Carrier for Bone-Active Substances for Metaphyseal Tibial Bone Defect Reconstruction in Rats. Tissue Eng Part A 2017; 23:1403-1412. [DOI: 10.1089/ten.tea.2017.0040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Peter Frederik Horstmann
- Department of Orthopedics, Clinical Sciences, Lund University, Lund University Hospital, Lund, Sweden
- Department of Orthopedics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Deepak Bushan Raina
- Department of Orthopedics, Clinical Sciences, Lund University, Lund University Hospital, Lund, Sweden
| | - Hanna Isaksson
- Department of Orthopedics, Clinical Sciences, Lund University, Lund University Hospital, Lund, Sweden
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Werner Hettwer
- Department of Orthopedics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lars Lidgren
- Department of Orthopedics, Clinical Sciences, Lund University, Lund University Hospital, Lund, Sweden
| | - Michael Mørk Petersen
- Department of Orthopedics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Magnus Tägil
- Department of Orthopedics, Clinical Sciences, Lund University, Lund University Hospital, Lund, Sweden
| |
Collapse
|
12
|
Kim BS, Shkembi F, Lee J. In Vitro and In Vivo Evaluation of Commercially Available Fibrin Gel as a Carrier of Alendronate for Bone Tissue Engineering. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6434169. [PMID: 28210623 PMCID: PMC5292194 DOI: 10.1155/2017/6434169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/07/2016] [Accepted: 12/19/2016] [Indexed: 12/15/2022]
Abstract
Alendronate (ALN) is a bisphosphonate drug that is widely used for the treatment of osteoporosis. Furthermore, local delivery of ALN has the potential to improve the bone regeneration. This study was designed to investigate an ALN-containing fibrin (fibrin/ALN) gel and evaluate the effect of this gel on both in vitro cellular behavior using human mesenchymal stem cells (hMSCs) and in vivo bone regenerative capacity. Fibrin hydrogels were fabricated using various ALN concentrations (10-7-10-4 M) with fibrin glue and the morphology, mechanical properties, and ALN release kinetics were characterized. Proliferation and osteogenic differentiation of and cytotoxicity in fibrin/ALN gel-embedded hMSCs were examined. In vivo bone formation was evaluated using a rabbit calvarial defect model. The fabricated fibrin/ALN gel was transparent with Young's modulus of ~13 kPa, and these properties were not affected by ALN concentration. The in vitro studies showed sustained release of ALN from the fibrin gel and revealed that hMSCs cultured in fibrin/ALN gel showed significantly increased proliferation and osteogenic differentiation. In addition, microcomputed tomography and histological analysis revealed that the newly formed bone was significantly enhanced by implantation of fibrin/ALN gel in a calvarial defect model. These results suggest that fibrin/ALN has the potential to improve bone regeneration.
Collapse
Affiliation(s)
- Beom Su Kim
- Bonecell Biotech. Inc., Dunsan-dong, Seo-gu, Daejeon 602-830, Republic of Korea
- Wonkwang Bone Regeneration Institute, Wonkwang University, Iksan 570-749, Republic of Korea
| | - Feride Shkembi
- Department of Oral & Maxillofacial and Surgery, Wonkwang University Daejeon Dental Hospital, Seo-gu, Daejeon 302-120, Republic of Korea
| | - Jun Lee
- Wonkwang Bone Regeneration Institute, Wonkwang University, Iksan 570-749, Republic of Korea
- Department of Oral & Maxillofacial and Surgery, Wonkwang University Daejeon Dental Hospital, Seo-gu, Daejeon 302-120, Republic of Korea
| |
Collapse
|
13
|
Liu Z, Zhu Y, Zhu H, He X, Liu X. Enhancement of posterolateral lumbar spine fusion using recombinant human bone morphogenetic protein-2 and mesenchymal stem cells delivered in fibrin glue. J Biomater Appl 2016; 31:477-487. [PMID: 27059496 DOI: 10.1177/0885328216643854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mesenchymal stem cells have shown great potential for accelerating bone healing. In the present study, we evaluate the efficacy of fibrin glue/mesenchymal stem cells/recombinant human bone morphogenetic protein-2 composite for posterolateral spinal fusion in a rabbit model. Forty adult rabbits underwent posterolateral intertransverse fusion at the L5–L6 level. The animals were randomly divided into four groups based on the implant material: fibrin glue, fibrin glue/mesenchymal stem cells composite, fibrin glue-recombinant human bone morphogenetic protein-2 (fibrin glue/recombinant human bone morphogenetic protein-2) composite, and fibrin glue/mesenchymal stem cells/recombinant human bone morphogenetic protein-2 composite. After six weeks, the rabbits were euthanized for manual palpation, radiographic examination, biomechanical testing, and histology. Manual palpation results showed that the fusion rate for fibrin glue, fibrin glue/mesenchymal stem cells, fibrin glue/recombinant human bone morphogenetic protein-2, and fibrin glue/mesenchymal stem cells/recombinant human bone morphogenetic protein-2 was 0, 0, 40%, and 70%, respectively. Moreover, fusion rate determined by radiographic examination for fibrin glue, fibrin glue/mesenchymal stem cells, fibrin glue/recombinant human bone morphogenetic protein-2, and fibrin glue/mesenchymal stem cells/recombinant human bone morphogenetic protein-2 was 0, 0, 40%, and 80%, respectively. Gray analysis showed that fibrin glue/recombinant human bone morphogenetic protein-2 group had higher ossification area and density than fibrin glue group; and fibrin glue/mesenchymal stem cells/recombinant human bone morphogenetic protein-2 group had higher ossification area and density than fibrin glue/recombinant human bone morphogenetic protein-2 group. Formation of continuous bone masses between L5 and L6 level in mesenchymal stem cells/recombinant human bone morphogenetic protein-2/fibrin glue group was further confirmed by computed tomography scanning and three-dimensional reconstruction. Biomechanical testing demonstrated that the fusion strength (flexion, extension, lateral bending, and axial rotation) in fibrin glue/mesenchymal stem cells/recombinant human bone morphogenetic protein-2 group is significantly higher than that in fibrin glue/recombinant human bone morphogenetic protein-2 group. The formation of mature bone tissues between transverse processes of the fused specimens from both fibrin glue/recombinant human bone morphogenetic protein-2, and fibrin glue/mesenchymal stem cells/recombinant human bone morphogenetic protein-2 groups was confirmed by HE staining, and quantitative real-time polymerase chain reaction results showed the upregulation of CD31, type I collagen, osteocalcin, and osteonectin in the fibrin glue/mesenchymal stem cells/recombinant human bone morphogenetic protein-2 group. In conclusion, our findings show that mesenchymal stem cells delivered with recombinant human bone morphogenetic protein-2 using fibrin glue as carrier are more effective in enhancing spine fusion than recombinant human bone morphogenetic protein-2 without mesenchymal stem cells in the rabbit model.
Collapse
Affiliation(s)
- Zunpeng Liu
- Department of Orthopedics, First Affiliated Hospital, China Medical University, Shenyang, China
- Department of Orthopedics, Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Orthopedics, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Haitao Zhu
- Department of Orthopedics, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaoning He
- Department of Stomatology, Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Xinchun Liu
- Department of Orthopedics, First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
14
|
Basic fibroblast growth factor-encapsulated PCL nano/microfibrous composite scaffolds for bone regeneration. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.08.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|