1
|
Jain R, Daigavane S. Advances and Challenges in Gene Therapy for Inherited Retinal Dystrophies: A Comprehensive Review. Cureus 2024; 16:e69895. [PMID: 39439625 PMCID: PMC11494405 DOI: 10.7759/cureus.69895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024] Open
Abstract
Inherited retinal dystrophies (IRDs) are a diverse group of genetic disorders leading to progressive vision loss due to the degeneration of retinal photoreceptors. Gene therapy has emerged as a promising approach to address the underlying genetic causes of IRDs, offering the potential for restoring vision and halting disease progression. This review provides a comprehensive overview of gene therapy innovations for IRDs, focusing on the mechanisms, recent advancements, and ongoing challenges. We discuss the fundamental principles of gene therapy, including the use of viral and non-viral vectors, and highlight key developments such as the approval of Luxturna for RPE65-mediated retinal dystrophy and the application of gene editing technologies like CRISPR/Cas9. Despite these advancements, significant challenges remain, including vector delivery, long-term safety, and variable patient responses. This review also explores the future directions of gene therapy, emphasizing the need for further research to address these challenges and enhance therapeutic efficacy. By examining the current state of gene therapy for IRDs, this review aims to provide valuable insights into the potential for these treatments to transform the management of retinal diseases and improve the quality of life for affected individuals.
Collapse
Affiliation(s)
- Raina Jain
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sachin Daigavane
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
2
|
Liu Y, Zong X, Cao W, Zhang W, Zhang N, Yang N. Gene Therapy for Retinitis Pigmentosa: Current Challenges and New Progress. Biomolecules 2024; 14:903. [PMID: 39199291 PMCID: PMC11352491 DOI: 10.3390/biom14080903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Retinitis pigmentosa (RP) poses a significant threat to eye health worldwide, with prevalence rates of 1 in 5000 worldwide. This genetically diverse retinopathy is characterized by the loss of photoreceptor cells and atrophy of the retinal pigment epithelium. Despite the involvement of more than 3000 mutations across approximately 90 genes in its onset, finding an effective treatment has been challenging for a considerable time. However, advancements in scientific research, especially in gene therapy, are significantly expanding treatment options for this most prevalent inherited eye disease, with the discovery of new compounds, gene-editing techniques, and gene loci offering hope for more effective treatments. Gene therapy, a promising technology, utilizes viral or non-viral vectors to correct genetic defects by either replacing or silencing disease-causing genes, potentially leading to complete recovery. In this review, we primarily focus on the latest applications of gene editing research in RP. We delve into the most prevalent genes associated with RP and discuss advancements in genome-editing strategies currently employed to correct various disease-causing mutations.
Collapse
Affiliation(s)
| | | | | | | | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan 430060, China; (Y.L.); (X.Z.); (W.C.); (W.Z.)
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan 430060, China; (Y.L.); (X.Z.); (W.C.); (W.Z.)
| |
Collapse
|
3
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
4
|
Yang Z, Yan L, Zhang W, Qi J, An W, Yao K. Dyschromatopsia: a comprehensive analysis of mechanisms and cutting-edge treatments for color vision deficiency. Front Neurosci 2024; 18:1265630. [PMID: 38298913 PMCID: PMC10828017 DOI: 10.3389/fnins.2024.1265630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Color blindness is a retinal disease that mainly manifests as a color vision disorder, characterized by achromatopsia, red-green color blindness, and blue-yellow color blindness. With the development of technology and progress in theory, extensive research has been conducted on the genetic basis of color blindness, and various approaches have been explored for its treatment. This article aims to provide a comprehensive review of recent advances in understanding the pathological mechanism, clinical symptoms, and treatment options for color blindness. Additionally, we discuss the various treatment approaches that have been developed to address color blindness, including gene therapy, pharmacological interventions, and visual aids. Furthermore, we highlight the promising results from clinical trials of these treatments, as well as the ongoing challenges that must be addressed to achieve effective and long-lasting therapeutic outcomes. Overall, this review provides valuable insights into the current state of research on color blindness, with the intention of informing further investigation and development of effective treatments for this disease.
Collapse
Affiliation(s)
- Zihao Yang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Lin Yan
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Wenliang Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Jia Qi
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Wenjing An
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Santhanam A, Shihabeddin E, Wei H, Wu J, O'Brien J. Molecular basis of retinal remodeling in a zebrafish model of retinitis pigmentosa. Cell Mol Life Sci 2023; 80:362. [PMID: 37979052 PMCID: PMC10657301 DOI: 10.1007/s00018-023-05021-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
A hallmark of inherited retinal degenerative diseases such as retinitis pigmentosa (RP) is progressive structural and functional remodeling of the remaining retinal cells as photoreceptors degenerate. Extensive remodeling of the retina stands as a barrier for the successful implementation of strategies to restore vision. To understand the molecular basis of remodeling, we performed analyses of single-cell transcriptome data from adult zebrafish retina of wild type AB strain (WT) and a P23H mutant rhodopsin transgenic model of RP with continuous degeneration and regeneration. Retinas from both female and male fish were pooled to generate each library, combining data from both sexes. We provide a benchmark atlas of retinal cell type transcriptomes in zebrafish and insight into how each retinal cell type is affected in the P23H model. Oxidative stress is found throughout the retina, with increases in reliance on oxidative metabolism and glycolysis in the affected rods as well as cones, bipolar cells, and retinal ganglion cells. There is also transcriptional evidence for widespread synaptic remodeling and enhancement of glutamatergic transmission in the inner retina. Notably, changes in circadian rhythm regulation are detected in cones, bipolar cells, and retinal pigmented epithelium. We also identify the transcriptomic signatures of retinal progenitor cells and newly formed rods essential for the regenerative process. This comprehensive transcriptomic analysis provides a molecular road map to understand how the retina remodels in the context of chronic retinal degeneration with ongoing regeneration.
Collapse
Affiliation(s)
- Abirami Santhanam
- Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- University of Houston College of Optometry, Houston, TX, 77204, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Eyad Shihabeddin
- Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Haichao Wei
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jiaqian Wu
- MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - John O'Brien
- Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- University of Houston College of Optometry, Houston, TX, 77204, USA.
- MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Kamde SP, Anjankar A. Retinitis Pigmentosa: Pathogenesis, Diagnostic Findings, and Treatment. Cureus 2023; 15:e48006. [PMID: 38034182 PMCID: PMC10686897 DOI: 10.7759/cureus.48006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Retinitis Pigmentosa (RP) is an inherited retinal dystrophy (IRD) that causes progressive visual loss. Patients suffering from RP have a substantial influence on their everyday activities, social contacts, and jobs, lowering their quality of life. Frequent referral delays, as well as the lack of a standard therapy for the majority of patients, contribute to the significant unmet demand for RP. Any retinal injury has the potential to result in total blindness and visual impairment. Despite the fact that there is no cure for RP, people can manage it using rehabilitation programs and low-vision gadgets. The purpose of this research is to characterize the expanding treatment landscape for RP, as well as the justification for advanced therapy medicinal products (ATMPs). Vitamin A supplements can help prevent the sluggish visual loss caused by a prevalent kind of RP. The presence of visual purple in the rods and the underlying vascular choroid causes the retina to look purplish red. The major portion of the retina damaged is the rod photoreceptor electric cell; the development of diverse diseases is progressive. Because of the retina's accessibility, immunological privilege, and compartmentalization, hereditary retinal diseases are amenable to cell and gene therapy. Therapeutic techniques that attempt to rescue photoreceptors (gene therapies) require the existence of non-functional target cells, but other therapies (cell therapies) do not require the presence of live photoreceptors. To provide successful therapy choices for RP patients at all disease phases, the development pipeline must be continually diversified and advanced, as well as ongoing efforts to encourage early patient identification and quick diagnosis. Future research will focus on avoiding vision loss in genetic eye illnesses and assisting patients in regaining their eyesight. Retinal implants, cell therapies, supplementary medications, and gene therapies may become common treatments for reducing vision loss in the future.
Collapse
Affiliation(s)
- Saakshi P Kamde
- Forensic Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anil Anjankar
- Forensic Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
7
|
Wood EH, Kreymerman A, Kowal T, Buickians D, Sun Y, Muscat S, Mercola M, Moshfeghi DM, Goldberg JL. Cellular and subcellular optogenetic approaches towards neuroprotection and vision restoration. Prog Retin Eye Res 2023; 96:101153. [PMID: 36503723 PMCID: PMC10247900 DOI: 10.1016/j.preteyeres.2022.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Optogenetics is defined as the combination of genetic and optical methods to induce or inhibit well-defined events in isolated cells, tissues, or animals. While optogenetics within ophthalmology has been primarily applied towards treating inherited retinal disease, there are a myriad of other applications that hold great promise for a variety of eye diseases including cellular regeneration, modulation of mitochondria and metabolism, regulation of intraocular pressure, and pain control. Supported by primary data from the authors' work with in vitro and in vivo applications, we introduce a novel approach to metabolic regulation, Opsins to Restore Cellular ATP (ORCA). We review the fundamental constructs for ophthalmic optogenetics, present current therapeutic approaches and clinical trials, and discuss the future of subcellular and signaling pathway applications for neuroprotection and vision restoration.
Collapse
Affiliation(s)
- Edward H Wood
- Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Alexander Kreymerman
- Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tia Kowal
- Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - David Buickians
- Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yang Sun
- Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Stephanie Muscat
- Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mark Mercola
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Darius M Moshfeghi
- Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
8
|
Gregori NZ, Davis JL. Surgical Observations From the First 120 Cases of Subretinal Gene Therapy for Inherited Retinal Diseases. Retina 2023; 43:1608-1611. [PMID: 33394965 DOI: 10.1097/iae.0000000000003085] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To report surgical observations formulated during the first 120 cases of subretinal gene therapy in patients with inherited retinal degenerations (IRDs). METHODS A two-surgeon team compiled surgical observations and formulated surgical pearls based on the consecutive cases of subretinal viral vector injection in patients enrolled in clinical trials focusing on choroideremia, achromatopsia, and RP GTPase regulator associated retinitis pigmentosa, as well as patients with retinal pigment epithelium-specific-65-kDa (RPE65) associated Leber congenital amaurosis receiving Food and Drug Administration-approved voretigene neparvovec-rzyl therapy. RESULTS One hundred twenty subretinal surgeries were performed by a two-surgeon team. Key anatomical features pertinent to surgical management were noted and are described in this article. Surgical decision making for successful subretinal administration of viral vectors and management of potential surgical challenges were formulated. CONCLUSION Lessons learned during subretinal gene therapy cases may be helpful to other surgeons entering clinical trials or performing postapproval gene therapy administration. Surgical pearls outlined in this article may also be helpful for other targeted subretinal therapies, such as cellular transplantation or retinal prosthesis implantation.
Collapse
Affiliation(s)
- Ninel Z Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | | |
Collapse
|
9
|
Voisin A, Pénaguin A, Gaillard A, Leveziel N. Stem cell therapy in retinal diseases. Neural Regen Res 2023; 18:1478-1485. [PMID: 36571345 PMCID: PMC10075102 DOI: 10.4103/1673-5374.361537] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alteration of the outer retina leads to various diseases such as age-related macular degeneration or retinitis pigmentosa characterized by decreased visual acuity and ultimately blindness. Despite intensive research in the field of retinal disorders, there is currently no curative treatment. Several therapeutic approaches such as cell-based replacement and gene therapies are currently in development. In the context of cell-based therapies, different cell sources such as embryonic stem cells, induced pluripotent stem cells, or multipotent stem cells can be used for transplantation. In the vast majority of human clinical trials, retinal pigment epithelial cells and photoreceptors are the cell types considered for replacement cell therapies. In this review, we summarize the progress made in stem cell therapies ranging from the pre-clinical studies to clinical trials for retinal disease.
Collapse
Affiliation(s)
- Audrey Voisin
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084; Department of Ophthalmology, CHU Poitiers, Poitiers, France
| | - Amaury Pénaguin
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, Poitiers; Laboratoires Thea, Clermont-Ferrand, France
| | - Afsaneh Gaillard
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, Poitiers, France
| | - Nicolas Leveziel
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084; Department of Ophthalmology, CHU Poitiers, Poitiers, France
| |
Collapse
|
10
|
Yang M, Peng GH. The molecular mechanism of human stem cell-derived extracellular vesicles in retinal repair and regeneration. Stem Cell Res Ther 2023; 14:84. [PMID: 37046324 PMCID: PMC10100447 DOI: 10.1186/s13287-023-03319-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Extracellular vesicles (EVs), including microvesicles (MVs) and exosomes, play a critical role in metabolic regulation and intracellular communication. Stem cell-derived EVs are considered to have the potential for regeneration, like stem cells, while simultaneously avoiding the risk of immune rejection or tumour formation. The therapeutic effect of stem cell-derived EVs has been proven in many diseases. However, the molecular mechanism of stem cell-derived EVs in retinal repair and regeneration has not been fully clarified. In this review, we described the biological characteristics of stem cell-derived EVs, summarized the current research on stem cell-derived EV treatment in retinal repair and regeneration, and discussed the potential and challenges of stem cell-derived EVs in translational medicine.
Collapse
Affiliation(s)
- Mei Yang
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Guang-Hua Peng
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China.
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
11
|
Martinez-Fernandez de la Camara C, Cehajic-Kapetanovic J, MacLaren RE. Emerging gene therapy products for RPGR-associated X-linked retinitis pigmentosa. Expert Opin Emerg Drugs 2022; 27:431-443. [PMID: 36562395 DOI: 10.1080/14728214.2022.2152003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Mutations in the RPGR gene are responsible for one of the most prevalent and severe types of retinitis pigmentosa. Gene therapy has shown great promise to treat inherited retinal diseases, and currently, four RPGR gene therapy vectors are being evaluated in clinical trials. AREAS COVERED This manuscript reviews the gene therapy products that are in development for X-linked retinitis pigmentosa caused by mutations in RPGR, and the challenges that scientists and clinicians have faced. EXPERT OPINION The development of a gene therapy product for RPGR-associated retinal degeneration has been a great challenge due to the incomplete understanding of the underlying genetics and mechanism of action of RPGR, and on the other hand, due to the instability of the RPGR gene. Three of the four gene therapy vectors currently in clinical trials include a codon-optimized version of the human RPGR sequence, and the other vector contains a shortened version of the human RPGR. To date, the only Phase I/II results published in a peer-reviewed journal demonstrate a good safety profile and an improvement in the visual field using a codon optimized version of RPGRORF15.
Collapse
Affiliation(s)
- Cristina Martinez-Fernandez de la Camara
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Level 5 & 6, West Wing, Headley Way, OX3 9DU, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, West Wing, Headley Way, OX3 9DU, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Level 5 & 6, West Wing, Headley Way, OX3 9DU, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, West Wing, Headley Way, OX3 9DU, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Level 5 & 6, West Wing, Headley Way, OX3 9DU, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, West Wing, Headley Way, OX3 9DU, Oxford, UK
| |
Collapse
|
12
|
Irigoyen C, Amenabar Alonso A, Sanchez-Molina J, Rodríguez-Hidalgo M, Lara-López A, Ruiz-Ederra J. Subretinal Injection Techniques for Retinal Disease: A Review. J Clin Med 2022; 11:jcm11164717. [PMID: 36012955 PMCID: PMC9409835 DOI: 10.3390/jcm11164717] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) affect an estimated 1 in every 2000 people, this corresponding to nearly 2 million cases worldwide. Currently, 270 genes have been associated with IRDs, most of them altering the function of photoreceptors and retinal pigment epithelium. Gene therapy has been proposed as a potential tool for improving visual function in these patients. Clinical trials in animal models and humans have been successful in various types of IRDs. Recently, voretigene neparvovec (Luxturna®) has been approved by the US Food and Drug Administration for the treatment of biallelic mutations in the RPE65 gene. The current state of the art in gene therapy involves the delivery of various types of viral vectors into the subretinal space to effectively transduce diseased photoreceptors and retinal pigment epithelium. For this, subretinal injection is becoming increasingly popular among researchers and clinicians. To date, several approaches for subretinal injection have been described in the scientific literature, all of them effective in accessing the subretinal space. The growth and development of gene therapy give rise to the need for a standardized procedure for subretinal injection that ensures the efficacy and safety of this new approach to drug delivery. The goal of this review is to offer an insight into the current subretinal injection techniques and understand the key factors in the success of this procedure.
Collapse
Affiliation(s)
- Cristina Irigoyen
- Department of Ophthalmology, Donostia University Hospital (HUD), 20014 Donostia San-Sebastián, Spain
- Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain
- Department of Ophthalmology, University of the Basque Country, 48940 Leioa, Spain
| | - Asier Amenabar Alonso
- Department of Ophthalmology, Donostia University Hospital (HUD), 20014 Donostia San-Sebastián, Spain
| | - Jorge Sanchez-Molina
- Department of Ophthalmology, Donostia University Hospital (HUD), 20014 Donostia San-Sebastián, Spain
- Correspondence: ; Tel.: +34-629950276
| | | | | | | |
Collapse
|
13
|
Rodriguez B, Vazquez M, Cai L. A newly anticipated role for Laptm4b in retinal outer segment development. Eye (Lond) 2022; 36:1342-1343. [PMID: 35217828 PMCID: PMC9232507 DOI: 10.1038/s41433-022-01996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Brianna Rodriguez
- Department of Biomedical Engineering Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Maribel Vazquez
- Department of Biomedical Engineering Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Li Cai
- Department of Biomedical Engineering Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
14
|
Morgan JIW, Jiang YY, Vergilio GK, Serrano LW, Pearson DJ, Bennett J, Maguire AM, Aleman TS. Short-term Assessment of Subfoveal Injection of Adeno-Associated Virus-Mediated hCHM Gene Augmentation in Choroideremia Using Adaptive Optics Ophthalmoscopy. JAMA Ophthalmol 2022; 140:411-420. [PMID: 35266957 PMCID: PMC8914909 DOI: 10.1001/jamaophthalmol.2022.0158] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/17/2022] [Indexed: 11/14/2022]
Abstract
Importance Subretinal injection for gene augmentation in retinal degenerations forcefully detaches the neural retina from the retinal pigment epithelium, potentially damaging photoreceptors and/or retinal pigment epithelium cells. Objective To use adaptive optics scanning light ophthalmoscopy (AOSLO) to assess the short-term integrity of the cone mosaic following subretinal injections of adeno-associated virus vector designed to deliver a functional version of the CHM gene (AAV2-hCHM) in patients with choroideremia. Design, Setting, and Participants This longitudinal case series study enrolled adult patients with choroideremia from February 2015 to January 2016 in the US. To be included in the study, study participants must have received uniocular subfoveal injections of low-dose (5 × 1010 vector genome per eye) or high-dose (1 × 1011 vector genome per eye) AAV2-hCHM. Analysis began February 2015. Main Outcomes and Measures The macular regions of both eyes were imaged before and 1 month after injection using a custom-built multimodal AOSLO. Postinjection cone inner segment mosaics were compared with preinjection mosaics at multiple regions of interest. Colocalized spectral-domain optical coherence tomography and dark-adapted cone sensitivity was also acquired at each time point. Results Nine study participants ranged in age from 26 to 50 years at the time of enrollment, and all were White men. Postinjection AOSLO images showed preservation of the cone mosaic in all 9 AAV2-hCHM-injected eyes. Mosaics appeared intact and contiguous 1 month postinjection, with the exception of foveal disruption in 1 patient. Optical coherence tomography showed foveal cone outer segment shortening postinjection. Cone-mediated sensitivities were unchanged in 8 of 9 injected and 9 of 9 uninjected eyes. One participant showed acute loss of foveal optical coherence tomography cone outer segment-related signals along with cone sensitivity loss that colocalized with disruption of the mosaic on AOSLO. Conclusions and Relevance Integrity of the cone mosaic is maintained following subretinal delivery of AAV2-hCHM, providing strong evidence in support of the safety of the injections. Minor foveal thinning observed following surgery corresponds with short-term cone outer segment shortening rather than cone cell loss. Foveal cone loss in 1 participant raises the possibility of individual vulnerability to the subretinal injection.
Collapse
Affiliation(s)
- Jessica I. W. Morgan
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Yu You Jiang
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Grace K. Vergilio
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Leona W. Serrano
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Denise J. Pearson
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Jean Bennett
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Albert M. Maguire
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| | - Tomas S. Aleman
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
- Center for Advanced Retinal & Ocular Therapeutics, University of Pennsylvania, Philadelphia
| |
Collapse
|
15
|
Renormalization of metabolic coupling treats age-related degenerative disorders: an oxidative RPE niche fuels the more glycolytic photoreceptors. Eye (Lond) 2022; 36:278-283. [PMID: 34974542 PMCID: PMC8807833 DOI: 10.1038/s41433-021-01726-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022] Open
Abstract
Retinitis pigmentosa is characterized by a dysregulation within the metabolic coupling of the retina, particularly between the glycolytic photoreceptors and the oxidative retina pigment epithelium. This phenomenon of metabolic uncoupling is seen in both aging and retinal degenerative diseases, as well as across a variety of cell types in human biology. Given its crucial role in the health and maintenance of these cell types, the metabolic pathways involved present a suitable area for therapeutic intervention. Herein, this review covers the scope of this delicate metabolic interplay, its dysregulation, how it relates to the retina as well other cell types, and finally concludes with a summary of various strategies aimed at reinstating normal metabolic coupling within the retina, and future directions within the field.
Collapse
|
16
|
Martinez Velazquez LA, Ballios BG. The Next Generation of Molecular and Cellular Therapeutics for Inherited Retinal Disease. Int J Mol Sci 2021; 22:ijms222111542. [PMID: 34768969 PMCID: PMC8583900 DOI: 10.3390/ijms222111542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022] Open
Abstract
Inherited retinal degenerations (IRDs) are a diverse group of conditions that are often characterized by the loss of photoreceptors and blindness. Recent innovations in molecular biology and genomics have allowed us to identify the causative defects behind these dystrophies and to design therapeutics that target specific mechanisms of retinal disease. Recently, the FDA approved the first in vivo gene therapy for one of these hereditary blinding conditions. Current clinical trials are exploring new therapies that could provide treatment for a growing number of retinal dystrophies. While the field has had early success with gene augmentation strategies for treating retinal disease based on loss-of-function mutations, many novel approaches hold the promise of offering therapies that span the full spectrum of causative mutations and mechanisms. Here, we provide a comprehensive review of the approaches currently in development including a discussion of retinal neuroprotection, gene therapies (gene augmentation, gene editing, RNA modification, optogenetics), and regenerative stem or precursor cell-based therapies. Our review focuses on technologies that are being developed for clinical translation or are in active clinical trials and discusses the advantages and limitations for each approach.
Collapse
Affiliation(s)
| | - Brian G. Ballios
- Department of Ophthalmology and Vision Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 3A9, Canada
- Correspondence:
| |
Collapse
|
17
|
German OL, Vallese-Maurizi H, Soto TB, Rotstein NP, Politi LE. Retina stem cells, hopes and obstacles. World J Stem Cells 2021; 13:1446-1479. [PMID: 34786153 PMCID: PMC8567457 DOI: 10.4252/wjsc.v13.i10.1446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Retinal degeneration is a major contributor to visual dysfunction worldwide. Although it comprises several eye diseases, loss of retinal pigment epithelial (RPE) and photoreceptor cells are the major contributors to their pathogenesis. Early therapies included diverse treatments, such as provision of anti-vascular endothelial growth factor and many survival and trophic factors that, in some cases, slow down the progression of the degeneration, but do not effectively prevent it. The finding of stem cells (SC) in the eye has led to the proposal of cell replacement strategies for retina degeneration. Therapies using different types of SC, such as retinal progenitor cells (RPCs), embryonic SC, pluripotent SCs (PSCs), induced PSCs (iPSCs), and mesenchymal stromal cells, capable of self-renewal and of differentiating into multiple cell types, have gained ample support. Numerous preclinical studies have assessed transplantation of SC in animal models, with encouraging results. The aim of this work is to revise the different preclinical and clinical approaches, analyzing the SC type used, their efficacy, safety, cell attachment and integration, absence of tumor formation and immunorejection, in order to establish which were the most relevant and successful. In addition, we examine the questions and concerns still open in the field. The data demonstrate the existence of two main approaches, aimed at replacing either RPE cells or photoreceptors. Emerging evidence suggests that RPCs and iPSC are the best candidates, presenting no ethical concerns and a low risk of immunorejection. Clinical trials have already supported the safety and efficacy of SC treatments. Serious concerns are pending, such as the risk of tumor formation, lack of attachment or integration of transplanted cells into host retinas, immunorejection, cell death, and also ethical. However, the amazing progress in the field in the last few years makes it possible to envisage safe and effective treatments to restore vision loss in a near future.
Collapse
Affiliation(s)
- Olga L German
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Harmonie Vallese-Maurizi
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Tamara B Soto
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Nora P Rotstein
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Luis Enrique Politi
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
18
|
Zhang X, Lei T, Du H. Prospect of cell penetrating peptides in stem cell tracking. Stem Cell Res Ther 2021; 12:457. [PMID: 34391472 PMCID: PMC8364034 DOI: 10.1186/s13287-021-02522-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/12/2021] [Indexed: 01/19/2023] Open
Abstract
Stem cell therapy has shown great efficacy in many diseases. However, the treatment mechanism is still unclear, which is a big obstacle for promoting clinical research. Therefore, it is particularly important to track transplanted stem cells in vivo, find out the distribution and condition of the stem cells, and furthermore reveal the treatment mechanism. Many tracking methods have been developed, including magnetic resonance imaging (MRI), fluorescence imaging, and ultrasound imaging (UI). Among them, MRI and UI techniques have been used in clinical. In stem cell tracking, a major drawback of these technologies is that the imaging signal is not strong enough, mainly due to the low cell penetration efficiency of imaging particles. Cell penetrating peptides (CPPs) have been widely used for cargo delivery due to its high efficacy, good safety properties, and wide delivery of various cargoes. However, there are few reports on the application of CPPs in current stem cell tracking methods. In this review, we systematically introduced the mechanism of CPPs into cell membranes and their advantages in stem cell tracking, discussed the clinical applications and limitations of CPPs, and finally we summarized several commonly used CPPs and their specific applications in stem cell tracking. Although it is not an innovation of tracer materials, CPPs as a powerful tool have broad prospects in stem cell tracking. ![]()
Collapse
Affiliation(s)
- Xiaoshuang Zhang
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tong Lei
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongwu Du
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China. .,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
19
|
Caridi B, Doncheva D, Sivaprasad S, Turowski P. Galectins in the Pathogenesis of Common Retinal Disease. Front Pharmacol 2021; 12:687495. [PMID: 34079467 PMCID: PMC8165321 DOI: 10.3389/fphar.2021.687495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Diseases of the retina are major causes of visual impairment and blindness in developed countries and, due to an ageing population, their prevalence is continually rising. The lack of effective therapies and the limitations of those currently in use highlight the importance of continued research into the pathogenesis of these diseases. Vascular endothelial growth factor (VEGF) plays a major role in driving vascular dysfunction in retinal disease and has therefore become a key therapeutic target. Recent evidence also points to a potentially similarly important role of galectins, a family of β-galactoside-binding proteins. Indeed, they have been implicated in regulating fundamental processes, including vascular hyperpermeability, angiogenesis, neuroinflammation, and oxidative stress, all of which also play a prominent role in retinopathies. Here, we review direct evidence for pathological roles of galectins in retinal disease. In addition, we extrapolate potential roles of galectins in the retina from evidence in cancer, immune and neuro-biology. We conclude that there is value in increasing understanding of galectin function in retinal biology, in particular in the context of the retinal vasculature and microglia. With greater insight, recent clinical developments of galectin-targeting drugs could potentially also be of benefit to the clinical management of many blinding diseases.
Collapse
Affiliation(s)
- Bruna Caridi
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Dilyana Doncheva
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Sobha Sivaprasad
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Patric Turowski
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
20
|
Transplanted embryonic retinal stem cells have the potential to repair the injured retina in mice. BMC Ophthalmol 2021; 21:26. [PMID: 33422026 PMCID: PMC7797095 DOI: 10.1186/s12886-020-01795-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/26/2020] [Indexed: 01/25/2023] Open
Abstract
Background Stem cell transplantation has been reported as one of the promising strategies to treat retinal degenerative diseases. But, the application and the role of retina stem cells (RSCs) in the treatment of patients with retinal degenerative diseases have not been fully revealed. This study aimed to investigate the potential role of transplantation of the embryo-derived RSCs into the vitreous cavity in repairing the damaged retina in mice. Methods RSCs were isolated from Kunming mice E17 embryonic retina and ciliary body tissues, and labeled with 5-bromo-2’-deoxyuridin (BrdU). Retinal optic nerve crush injury was induced in left eyes in male Kunming mice by ring clamping the optic nerve. The 6th -generation of BrdU-labeled RSCs were transplanted into the damaged retina by the intravitreal injection, and saline injected eyes were used as the control. Hematoxylin and eosin histological staining, and BrdU, Nestin and Pax6 immunostaining were performed. Electroretinogram (ERG) was used for assessing the electrical activity of the retina. Results Embryo-derived RSCs were identified by the positive stains of Pax6 and Nestin. BrdU incorporation was detected in the majority of RSCs. The damaged retina showed cellular nuclear disintegration and fragmentation in the retinal tissue which progressed over the periods of clamping time, and decreased amplitudes of a and b waves in ERG. In the damaged retina with RSCs transplantation, the positive staining for BrdU, Pax6 and Nestin were revealed on the retinal surface. Notably, RSCs migrated into the retinal ganglion cell layer and inner nuclear. Transplanted RSCs significantly elevated the amplitudes of a waves in retina injured eyes. Conclusions Embryonic RSCs have similar characteristics to neural stem cells. Transplantation of RSCs by intravitreal injection would be able to repair the damaged retina.
Collapse
|
21
|
Microfluidic and Microscale Assays to Examine Regenerative Strategies in the Neuro Retina. MICROMACHINES 2020; 11:mi11121089. [PMID: 33316971 PMCID: PMC7763644 DOI: 10.3390/mi11121089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022]
Abstract
Bioengineering systems have transformed scientific knowledge of cellular behaviors in the nervous system (NS) and pioneered innovative, regenerative therapies to treat adult neural disorders. Microscale systems with characteristic lengths of single to hundreds of microns have examined the development and specialized behaviors of numerous neuromuscular and neurosensory components of the NS. The visual system is comprised of the eye sensory organ and its connecting pathways to the visual cortex. Significant vision loss arises from dysfunction in the retina, the photosensitive tissue at the eye posterior that achieves phototransduction of light to form images in the brain. Retinal regenerative medicine has embraced microfluidic technologies to manipulate stem-like cells for transplantation therapies, where de/differentiated cells are introduced within adult tissue to replace dysfunctional or damaged neurons. Microfluidic systems coupled with stem cell biology and biomaterials have produced exciting advances to restore vision. The current article reviews contemporary microfluidic technologies and microfluidics-enhanced bioassays, developed to interrogate cellular responses to adult retinal cues. The focus is on applications of microfluidics and microscale assays within mammalian sensory retina, or neuro retina, comprised of five types of retinal neurons (photoreceptors, horizontal, bipolar, amacrine, retinal ganglion) and one neuroglia (Müller), but excludes the non-sensory, retinal pigmented epithelium.
Collapse
|
22
|
Abstract
PURPOSE Choroideremia is an incurable, X-linked, recessive retinal dystrophy caused by loss of function mutations in the CHM gene. It is estimated to affect approximately 1 in 50,000 male patients. It is characterized by progressive degeneration of the retinal pigment epithelium, choroid, and photoreceptors, resulting in visual impairment and blindness. There is an unmet need in choroideremia, because currently, there are no approved treatments available for patients with the disease. METHODS We review the patient journey, societal impact, and emerging treatments for patients with choroideremia. RESULTS Its relative rarity and similarities with other retinal diseases in early years mean that diagnosis of choroideremia can often be delayed. Furthermore, its impact on affected individuals, and wider society, is also likely underestimated. AAV2-mediated gene therapy is an investigational treatment that aims to replace the faulty CHM gene. Early-phase studies reported potentially important visual acuity gains and maintenance of vision in some patients, and a large Phase 3 program is now underway. CONCLUSION Choroideremia is a disease with a significant unmet need. Interventions that can treat progression of the disease and improve visual and functional outcomes have the potential to reduce health care costs and enhance patient quality of life.
Collapse
|
23
|
Sarkar B, Siddiqui Z, Kim KK, Nguyen PK, Reyes X, McGill TJ, Kumar VA. Implantable anti-angiogenic scaffolds for treatment of neovascular ocular pathologies. Drug Deliv Transl Res 2020; 10:1191-1202. [PMID: 32232681 PMCID: PMC7483832 DOI: 10.1007/s13346-020-00753-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The retinal physiology can accrue oxidative damage and inflammatory insults due to age and metabolic irregularities. Two notable diseases that involve retinal and choroidal neovascularization are proliferative diabetic retinopathy and wet age-related macular degeneration. Currently, these diseases are mainly treated with anti-VEGF drugs (VEGF = vascular endothelial growth factor), generally on a monthly dosage scheme. We discuss recent developments for the treatment of these diseases, including bioactive tissue-engineered materials, which may reduce frequency of dosage and propose a path forward for improving patient outcomes. Graphical abstract Development of materials for long-term intravitreal delivery for management of posterior segment diseases.
Collapse
Affiliation(s)
- Biplab Sarkar
- Department of Biomedical Engineering, New Jersey Institute of Technology, 138 Warren St. LSEB 316, Newark, NJ, 07102, USA
| | - Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, 138 Warren St. LSEB 316, Newark, NJ, 07102, USA
| | - Ka Kyung Kim
- Department of Biomedical Engineering, New Jersey Institute of Technology, 138 Warren St. LSEB 316, Newark, NJ, 07102, USA
| | - Peter K Nguyen
- Department of Biomedical Engineering, New Jersey Institute of Technology, 138 Warren St. LSEB 316, Newark, NJ, 07102, USA
| | - Xavier Reyes
- Department of Biomedical Engineering, New Jersey Institute of Technology, 138 Warren St. LSEB 316, Newark, NJ, 07102, USA
| | - Trevor J McGill
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Vivek A Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, 138 Warren St. LSEB 316, Newark, NJ, 07102, USA.
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, USA.
| |
Collapse
|
24
|
Piano I, D'Antongiovanni V, Novelli E, Biagioni M, Dei Cas M, Paroni RC, Ghidoni R, Strettoi E, Gargini C. Myriocin Effect on Tvrm4 Retina, an Autosomal Dominant Pattern of Retinitis Pigmentosa. Front Neurosci 2020; 14:372. [PMID: 32435178 PMCID: PMC7218082 DOI: 10.3389/fnins.2020.00372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/26/2020] [Indexed: 02/01/2023] Open
Abstract
Tvrm4 mice, a model of autosomal dominant retinitis pigmentosa (RP), carry a mutation of Rhodopsin gene that can be activated by brief exposure to very intense light. Here, we test the possibility of an anatomical, metabolic, and functional recovery by delivering to degenerating Tvrm4 animals, Myriocin, an inhibitor of ceramide de novo synthesis previously shown to effectively slow down retinal degeneration in rd10 mutants (Strettoi et al., 2010; Piano et al., 2013). Different routes and durations of Myriocin administration were attempted by using either single intravitreal (i.v.) or long-term, repeated intraperitoneal (i.p.) injections. The retinal function of treated and control animals was tested by ERG recordings. Retinas from ERG-recorded animals were studied histologically to reveal the extent of photoreceptor death. A correlation was observed between Myriocin administration, lowering of retinal ceramides, and preservation of ERG responses in i.v. injected cases. Noticeably, the i.p. treatment with Myriocin decreased the extension of the retinal-degenerating area, preserved the ERG response, and correlated with decreased levels of biochemical indicators of retinal oxidative damage. The results obtained in this study confirm the efficacy of Myriocin in slowing down retinal degeneration in genetic models of RP independently of the underlying mutation responsible for the disease, likely targeting ceramide-dependent, downstream pathways. Alleviation of retinal oxidative stress upon Myriocin treatment suggests that this molecule, or yet unidentified metabolites, act on cellular detoxification systems supporting cell survival. Altogether, the pharmacological approach chosen here meets the necessary pre-requisites for translation into human therapy to slow down RP.
Collapse
Affiliation(s)
- Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | | | - Michele Dei Cas
- Department of Health Sciences, University of Milan, Milan, Italy
| | | | - Riccardo Ghidoni
- Department of Health Sciences, University of Milan, Milan, Italy.,Aldo Ravelli Center, University of Milan, Milan, Italy
| | | | | |
Collapse
|
25
|
Intraoperative Use of Microscope-Integrated Optical Coherence Tomography for Subretinal Gene Therapy Delivery. Retina 2020; 39 Suppl 1:S9-S12. [PMID: 28426632 DOI: 10.1097/iae.0000000000001646] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Talib M, Boon CJF. Retinal Dystrophies and the Road to Treatment: Clinical Requirements and Considerations. Asia Pac J Ophthalmol (Phila) 2020; 9:159-179. [PMID: 32511120 PMCID: PMC7299224 DOI: 10.1097/apo.0000000000000290] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
: Retinal dystrophies (RDs) comprise relatively rare but devastating causes of progressive vision loss. They represent a spectrum of diseases with marked genetic and clinical heterogeneity. Mutations in the same gene may lead to different diagnoses, for example, retinitis pigmentosa or cone dystrophy. Conversely, mutations in different genes may lead to the same phenotype. The age at symptom onset, and the rate and characteristics of peripheral and central vision decline, may vary widely per disease group and even within families. For most RD cases, no effective treatment is currently available. However, preclinical studies and phase I/II/III gene therapy trials are ongoing for several RD subtypes, and recently the first retinal gene therapy has been approved by the US Food and Drug Administration for RPE65-associated RDs: voretigene neparvovec-rzyl (Luxturna). With the rapid advances in gene therapy studies, insight into the phenotypic spectrum and long-term disease course is crucial information for several RD types. The vast clinical heterogeneity presents another important challenge in the evaluation of potential efficacy in future treatment trials, and in establishing treatment candidacy criteria. This perspective describes these challenges, providing detailed clinical descriptions of several forms of RD that are caused by genes of interest for ongoing and future gene or cell-based therapy trials. Several ongoing and future treatment options will be described.
Collapse
Affiliation(s)
- Mays Talib
- Department of Ophthalmology, Leiden, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, University of Amsterdam. Amsterdam, The Netherlands
| |
Collapse
|
27
|
Holtan JP, Selmer KK, Heimdal KR, Bragadóttir R. Inherited retinal disease in Norway - a characterization of current clinical and genetic knowledge. Acta Ophthalmol 2020; 98:286-295. [PMID: 31429209 DOI: 10.1111/aos.14218] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE The purpose of this study was to characterize current clinical and genetic knowledge of patients with inherited retinal disease in Norway and give an estimate of the prevalence. These data are necessary to identify patients eligible for new personalized medicines, to facilitate genetic counselling for their families and to plan clinical follow-up. METHODS A patient registry including clinical and genetic data was established. Clinical data were retrieved during 2003-2018. Genetic testing was performed in the period 2007-2018. RESULTS The material included 866 patients with 41 clinical diagnoses at the cut-off date. The most prevalent diseases were as follows: retinitis pigmentosa (54%), Stargardt macular dystrophy (6.5%) and Leber congenital amaurosis (5.2%). A genetic diagnosis was identified in 32% of patients. In total, 207 disease-causing variants in 56 genes were reported. The most commonly reported disease-causing genes were ABCA4, USH2A and BEST1. The estimated adjusted minimum prevalence of inherited retinal disease in the south-east region of Norway was 1: 3,856 (2.6/10 000). CONCLUSION This population-based study demonstrated an estimated prevalence for all inherited retinal diseases in south-east Norway and described the distribution of clinical diagnoses, onset of symptoms, inheritance patterns and genetic data and thereby expands our knowledge of inherited retinal disease in Norway. The newly established registry and biobank will support patient feasibility for future clinical trials, treatment selection and counselling of families.
Collapse
Affiliation(s)
- Josephine Prener Holtan
- Department of Ophthalmology Oslo University Hospital Oslo Norway
- University of Oslo Oslo Norway
| | - Kaja Kristine Selmer
- Department of Medical Genetics Oslo University Hospital Oslo Norway
- Department of Research and Development Oslo University Hospital Oslo Norway
| | | | - Ragnheiður Bragadóttir
- Department of Ophthalmology Oslo University Hospital Oslo Norway
- University of Oslo Oslo Norway
| |
Collapse
|
28
|
Advanced robotic surgical systems in ophthalmology. Eye (Lond) 2020; 34:1554-1562. [PMID: 32152518 PMCID: PMC7608507 DOI: 10.1038/s41433-020-0837-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/12/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
In this paper, an overview of advanced robotic surgical systems in ophthalmology is provided. The systems are introduced as representative examples of the degree of human vs. robotic control during surgical procedures. The details are presented on each system and the latest advancements of each are described. Future potential applications for surgical robotics in ophthalmology are discussed in detail, with representative examples provided alongside recent progress.
Collapse
|
29
|
Li Y, Chen D, Sun L, Wu Y, Zou Y, Liang C, Bao Y, Yi J, Zhang Y, Hou J, Li Z, Yu F, Huang Y, Yu C, Liu L, Liu Z, Zhang Y, Li Y. Induced Expression of VEGFC, ANGPT, and EFNB2 and Their Receptors Characterizes Neovascularization in Proliferative Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2020; 60:4084-4096. [PMID: 31574534 DOI: 10.1167/iovs.19-26767] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate whole transcriptional differences between proliferative diabetic retinopathy (PDR) neovascular membranes (NVMs) and retinas, and the regulatory genes participating in retinal neovascularization in PDR. Methods We used high-throughput sequencing technology to capture the whole-genome gene expression levels of all participants, including 23 patients with PDR or branch retinal vein occlusion (BRVO), 3 normal retinal samples, and 2 retinal samples from type II diabetic (T2D) eyes by donation, followed by analyses of expression patterns using bioinformatics methods, then validation of the data by in situ hybridization and Western blotting. Results We showed that transcriptional profiles of the NVMs were distinct from those of the retinas. Angiogenesis growth factors VEGFC, ANGPT1, ANGPT2, and EFNB2, and their receptors FLT4, TIE1, TIE2, and EPHB4, respectively, were overexpressed. Expression of VEGFA was highly upregulated in T2D retina, but low in the NVMs, while angiogenesis transcription factors, including ETS1 and ERG, were coordinately upregulated in NVMs. Conclusions This study described a PDR neovascularization model in which pathological retina-secreted vascular endothelial growth factor A (VEGFA) enhanced the expression of a set of angiogenesis transcription factors and growth factors, to cooperatively induce the retinal neovascularization. Based on these results, novel potential therapeutic targets and biomarkers for PDR treatment and diagnosis are suggested.
Collapse
Affiliation(s)
- Yaping Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.,Department of Ophthalmology, Second Hospital, Jilin University, Changchun, China
| | - Dong Chen
- Center for Genome Analysis, ABLife, Inc., Wuhan, People's Republic of China.,Laboratory for Genome Regulation and Human Health, ABLife, Inc., Wuhan, People's Republic of China
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Yannan Wu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Ying Zou
- Department of Ophthalmology, Second Hospital, Jilin University, Changchun, China
| | - Chen Liang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Yongli Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Jingwen Yi
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Yu Zhang
- Center for Genome Analysis, ABLife, Inc., Wuhan, People's Republic of China
| | - Jing Hou
- Center for Genome Analysis, ABLife, Inc., Wuhan, People's Republic of China
| | - Zhen Li
- Center for Genome Analysis, ABLife, Inc., Wuhan, People's Republic of China
| | - Fengyun Yu
- Laboratory for Genome Regulation and Human Health, ABLife, Inc., Wuhan, People's Republic of China
| | - Yanxin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Chunlei Yu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Zaoxia Liu
- Department of Ophthalmology, Second Hospital, Jilin University, Changchun, China
| | - Yi Zhang
- Center for Genome Analysis, ABLife, Inc., Wuhan, People's Republic of China.,Laboratory for Genome Regulation and Human Health, ABLife, Inc., Wuhan, People's Republic of China
| | - Yuxin Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| |
Collapse
|
30
|
Laird JG, Gardner SH, Kopel AJ, Kerov V, Lee A, Baker SA. Rescue of Rod Synapses by Induction of Cav Alpha 1F in the Mature Cav1.4 Knock-Out Mouse Retina. Invest Ophthalmol Vis Sci 2019; 60:3150-3161. [PMID: 31335952 PMCID: PMC6656410 DOI: 10.1167/iovs.19-27226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/24/2019] [Indexed: 01/10/2023] Open
Abstract
Purpose Cav1.4 is a voltage-gated calcium channel clustered at the presynaptic active zones of photoreceptors. Cav1.4 functions in communication by mediating the Ca2+ influx that triggers neurotransmitter release. It also aids in development since rod ribbon synapses do not form in Cav1.4 knock-out mice. Here we used a rescue strategy to investigate the ability of Cav1.4 to trigger synaptogenesis in both immature and mature mouse rods. Methods In vivo electroporation was used to transiently express Cav α1F or tamoxifen-inducible Cav α1F in a subset of Cav1.4 knock-out mouse rods. Synaptogenesis was assayed using morphologic markers and a vision-guided water maze. Results We found that introduction of Cav α1F to knock-out terminals rescued synaptic development as indicated by PSD-95 expression and elongated ribbons. When expression of Cav α1F was induced in mature animals, we again found restoration of PSD-95 and elongated ribbons. However, the induced expression of Cav α1F led to diffuse distribution of Cav α1F in the terminal instead of being clustered beneath the ribbon. Approximately a quarter of treated animals passed the water maze test, suggesting the rescue of retinal signaling in these mice. Conclusions These data confirm that Cav α1F expression is necessary for rod synaptic terminal development and demonstrate that rescue is robust even in adult animals with late stages of synaptic disease. The degree of rod synaptic plasticity seen here should be sufficient to support future vision-restoring treatments such as gene or cell replacement that will require photoreceptor synaptic rewiring.
Collapse
Affiliation(s)
- Joseph G. Laird
- Department of Biochemistry, University of Iowa, Iowa City, United States
| | - Sarah H. Gardner
- Department of Biochemistry, University of Iowa, Iowa City, United States
| | - Ariel J. Kopel
- Department of Biochemistry, University of Iowa, Iowa City, United States
| | - Vasily Kerov
- Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Amy Lee
- Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
- Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, United States
- Department of Neurology, University of Iowa, Iowa City, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, United States
| | - Sheila A. Baker
- Department of Biochemistry, University of Iowa, Iowa City, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, United States
- Ophthalmology and Visual Sciences and the Institute for Vision Research, University of Iowa, Iowa City, United States
| |
Collapse
|
31
|
Peynshaert K, Devoldere J, Minnaert AK, De Smedt SC, Remaut K. Morphology and Composition of the Inner Limiting Membrane: Species-Specific Variations and Relevance toward Drug Delivery Research. Curr Eye Res 2019; 44:465-475. [PMID: 30638413 DOI: 10.1080/02713683.2019.1565890] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The inner limiting membrane (ILM) represents the structural boundary between the vitreous and the retina, and is suggested to act as a barrier for a wide range of retinal therapies. While it is widely acknowledged that the morphology of the human ILM exhibits regional variations and undergoes age-related changes, insight into its structure in laboratory animals is very limited. Besides presenting a detailed overview of the morphology and composition of the human ILM, this review specifically reflects on the species-specific differences in ILM structure. With these differences in mind, we furthermore summarize the most relevant reports on the barrier role of the ILM with regard to viral vectors, nanoparticles, anti-VEGF medication and stem cells. Overall, this review aims to deliberate on the impact of species-specific ILM variations on drug delivery research as well as to pinpoint knowledge gaps which future basic research should resolve.
Collapse
Affiliation(s)
- Karen Peynshaert
- a Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences , Ghent University , Ghent , Belgium.,b Ghent Research Group on Nanomedicines , Ghent University , Ghent , Belgium
| | - Joke Devoldere
- a Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences , Ghent University , Ghent , Belgium.,b Ghent Research Group on Nanomedicines , Ghent University , Ghent , Belgium
| | - An-Katrien Minnaert
- a Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences , Ghent University , Ghent , Belgium.,b Ghent Research Group on Nanomedicines , Ghent University , Ghent , Belgium
| | - Stefaan C De Smedt
- a Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences , Ghent University , Ghent , Belgium.,b Ghent Research Group on Nanomedicines , Ghent University , Ghent , Belgium
| | - Katrien Remaut
- a Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences , Ghent University , Ghent , Belgium.,b Ghent Research Group on Nanomedicines , Ghent University , Ghent , Belgium
| |
Collapse
|
32
|
Wang AL, Knight DK, Vu TTT, Mehta MC. Retinitis Pigmentosa: Review of Current Treatment. Int Ophthalmol Clin 2019; 59:263-280. [PMID: 30585930 DOI: 10.1097/iio.0000000000000256] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
33
|
Mitsios A, Dubis AM, Moosajee M. Choroideremia: from genetic and clinical phenotyping to gene therapy and future treatments. Ther Adv Ophthalmol 2018; 10:2515841418817490. [PMID: 30627697 PMCID: PMC6311551 DOI: 10.1177/2515841418817490] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/05/2018] [Indexed: 11/15/2022] Open
Abstract
Choroideremia is an X-linked inherited chorioretinal dystrophy leading to blindness by late adulthood. Choroideremia is caused by mutations in the CHM gene which encodes Rab escort protein 1 (REP1), an ubiquitously expressed protein involved in intracellular trafficking and prenylation activity. The exact site of pathogenesis remains unclear but results in degeneration of the photoreceptors, retinal pigment epithelium and choroid. Animal and stem cell models have been used to study the molecular defects in choroideremia and test effectiveness of treatment interventions. Natural history studies of choroideremia have provided additional insight into the clinical phenotype of the condition and prepared the way for clinical trials aiming to investigate the safety and efficacy of suitable therapies. In this review, we provide a summary of the current knowledge on the genetics, pathophysiology, clinical features and therapeutic strategies that might become available for choroideremia in the future, including gene therapy, stem cell treatment and small-molecule drugs with nonsense suppression action.
Collapse
Affiliation(s)
- Andreas Mitsios
- Institute of Ophthalmology, University College London, London, UK
| | - Adam M Dubis
- Institute of Ophthalmology, University College London, London, UK
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
34
|
Abstract
The retina is a very fine and layered neural tissue, which vitally depends on the preservation of cells, structure, connectivity and vasculature to maintain vision. There is an urgent need to find technical and biological solutions to major challenges associated with functional replacement of retinal cells. The major unmet challenges include generating sufficient numbers of specific cell types, achieving functional integration of transplanted cells, especially photoreceptors, and surgical delivery of retinal cells or tissue without triggering immune responses, inflammation and/or remodeling. The advances of regenerative medicine enabled generation of three-dimensional tissues (organoids), partially recreating the anatomical structure, biological complexity and physiology of several tissues, which are important targets for stem cell replacement therapies. Derivation of retinal tissue in a dish creates new opportunities for cell replacement therapies of blindness and addresses the need to preserve retinal architecture to restore vision. Retinal cell therapies aimed at preserving and improving vision have achieved many improvements in the past ten years. Retinal organoid technologies provide a number of solutions to technical and biological challenges associated with functional replacement of retinal cells to achieve long-term vision restoration. Our review summarizes the progress in cell therapies of retina, with focus on human pluripotent stem cell-derived retinal tissue, and critically evaluates the potential of retinal organoid approaches to solve a major unmet clinical need—retinal repair and vision restoration in conditions caused by retinal degeneration and traumatic ocular injuries. We also analyze obstacles in commercialization of retinal organoid technology for clinical application.
Collapse
|
35
|
Mitchell P, Liew G, Gopinath B, Wong TY. Age-related macular degeneration. Lancet 2018; 392:1147-1159. [PMID: 30303083 DOI: 10.1016/s0140-6736(18)31550-2] [Citation(s) in RCA: 897] [Impact Index Per Article: 149.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 06/12/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022]
Abstract
Age-related macular degeneration is a leading cause of visual impairment and severe vision loss. Clinically, it is classified as early-stage (medium-sized drusen and retinal pigmentary changes) to late-stage (neovascular and atrophic). Age-related macular degeneration is a multifactorial disorder, with dysregulation in the complement, lipid, angiogenic, inflammatory, and extracellular matrix pathways implicated in its pathogenesis. More than 50 genetic susceptibility loci have been identified, of which the most important are in the CFH and ARMS2 genes. The major non-genetic risk factors are smoking and low dietary intake of antioxidants (zinc and carotenoids). Progression from early-stage to late-stage disease can be slowed with high-dose zinc and antioxidant vitamin supplements. Intravitreal anti-vascular endothelial growth factor therapy (eg, ranibizumab, aflibercept, or bevacizumab) is highly effective at treating neovascular age-related macular degeneration, and has markedly decreased the prevalence of visual impairment in populations worldwide. Currently, no proven therapies for atrophic disease are available, but several agents are being investigated in clinical trials. Future progress is likely to be from improved efforts in prevention and risk-factor modification, personalised medicine targeting specific pathways, newer anti-vascular endothelial growth factor agents or other agents, and regenerative therapies.
Collapse
Affiliation(s)
- Paul Mitchell
- Centre for Vision Research, Department of Ophthalmology, Westmead Institute for Medical Research, University of Sydney, Australia.
| | - Gerald Liew
- Centre for Vision Research, Department of Ophthalmology, Westmead Institute for Medical Research, University of Sydney, Australia
| | - Bamini Gopinath
- Centre for Vision Research, Department of Ophthalmology, Westmead Institute for Medical Research, University of Sydney, Australia
| | - Tien Y Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-National University of Singapore, Singapore
| |
Collapse
|
36
|
Wimberg H, Lev D, Yosovich K, Namburi P, Banin E, Sharon D, Koch KW. Photoreceptor Guanylate Cyclase ( GUCY2D) Mutations Cause Retinal Dystrophies by Severe Malfunction of Ca 2+-Dependent Cyclic GMP Synthesis. Front Mol Neurosci 2018; 11:348. [PMID: 30319355 PMCID: PMC6167591 DOI: 10.3389/fnmol.2018.00348] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Over 100 mutations in GUCY2D that encodes the photoreceptor guanylate cyclase GC-E are known to cause two major diseases: autosomal recessive Leber congenital amaurosis (arLCA) or autosomal dominant cone-rod dystrophy (adCRD) with a poorly understood mechanism at the molecular level in most cases. Only few mutations were further characterized for their enzymatic and molecular properties. GC-E activity is under control of neuronal Ca2+-sensor proteins, which is often a possible route to dysfunction. We investigated five recently-identified GC-E mutants that have been reported in patients suffering from arLCA (one large family) and adCRD/maculopathy (four families). Microsatellite analysis revealed that one of the mutations, c.2538G > C (p.K846N), occurred de novo. To better understand the mechanism by which mutations that are located in different GC-E domains develop different phenotypes, we investigated the molecular consequences of these mutations by expressing wildtype and mutant GC-E variants in HEK293 cells. Analyzing their general enzymatic behavior, their regulation by Ca2+ sensor proteins and retinal degeneration protein 3 (RD3) dimerization domain mutants (p.E841K and p.K846N) showed a shift in Ca2+-sensitive regulation by guanylate cyclase-activating proteins (GCAPs). Mutations in the cyclase catalytic domain led to a loss of enzyme function in the mutant p.P873R, but not in p.V902L. Instead, the p.V902L mutation increased the guanylate cyclase activity more than 20-fold showing a high GCAP independent activity and leading to a constitutively active mutant. This is the first mutation to be described affecting the GC-E catalytic core in a complete opposite way.
Collapse
Affiliation(s)
- Hanna Wimberg
- Department of Neuroscience, Biochemistry Group, University of Oldenburg, Oldenburg, Germany
| | - Dorit Lev
- The Rina Mor Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Keren Yosovich
- The Rina Mor Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Prasanthi Namburi
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Biochemistry Group, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
37
|
Angueyra JM, Kindt KS. Leveraging Zebrafish to Study Retinal Degenerations. Front Cell Dev Biol 2018; 6:110. [PMID: 30283779 PMCID: PMC6156122 DOI: 10.3389/fcell.2018.00110] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
Abstract
Retinal degenerations are a heterogeneous group of diseases characterized by death of photoreceptors and progressive loss of vision. Retinal degenerations are a major cause of blindness in developed countries (Bourne et al., 2017; De Bode, 2017) and currently have no cure. In this review, we will briefly review the latest advances in therapies for retinal degenerations, highlighting the current barriers to study and develop therapies that promote photoreceptor regeneration in mammals. In light of these barriers, we present zebrafish as a powerful model to study photoreceptor regeneration and their integration into retinal circuits after regeneration. We outline why zebrafish is well suited for these analyses and summarize the powerful tools available in zebrafish that could be used to further uncover the mechanisms underlying photoreceptor regeneration and rewiring. In particular, we highlight that it is critical to understand how rewiring occurs after regeneration and how it differs from development. Insights derived from photoreceptor regeneration and rewiring in zebrafish may provide leverage to develop therapeutic targets to treat retinal degenerations.
Collapse
Affiliation(s)
- Juan M. Angueyra
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Katie S. Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
38
|
Cunningham ET, Rao NA, Gupta A, Zierhut M. Infections and Inflammation Occurring in the Subretinal Space. Ocul Immunol Inflamm 2018; 26:329-332. [PMID: 29630452 DOI: 10.1080/09273948.2018.1457355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Emmett T Cunningham
- a Department of Ophthalmology , California Pacific Medical Center , San Francisco , California , USA.,b The Department of Ophthalmology , Stanford University School of Medicine , Stanford , California , USA.,c The Francis I. Proctor Foundation , UCSF School of Medicine , San Francisco , California , USA
| | - Narsing A Rao
- d USC Roski Eye Institute, Department of Ophthalmology , University of Southern California , Los Angles , California , USA
| | - Amod Gupta
- e The Department of Ophthalmology , Postgraduate Institute of Medical Education and Research , Chandigarh , India
| | - Manfred Zierhut
- f Centre for Ophthalmology , University Tuebingen , Tuebingen , Germany
| |
Collapse
|
39
|
Taylor AW, Ng TF. Negative regulators that mediate ocular immune privilege. J Leukoc Biol 2018; 103:1179-1187. [PMID: 29431864 PMCID: PMC6240388 DOI: 10.1002/jlb.3mir0817-337r] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/15/2017] [Accepted: 01/10/2018] [Indexed: 08/13/2023] Open
Abstract
The ocular microenvironment has adapted several negative regulators of inflammation to maintain immune privilege and health of the visual axis. Several constitutively produced negative regulators within the eye TGF-β2, α-melanocyte stimulating hormone (α-MSH), Fas ligand (FasL), and PD-L1 standout because of their capacity to influence multiple pathways of inflammation, and that they are part of promoting immune tolerance. These regulators demonstrate the capacity of immune privilege to prevent the activation of inflammation, and to suppress activation of effector immune cells even under conditions of ocular inflammation induced by endotoxin and autoimmune disease. In addition, these negative regulators promote and expand immune cells that mediate regulatory and tolerogenic immunity. This in turn makes the immune cells themselves negative regulators of inflammation. This provides for a greater understanding of immune privilege in that it includes both molecular and cellular negative regulators of inflammation. This would mean that potentially new approaches to the treatment of autoimmune disease can be developed through the use of molecules and cells as negative regulators of inflammation.
Collapse
Affiliation(s)
- Andrew W Taylor
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Tat Fong Ng
- Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Lakowski J, Welby E, Budinger D, Di Marco F, Di Foggia V, Bainbridge JWB, Wallace K, Gamm DM, Ali RR, Sowden JC. Isolation of Human Photoreceptor Precursors via a Cell Surface Marker Panel from Stem Cell-Derived Retinal Organoids and Fetal Retinae. Stem Cells 2018; 36:709-722. [PMID: 29327488 PMCID: PMC5947711 DOI: 10.1002/stem.2775] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/01/2017] [Accepted: 12/14/2017] [Indexed: 12/16/2022]
Abstract
Loss of photoreceptor cells due to retinal degeneration is one of the main causes of blindness in the developed world. Although there is currently no effective treatment, cell replacement therapy using stem‐cell‐derived photoreceptor cells may be a feasible future treatment option. In order to ensure safety and efficacy of this approach, robust cell isolation and purification protocols must be developed. To this end, we previously developed a biomarker panel for the isolation of mouse photoreceptor precursors from the developing mouse retina and mouse embryonic stem cell cultures. In the current study we applied this approach to the human pluripotent stem cell (hPSC) system, and identified novel biomarker combinations that can be leveraged for the isolation of human photoreceptors. Human retinal samples and hPSC‐derived retinal organoid cultures were screened against 242 human monoclonal antibodies using a high through‐put flow cytometry approach. We identified 46 biomarkers with significant expression levels in the human retina and hPSC differentiation cultures. Human retinal cell samples, either from fetal tissue or derived from embryonic and induced pluripotent stem cell cultures, were fluorescence‐activated cell sorted (FACS) using selected candidate biomarkers that showed expression in discrete cell populations. Enrichment for photoreceptors and exclusion of mitotically active cells was demonstrated by immunocytochemical analysis with photoreceptor‐specific antibodies and Ki‐67. We established a biomarker combination, which enables the robust purification of viable human photoreceptors from both human retinae and hPSC‐derived organoid cultures. Stem Cells2018;36:709–722
Collapse
Affiliation(s)
- Jörn Lakowski
- Stem Cells and Regenerative Medicine Section, University College London, London, United Kingdom
| | - Emily Welby
- Stem Cells and Regenerative Medicine Section, University College London, London, United Kingdom.,NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Dimitri Budinger
- Stem Cells and Regenerative Medicine Section, University College London, London, United Kingdom
| | - Fabiana Di Marco
- Stem Cells and Regenerative Medicine Section, University College London, London, United Kingdom
| | - Valentina Di Foggia
- Stem Cells and Regenerative Medicine Section, University College London, London, United Kingdom.,NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | | | - Kyle Wallace
- Waisman Center, University of Wisconsin-Madison School of Medicine and Public Health, Waisman Center Rm T609, Madison, Wisconsin, USA
| | - David M Gamm
- Waisman Center, University of Wisconsin-Madison School of Medicine and Public Health, Waisman Center Rm T609, Madison, Wisconsin, USA.,Department of Ophthalmology and Visual Sciences and McPherson Eye Research Institute, University of Wisconsin-Madison School of Medicine and Public Health, Waisman Center Rm T609, Madison, Wisconsin, USA
| | - Robin R Ali
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Jane C Sowden
- Stem Cells and Regenerative Medicine Section, University College London, London, United Kingdom.,NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
41
|
Uchida A, Srivastava SK, Ehlers JP. Update on the Intraoperative OCT: Where Do We Stand? CURRENT OPHTHALMOLOGY REPORTS 2018. [DOI: 10.1007/s40135-018-0160-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
42
|
Abstract
In vivo electroporation enables the transformation of retinal tissue with engineered DNA plasmids, facilitating the selective expression of desired gene products. This method achieves plasmid transfer via the application of an external electrical field, which both generates a transient increase in the permeability of cell plasma membranes, and promotes the incorporation of DNA plasmids by electrophoretic transfer through the permeabilized membranes. Here we describe a method for the preparation, injection, and electroporation of DNA plasmids into neonatal mouse retinal tissue. This method can be utilized to perform gain of function or loss of function studies in the mouse. Experimental design is limited only by construct availability.
Collapse
|
43
|
Hassall MM, Barnard AR, MacLaren RE. Gene Therapy for Color Blindness. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:543-551. [PMID: 29259520 PMCID: PMC5733843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Achromatopsia is a rare congenital cause of vision loss due to isolated cone photoreceptor dysfunction. The most common underlying genetic mutations are autosomal recessive changes in CNGA3, CNGB3, GNAT2, PDE6H, PDE6C, or ATF6. Animal models of Cnga3, Cngb3, and Gnat2 have been rescued using AAV gene therapy; showing partial restoration of cone electrophysiology and integration of this new photopic vision in reflexive and behavioral visual tests. Three gene therapy phase I/II trials are currently being conducted in human patients in the USA, the UK, and Germany. This review details the AAV gene therapy treatments of achromatopsia to date. We also present novel data showing rescue of a Cnga3-/- mouse model using an rAAV.CBA.CNGA3 vector. We conclude by synthesizing the implications of this animal work for ongoing human trials, particularly, the challenge of restoring integrated cone retinofugal pathways in an adult visual system. The evidence to date suggests that gene therapy for achromatopsia will need to be applied early in childhood to be effective.
Collapse
Affiliation(s)
- Mark M. Hassall
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK,To whom all correspondence should be addressed: Dr. Mark M. Hassall, Nuffield Laboratory of Ophthalmology, Level 6, West Wing, John Radcliffe Hospital, Headley Way, Oxford, UK, OX3 9DU, Tel: +44 1865 234768, .
| | - Alun R. Barnard
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
44
|
Yusuf IH, Shanks ME, Clouston P, MacLaren RE. A splice-site variant in FLVCR1 produces retinitis pigmentosa without posterior column ataxia. Ophthalmic Genet 2017; 39:263-267. [PMID: 29192808 DOI: 10.1080/13816810.2017.1408848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
FLVCR1 (feline leukemia virus subgroup c receptor 1) is a transmembrane protein involved in the trafficking of intracellular heme. Homozygous variants in FLVCR1 have been described in association with a clinical syndrome of posterior column ataxia with retinitis pigmentosa (PCARP). Here, we describe a patient with non-syndromic retinitis pigmentosa homozygous for a splice-site variant in FLVCR1 (c.1092 + 5G>A) without evidence of posterior column ataxia or cerebellar degeneration. We suggest an association between intronic splice-site variants in FLVCR1 and the absence of posterior column degeneration and suggest a hypothesis to explain this observation. Should this association be proven, it would provide valuable prognostic information for patients. Retinal degeneration appears to be the sole clinical manifestation of this FLVCR1 variant; gene therapy approaches using an adeno-associated viral vector with sub-retinal delivery may therefore represent a therapeutic approach to halting retinal degeneration in this patient group.
Collapse
Affiliation(s)
- Imran H Yusuf
- a Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences , Oxford University , Oxford, UK.,b Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust , Oxford, UK
| | - Morag E Shanks
- c Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital , Oxford , UK
| | - Penny Clouston
- c Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital , Oxford , UK
| | - Robert E MacLaren
- a Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences , Oxford University , Oxford, UK.,b Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust , Oxford, UK
| |
Collapse
|
45
|
Farrar GJ, Carrigan M, Dockery A, Millington-Ward S, Palfi A, Chadderton N, Humphries M, Kiang AS, Kenna PF, Humphries P. Toward an elucidation of the molecular genetics of inherited retinal degenerations. Hum Mol Genet 2017; 26:R2-R11. [PMID: 28510639 PMCID: PMC5886474 DOI: 10.1093/hmg/ddx185] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/08/2017] [Indexed: 02/06/2023] Open
Abstract
While individually classed as rare diseases, hereditary retinal degenerations (IRDs) are the major cause of registered visual handicap in the developed world. Given their hereditary nature, some degree of intergenic heterogeneity was expected, with genes segregating in autosomal dominant, recessive, X-linked recessive, and more rarely in digenic or mitochondrial modes. Today, it is recognized that IRDs, as a group, represent one of the most genetically diverse of hereditary conditions - at least 260 genes having been implicated, with 70 genes identified in the most common IRD, retinitis pigmentosa (RP). However, targeted sequencing studies of exons from known IRD genes have resulted in the identification of candidate mutations in only approximately 60% of IRD cases. Given recent advances in the development of gene-based medicines, characterization of IRD patient cohorts for known IRD genes and elucidation of the molecular pathologies of disease in those remaining unresolved cases has become an endeavor of the highest priority. Here, we provide an outline of progress in this area.
Collapse
Affiliation(s)
- G Jane Farrar
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Matthew Carrigan
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Adrian Dockery
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Sophia Millington-Ward
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Arpad Palfi
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Naomi Chadderton
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Marian Humphries
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Anna Sophia Kiang
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Paul F Kenna
- Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
| | - Pete Humphries
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| |
Collapse
|
46
|
Dias MF, Joo K, Kemp JA, Fialho SL, da Silva Cunha A, Woo SJ, Kwon YJ. Molecular genetics and emerging therapies for retinitis pigmentosa: Basic research and clinical perspectives. Prog Retin Eye Res 2017; 63:107-131. [PMID: 29097191 DOI: 10.1016/j.preteyeres.2017.10.004] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023]
Abstract
Retinitis Pigmentosa (RP) is a hereditary retinopathy that affects about 2.5 million people worldwide. It is characterized with progressive loss of rods and cones and causes severe visual dysfunction and eventual blindness in bilateral eyes. In addition to more than 3000 genetic mutations from about 70 genes, a wide genetic overlap with other types of retinal dystrophies has been reported with RP. This diversity of genetic pathophysiology makes treatment extremely challenging. Although therapeutic attempts have been made using various pharmacologic agents (neurotrophic factors, antioxidants, and anti-apoptotic agents), most are not targeted to the fundamental cause of RP, and their clinical efficacy has not been clearly proven. Current therapies for RP in ongoing or completed clinical trials include gene therapy, cell therapy, and retinal prostheses. Gene therapy, a strategy to correct the genetic defects using viral or non-viral vectors, has the potential to achieve definitive treatment by replacing or silencing a causative gene. Among many clinical trials of gene therapy for hereditary retinal diseases, a phase 3 clinical trial of voretigene neparvovec (AAV2-hRPE65v2, Luxturna) recently showed significant efficacy for RPE65-mediated inherited retinal dystrophy including Leber congenital amaurosis and RP. It is about to be approved as the first ocular gene therapy biologic product. Despite current limitations such as limited target genes and indicated patients, modest efficacy, and the invasive administration method, development in gene editing technology and novel gene delivery carriers make gene therapy a promising therapeutic modality for RP and other hereditary retinal dystrophies in the future.
Collapse
Affiliation(s)
- Marina França Dias
- School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jessica A Kemp
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Silvia Ligório Fialho
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Belo Horizonte, Brazil
| | | | - Se Joon Woo
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Chemical Engineering and Materials Sciences, University of California, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, CA, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
47
|
Gargini C, Novelli E, Piano I, Biagioni M, Strettoi E. Pattern of retinal morphological and functional decay in a light-inducible, rhodopsin mutant mouse. Sci Rep 2017; 7:5730. [PMID: 28720880 PMCID: PMC5516022 DOI: 10.1038/s41598-017-06045-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/06/2017] [Indexed: 02/02/2023] Open
Abstract
Hallmarks of Retinitis Pigmentosa (RP), a family of genetic diseases, are a typical rod-cone-degeneration with initial night blindness and loss of peripheral vision, followed by decreased daylight sight and progressive visual acuity loss up to legal blindness. Great heterogeneity in nature and function of mutated genes, variety of mutations for each of them, variability in phenotypic appearance and transmission modality contribute to make RP a still incurable disease. Translational research relies on appropriate animal models mimicking the genetic and phenotypic diversity of the human pathology. Here, we provide a systematic, morphological and functional analysis of RhoTvrm4/Rho+ rhodopsin mutant mice, originally described in 2010 and portraying several features of common forms of autosomal dominant RP caused by gain-of-function mutations. These mice undergo photoreceptor degeneration only when exposed briefly to strong, white light and allow controlled timing of induction of rod and cone death, which therefore can be elicited in adult animals, as observed in human RP. The option to control severity and retinal extent of the phenotype by regulating intensity and duration of the inducing light opens possibilities to exploit this model for multiple experimental purposes. Altogether, the unique features of this mutant make it an excellent resource for retinal degeneration research.
Collapse
Affiliation(s)
| | | | - Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
48
|
Salvetti AP, Patrício MI, Barnard AR, Orlans HO, Hickey DG, MacLaren RE. Impact of Vital Dyes on Cell Viability and Transduction Efficiency of AAV Vectors Used in Retinal Gene Therapy Surgery: An In Vitro and In Vivo Analysis. Transl Vis Sci Technol 2017; 6:4. [PMID: 28706756 PMCID: PMC5505121 DOI: 10.1167/tvst.6.4.4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/29/2017] [Indexed: 12/20/2022] Open
Abstract
Purpose Treatment of inherited retinal degenerations using adeno-associated viral (AAV) vectors involves delivery by subretinal injection. In the latter stages, alteration of normal anatomy may cause difficulty in visualizing the retinotomy, retinal detachment extension, and vector diffusion. Vital dyes may be useful surgical adjuncts, but their safety and impact on AAV transduction are largely unknown. Methods The effects of Sodium Fluorescein (SF), Membrane Blue (MB), and Membrane Blue Dual (DB) at a range of dilutions were assessed on human embryonic kidney cells in vitro using an AAV2-green fluorescent protein (GFP) reporter at different multiplicities of infection. Flow cytometry analysis was performed to assess both cell viability and transduction efficiency. The effect on quantitative (q)PCR titer was determined. Balanced salt solution (BSS) or dilute DB (1:5 in BSS) were delivered subretinally into left/right eyes of C57BL/6J mice (n = 12). Retinal structure and function were analyzed by optical coherence tomography, autofluorescence, dark-and light-adapted full-field electroretinography. Results DB and MB were not toxic at any concentration tested, SF only when undiluted. The presence of dyes did not adversely affect the genomic titer. DB even increased the values, due to presence of surfactant in the formulation. AAV2-GFP transduction efficiency was not reduced by the dyes. No structural and functional toxic effects were observed following subretinal delivery of DB. Conclusions Only undiluted SF affected cell viability. No effects on qPCR titer and transduction efficiency were observed. DB does not appear toxic when delivered subretinally and improves titer accuracy. DB may therefore be a safe and helpful adjunct during gene therapy surgery. Translational Relevance This paper might be of interest to the retinal gene therapy community: it is a “bench to bedside” research paper about the potential use of dyes as a surgical adjunct during the gene therapy surgery. We have tested the potential toxicity and impact on transduction efficiency in an in vitro and in vivo model.
Collapse
Affiliation(s)
- Anna P Salvetti
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Maria I Patrício
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alun R Barnard
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Harry O Orlans
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Doron G Hickey
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
49
|
Biswal MR, Han P, Zhu P, Wang Z, Li H, Ildefonso CJ, Lewin AS. Timing of Antioxidant Gene Therapy: Implications for Treating Dry AMD. Invest Ophthalmol Vis Sci 2017; 58:1237-1245. [PMID: 28241311 PMCID: PMC5338629 DOI: 10.1167/iovs.16-21272] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose To investigate whether antioxidant gene therapy protects the structure and function of retina in a murine model of RPE atrophy, and to determine whether antioxidant gene therapy can prevent degeneration once it has begun. Methods We induced mitochondrial oxidative stress in RPE by conditional deletion of Sod2, the gene for manganese superoxide dismutase (MnSOD). These mice exhibited localized atrophy of the RPE and overlying photoreceptors. We restored Sod2 to the RPE of one eye using adeno-associated virus (AAV) by subretinal injection at an early (6 weeks) and a late stage (6 months), injecting the other eye with an AAV vector expressing green fluorescent protein (GFP). Retinal degeneration was monitored over a period of 9 months by electroretinography (ERG) and spectral-domain optical coherence tomography (SD-OCT). Immunohistochemical and histologic analyses were conducted to measure oxidative stress markers and to visualize retinal structure. Results One month after delivery, the AAV-Sod2 injection resulted in production of MnSod in the RPE and negligible expression in the neural retina. Electroretinography and OCT suggested no adverse effects due to increased expression of MnSOD or subretinal injection. Decrease in the ERG response and thinning retinal thickness was significantly delayed in eyes with early treatment with the Sod2 vector, but treatment at 6 months of age did not affect the ERG decline seen in these mice. Conclusions We conclude that antioxidant gene therapy may be effective in preventing the detrimental effects of oxidative stress, but may not be beneficial once substantial tissue damage has occurred.
Collapse
Affiliation(s)
- Manas R Biswal
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Pingyang Han
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Ping Zhu
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Zhaoyang Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, China
| | - Hong Li
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Cristhian J Ildefonso
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States
| |
Collapse
|
50
|
Taking Stock of Retinal Gene Therapy: Looking Back and Moving Forward. Mol Ther 2017; 25:1076-1094. [PMID: 28391961 DOI: 10.1016/j.ymthe.2017.03.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/04/2017] [Accepted: 03/04/2017] [Indexed: 11/23/2022] Open
Abstract
Over the past 20 years, there has been tremendous progress in retinal gene therapy. The safety and efficacy results in one early-onset severe blinding disease may lead to the first gene therapy drug approval in the United States. Here, we review how far the field has come over the past two decades and speculate on the directions that the field will take in the future.
Collapse
|