1
|
Jiang X, Bhatti T, Tariq A, Leo SM, Aychoua N, Webster AR, Hysi PG, Hammond CJ, Mahroo OA. Cone-driven strong flash electroretinograms in healthy adults: Prevalence of negative waveforms. Doc Ophthalmol 2024; 148:25-36. [PMID: 37924416 PMCID: PMC10879345 DOI: 10.1007/s10633-023-09957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 10/05/2023] [Indexed: 11/06/2023]
Abstract
PURPOSE Both rod and cone-driven signals contribute to the electroretinogram (ERG) elicited by a standard strong flash in the dark. Negative ERGs usually reflect inner retinal dysfunction. However, in diseases where rod photoreceptor function is selectively lost, a negative waveform might represent the response of the dark-adapted cone system. To investigate the dark-adapted cone-driven waveform in healthy individuals, we delivered flashes on a dim blue background, designed to saturate the rods, but minimally adapt the cones. METHODS ERGs were recorded, using conductive fibre electrodes, in adults from the TwinsUK cohort. Responses to 13 cd m-2 s white xenon flashes (similar to the standard DA 10 flash), delivered on a blue background, were analysed. Photopic and scotopic strengths of the background were 1.3 and 30 cd m-2, respectively; through a dilated pupil, this is expected to largely saturate the rods, but adapt the cones much less than the standard ISCEV background. RESULTS Mean (SD) participant age was 62.5 (11.3) years (93% female). ERGs from 203 right and 204 left eyes were included, with mean (SD) b/a ratios of 1.22 (0.28) and 1.18 (0.28), respectively (medians, 1.19 and 1.17). Proportions with negative waveforms were 23 and 26%, respectively. Right and left eye b/a ratios were strongly correlated (correlation coefficient 0.74, p < 0.0001). We found no significant correlation of b/a ratio with age. CONCLUSIONS Over 20% of eyes showed b/a ratios less than 1, consistent with the notion that dark-adapted cone-driven responses to standard bright flashes can have negative waveforms. The majority had ratios greater than 1. Thus, whilst selective loss of rod function can yield a negative waveform (with reduced a-wave) in some, our findings also suggest that loss of rod function can occur without necessarily yielding a negative ERG. One potential limitation is possible mild cone system adaptation by the background.
Collapse
Affiliation(s)
- Xiaofan Jiang
- Institute of Ophthalmology, University College London, Bath Street, London, UK
- Department of Ophthalmology, King's College London, St Thomas' Hospital Campus, Westminster Bridge Road, London, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital Campus, Westminster Bridge Road, London, UK
| | - Taha Bhatti
- Department of Ophthalmology, King's College London, St Thomas' Hospital Campus, Westminster Bridge Road, London, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital Campus, Westminster Bridge Road, London, UK
| | - Ambreen Tariq
- Department of Ophthalmology, King's College London, St Thomas' Hospital Campus, Westminster Bridge Road, London, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital Campus, Westminster Bridge Road, London, UK
| | - Shaun M Leo
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, 162 City Road, London, UK
| | - Nancy Aychoua
- Institute of Ophthalmology, University College London, Bath Street, London, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, 162 City Road, London, UK
| | - Andrew R Webster
- Institute of Ophthalmology, University College London, Bath Street, London, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, 162 City Road, London, UK
| | - Pirro G Hysi
- Department of Ophthalmology, King's College London, St Thomas' Hospital Campus, Westminster Bridge Road, London, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital Campus, Westminster Bridge Road, London, UK
| | - Christopher J Hammond
- Department of Ophthalmology, King's College London, St Thomas' Hospital Campus, Westminster Bridge Road, London, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital Campus, Westminster Bridge Road, London, UK
| | - Omar A Mahroo
- Institute of Ophthalmology, University College London, Bath Street, London, UK.
- Department of Ophthalmology, King's College London, St Thomas' Hospital Campus, Westminster Bridge Road, London, UK.
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital Campus, Westminster Bridge Road, London, UK.
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, 162 City Road, London, UK.
- Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Department of Translational Ophthalmology, Wills Eye Hospital, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Wang J, Wang Y, Guan W, Zhao YE. Full-field electroretinogram recorded with skin electrodes in 6- to 12-year-old children. Doc Ophthalmol 2023; 147:179-188. [PMID: 37530953 PMCID: PMC10638173 DOI: 10.1007/s10633-023-09944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 07/04/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE To determine the full-field electroretinogram (ffERG) parameters, including the light-adapted (LA) 3 ERG and the photopic negative response (PhNR), in 6- to 12-year-old children. METHODS ffERG data were obtained from 214 eyes of 214 healthy subjects. The amplitudes and peak time of the ffERG responses were obtained from children divided into 6- to 8-year-old and 9- to 12-year-old groups. Using a skin electrode, electrical signals were measured in response to white stimulating light and white background light (LA 3 ERG). A blue background light and red flashes were then used to elicit the PhNR. RESULTS The a-wave amplitude ranged from 0.40 to 9.20 μV, the b-wave ranged from 4.70 to 30.80 μV, and the PhNR ranged from 1.30 to 39.90 μV. The b-wave peak time (33.20 ms) of 6- to 8-year-old groups was slightly shorter than that of the 9- to 12-year-old groups (33.60 ms, P = 0.01), but no differences in amplitudes or in peak time of other components. There were significant correlations between the amplitudes (a-wave and b-wave: r = 0.43, p < 0.001; a-wave and PhNR: r = 0.25, p < 0.001; b-wave and PhNR: r = 0.45, p < 0.001). There was a moderate correlation between the a-wave and b-wave peak time (r = 0.31, P < 0.001). CONCLUSIONS We determined the largest dataset of the LA 3 ERG and PhNR parameters in a population of healthy children, aged 6-12 years, which may provide a useful reference value when evaluating children with potential retinal defects.
Collapse
Affiliation(s)
- Jiajun Wang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Disease, Wenzhou, Zhejiang, China
| | - Yalan Wang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Disease, Wenzhou, Zhejiang, China
| | - Weichen Guan
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Disease, Wenzhou, Zhejiang, China
| | - Yun-E Zhao
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- National Clinical Research Center for Ocular Disease, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Mahroo OA. Visual electrophysiology and "the potential of the potentials". Eye (Lond) 2023; 37:2399-2408. [PMID: 36928229 PMCID: PMC10397240 DOI: 10.1038/s41433-023-02491-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/09/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Visual electrophysiology affords direct, quantitative, objective assessment of visual pathway function at different levels, and thus yields information complementary to, and not necessarily obtainable from, imaging or psychophysical testing. The tests available, and their indications, have evolved, with many advances, both in technology and in our understanding of the neural basis of the waveforms, now facilitating more precise evaluation of physiology and pathophysiology. After summarising the visual pathway and current standard clinical testing methods, this review discusses, non-exhaustively, several developments, focusing particularly on human electroretinogram recordings. These include new devices (portable, non-mydiatric, multimodal), novel testing protocols (including those aiming to separate rod-driven and cone-driven responses, and to monitor retinal adaptation), and developments in methods of analysis, including use of modelling and machine learning. It is likely that several tests will become more accessible and useful in both clinical and research settings. In future, these methods will further aid our understanding of common and rare eye disease, will help in assessing novel therapies, and will potentially yield information relevant to neurological and neuro-psychiatric conditions.
Collapse
Affiliation(s)
- Omar A Mahroo
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, UK.
- Retinal and Genetics Services, Moorfields Eye Hospital, 162 City Road, London, UK.
- Section of Ophthalmology and Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital Campus, Westminster Bridge Road, London, UK.
- Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK.
- Department of Translational Ophthalmology, Wills Eye Hospital, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Xie F, Li Z, Yang N, Yang J, Hua D, Luo J, He T, Xing Y. Inhibition of Heat Shock Protein B8 Alleviates Retinal Dysfunction and Ganglion Cells Loss Via Autophagy Suppression in Mouse Axonal Damage. Invest Ophthalmol Vis Sci 2022; 63:28. [PMID: 35758906 PMCID: PMC9248752 DOI: 10.1167/iovs.63.6.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose Heat shock protein B8 (HspB8) can be upregulated rapidly in many pathologic processes, but its role in traumatic optic neuropathy remains unclear. In this study, we investigated the involvement of autophagy in the effects of HspB8 by using the optic nerve crush (ONC) model. Methods Male C57BL/6J mice were intravitreally injected with recombinant adeno-associated virus type 2 (AAV2-shHspB8 or AAV2-GFP) and subsequently received ONC by a self-closing tweezers. Western blot and immunohistochemistry staining were used to evaluate the expression of HspB8. We conducted retinal flat-mount immunofluorescence to measure the quantities of retinal ganglion cells (RGCs), and full-field flash electroretinogram (ff-ERG) and optomotor response (OMR) were used to evaluate retinal function. The autophagy level was reflected by western blot, immunohistochemistry staining, and transmission electron microscope (TEM) images. We also applied 3-methyladenine (3MA) and rapamycin (Rapa) to regulate autophagy level in optic nerve injury. Results ONC stimulated the expression of HspB8. Declines of RGCs and ff-ERG b-wave amplitudes resulting from ONC can be alleviated by HspB8 downregulation. Increased autophagy activity after ONC was observed; however, this change can be reversed by intravitreal injection of AAV2-shHspB8. Furthermore, application of autophagy inhibitor 3MA had the same neuroprotective effects as AAV2-shHspB8, as illustrated by ff-ERG and quantities of RGCs. Also, protection of AAV2-shHspB8 was compromised by the autophagy activator Rapa. Conclusions Inhibition of HspB8 in mice optic nerve injury had neuroprotective effects, which may be derived from its downregulation of autophagy.
Collapse
Affiliation(s)
- Feijia Xie
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, Shandong Province, People's Republic of China
| | - Zongyuan Li
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Ning Yang
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Jiayi Yang
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Dihao Hua
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Jinyuan Luo
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Tao He
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Yiqiao Xing
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
5
|
Jiang X, Xu Z, Soorma T, Tariq A, Bhatti T, Baneke AJ, Pontikos N, Leo SM, Webster AR, Williams KM, Hammond CJ, Hysi PG, Mahroo OA. Electrical responses from human retinal cone pathways associate with a common genetic polymorphism implicated in myopia. Proc Natl Acad Sci U S A 2022; 119:e2119675119. [PMID: 35594404 PMCID: PMC9173800 DOI: 10.1073/pnas.2119675119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/08/2022] [Indexed: 11/25/2022] Open
Abstract
Myopia is the commonest visual impairment. Several genetic loci confer risk, but mechanisms by which they do this are unknown. Retinal signals drive eye growth, and myopia usually results from an excessively long eye. The common variant most strongly associated with myopia is near the GJD2 gene, encoding connexin-36, which forms retinal gap junctions. Light-evoked responses of retinal neurons can be recorded noninvasively as the electroretinogram (ERG). We analyzed these responses from 186 adult twin volunteers who had been genotyped at this locus. Participants underwent detailed ERG recordings incorporating international standard stimuli as well as experimental protocols aiming to separate dark-adapted rod- and cone-driven responses. A mixed linear model was used to explore association between allelic dosage at the locus and international standard ERG parameters after adjustment for age, sex, and family structure. Significant associations were found for parameters of light-adapted, but not dark-adapted, responses. Further investigation of isolated rod- and cone-driven ERGs confirmed associations with cone-driven, but not rod-driven, a-wave amplitudes. Comparison with responses to similar experimental stimuli from a patient with a prior central retinal artery occlusion, and from two patients with selective loss of ON-bipolar cell signals, was consistent with the associated parameters being derived from signals from cone-driven OFF-bipolar cells. Analysis of single-cell transcriptome data revealed strongest GJD2 expression in cone photoreceptors; bipolar cell expression appeared strongest in OFF-bipolar cells and weakest in rod-driven ON-bipolar cells. Our findings support a potential role for altered signaling in cone-driven OFF pathways in myopia development.
Collapse
Affiliation(s)
- Xiaofan Jiang
- Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
- Department of Ophthalmology, King’s College London, London SE1 7EH, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, United Kingdom
| | - Zihe Xu
- Department of Ophthalmology, King’s College London, London SE1 7EH, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, United Kingdom
| | - Talha Soorma
- Department of Ophthalmology, King’s College London, London SE1 7EH, United Kingdom
| | - Ambreen Tariq
- Department of Ophthalmology, King’s College London, London SE1 7EH, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, United Kingdom
| | - Taha Bhatti
- Department of Ophthalmology, King’s College London, London SE1 7EH, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, United Kingdom
| | - Alexander J. Baneke
- Department of Ophthalmology, King’s College London, London SE1 7EH, United Kingdom
| | - Nikolas Pontikos
- Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Shaun M. Leo
- Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
- Medical Retina Service, Moorfields Eye Hospital, London EC1V 2PD, United Kingdom
- Inherited Eye Disease Service, Moorfields Eye Hospital, London EC1V 2PD, United Kingdom
| | - Andrew R. Webster
- Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
- Medical Retina Service, Moorfields Eye Hospital, London EC1V 2PD, United Kingdom
- Inherited Eye Disease Service, Moorfields Eye Hospital, London EC1V 2PD, United Kingdom
| | - Katie M. Williams
- Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
- Department of Ophthalmology, King’s College London, London SE1 7EH, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, United Kingdom
- Medical Retina Service, Moorfields Eye Hospital, London EC1V 2PD, United Kingdom
- Inherited Eye Disease Service, Moorfields Eye Hospital, London EC1V 2PD, United Kingdom
| | - Christopher J. Hammond
- Department of Ophthalmology, King’s College London, London SE1 7EH, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, United Kingdom
| | - Pirro G. Hysi
- Department of Ophthalmology, King’s College London, London SE1 7EH, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, United Kingdom
| | - Omar A. Mahroo
- Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
- Department of Ophthalmology, King’s College London, London SE1 7EH, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, United Kingdom
- Medical Retina Service, Moorfields Eye Hospital, London EC1V 2PD, United Kingdom
- Inherited Eye Disease Service, Moorfields Eye Hospital, London EC1V 2PD, United Kingdom
- Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| |
Collapse
|
6
|
Zhang T, Lu J, Sun L, Li S, Huang L, Wang Y, Li Z, Cao L, Ding X. Mydriasis-Free Flicker Electroretinograms in 204 Healthy Children Aged 0-18 Years: Reference Data From Two Cohorts. Transl Vis Sci Technol 2021; 10:7. [PMID: 34739038 PMCID: PMC8572514 DOI: 10.1167/tvst.10.13.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Purpose The purpose of this study was to summarize the flicker electroretinogram responses (ERGs) in healthy children using RETeval, a small handheld mydriasis-free full-field flicker ERG system. Methods Flicker ERGs were recorded with the use of the RETeval system in 204 healthy children (aged 18 years and below) from 2 countries, China and the United States. The effects on ERG measurements of the subject's demographics and location were analyzed. Results The implicit times have no correlation with the population (China cohort and US cohort), sex, and refractive error. In contrast, the amplitudes were dependent on demographics. The amplitude differences were small compared to the 95% reference interval; therefore, a single (age-corrected) reference interval can be used in both locations and both sexes. The implicit times and amplitudes mature over the first decade of life with exponential time constants of 2.5 years and 4.1 years, respectively, whereas most of the trend is within the first 6 years (implicit times) and 9 years (amplitudes). Conclusions The age dependence and percentiles obtained in this study could serve as reference data against which the ERG responses from pediatric patients can be compared. Translational Relevance The flicker ERG is one of the standard methods for the assessment and diagnosis of vision-related disorders. This study provides reference data in pediatric subjects, which can then be used to aid in the interpretation of flicker ERG results.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Ophthalmology, Retina Division, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinglin Lu
- State Key Laboratory of Ophthalmology, Retina Division, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Limei Sun
- State Key Laboratory of Ophthalmology, Retina Division, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Songshan Li
- State Key Laboratory of Ophthalmology, Retina Division, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Huang
- State Key Laboratory of Ophthalmology, Retina Division, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - You Wang
- State Key Laboratory of Ophthalmology, Retina Division, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zeyu Li
- State Key Laboratory of Ophthalmology, Retina Division, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liming Cao
- State Key Laboratory of Ophthalmology, Retina Division, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Retina Division, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Jiang X, Bhatti T, Tariq A, Williams KM, Chow I, Dar T, Webster AR, Hysi PG, Hammond CJ, Mahroo OA. Prevalence of electronegative electroretinograms in a healthy adult cohort. BMJ Open Ophthalmol 2021; 6:e000751. [PMID: 34368462 PMCID: PMC8291303 DOI: 10.1136/bmjophth-2021-000751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023] Open
Abstract
Objective An electronegative electroretinogram (ERG) can indicate important ocular or systemic disease. This study explored the prevalence of electronegative responses to dark-adapted stimuli in a largely healthy cohort. Methods and Analysis 211 participants recruited from the TwinsUK cohort underwent ERG testing incorporating international standard (International Society for Clinical Electrophysiology of Vision (ISCEV)) protocols and additional stimuli. Responses were recorded using conductive fibre electrodes, following pupil dilation and 20 min dark adaptation. Responses analysed were to the ISCEV standard and strong flashes (3.0 and 10 cd/m2 s), and to additional white flashes (0.67–67 cd/m2 s). A-wave and b-wave amplitudes were extracted; b:a ratios were calculated and proportions of eyes with ratios<1 were noted. Results Mean (SD) age was 62.4 (11.4) years (median, 64.3; range 23–86 years). 93% were female. Mean (SD) b:a ratios for right and left eyes, respectively, were 1.86 (0.33) and 1.81 (0.29) for the standard flash, and 1.62 (0.25) and 1.58 (0.23) for the stronger flash; average b:a ratio was lower for the stronger flash (p<0.0001). No waveforms were electronegative. For additional flashes, b:a ratio decreased with increasing flash strength. No electronegative waveforms were seen except in three eyes (0.7%) for the strongest flash; in some cases, drift in the waveform may have artefactually reduced the b:a ratio. Conclusion For standard dark-adapted stimuli, no participants had electronegative waveforms. The findings support the notion that electronegative waveforms (in response to standard flash strengths) are unusual, and should prompt further investigation.
Collapse
Affiliation(s)
- Xiaofan Jiang
- Institute of Ophthalmology, University College London, London, UK.,Section of Academic Ophthalmology, School of Life Course Sciences, FoLSM, Kings College London, London, UK.,Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.,NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and the UCL Institute of Ophthalmology, London, UK
| | - Taha Bhatti
- Section of Academic Ophthalmology, School of Life Course Sciences, FoLSM, Kings College London, London, UK.,Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Ambreen Tariq
- Section of Academic Ophthalmology, School of Life Course Sciences, FoLSM, Kings College London, London, UK.,Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Katie M Williams
- Section of Academic Ophthalmology, School of Life Course Sciences, FoLSM, Kings College London, London, UK.,Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.,NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and the UCL Institute of Ophthalmology, London, UK
| | - Isabelle Chow
- Section of Academic Ophthalmology, School of Life Course Sciences, FoLSM, Kings College London, London, UK.,Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Talib Dar
- Section of Academic Ophthalmology, School of Life Course Sciences, FoLSM, Kings College London, London, UK.,Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Andrew R Webster
- Institute of Ophthalmology, University College London, London, UK.,NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and the UCL Institute of Ophthalmology, London, UK
| | - Pirro G Hysi
- Section of Academic Ophthalmology, School of Life Course Sciences, FoLSM, Kings College London, London, UK.,Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Christopher J Hammond
- Section of Academic Ophthalmology, School of Life Course Sciences, FoLSM, Kings College London, London, UK.,Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Omar A Mahroo
- Institute of Ophthalmology, University College London, London, UK.,Section of Academic Ophthalmology, School of Life Course Sciences, FoLSM, Kings College London, London, UK.,Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.,NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and the UCL Institute of Ophthalmology, London, UK.,Physiology, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
De Silva SR, Arno G, Robson AG, Fakin A, Pontikos N, Mohamed MD, Bird AC, Moore AT, Michaelides M, Webster AR, Mahroo OA. The X-linked retinopathies: Physiological insights, pathogenic mechanisms, phenotypic features and novel therapies. Prog Retin Eye Res 2020; 82:100898. [PMID: 32860923 DOI: 10.1016/j.preteyeres.2020.100898] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/07/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
X-linked retinopathies represent a significant proportion of monogenic retinal disease. They include progressive and stationary conditions, with and without syndromic features. Many are X-linked recessive, but several exhibit a phenotype in female carriers, which can help establish diagnosis and yield insights into disease mechanisms. The presence of affected carriers can misleadingly suggest autosomal dominant inheritance. Some disorders (such as RPGR-associated retinopathy) show diverse phenotypes from variants in the same gene and also highlight limitations of current genetic sequencing methods. X-linked disease frequently arises from loss of function, implying potential for benefit from gene replacement strategies. We review X-inactivation and X-linked inheritance, and explore burden of disease attributable to X-linked genes in our clinically and genetically characterised retinal disease cohort, finding correlation between gene transcript length and numbers of families. We list relevant genes and discuss key clinical features, disease mechanisms, carrier phenotypes and novel experimental therapies. We consider in detail the following: RPGR (associated with retinitis pigmentosa, cone and cone-rod dystrophy), RP2 (retinitis pigmentosa), CHM (choroideremia), RS1 (X-linked retinoschisis), NYX (complete congenital stationary night blindness (CSNB)), CACNA1F (incomplete CSNB), OPN1LW/OPN1MW (blue cone monochromacy, Bornholm eye disease, cone dystrophy), GPR143 (ocular albinism), COL4A5 (Alport syndrome), and NDP (Norrie disease and X-linked familial exudative vitreoretinopathy (FEVR)). We use a recently published transcriptome analysis to explore expression by cell-type and discuss insights from electrophysiology. In the final section, we present an algorithm for genes to consider in diagnosing males with non-syndromic X-linked retinopathy, summarise current experimental therapeutic approaches, and consider questions for future research.
Collapse
Affiliation(s)
- Samantha R De Silva
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Gavin Arno
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Anthony G Robson
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Ana Fakin
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Ljubljana University Medical Centre, Ljubljana, Slovenia
| | - Nikolas Pontikos
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Moin D Mohamed
- Department of Ophthalmology, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Alan C Bird
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Anthony T Moore
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA, USA
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Andrew R Webster
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Omar A Mahroo
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Department of Ophthalmology, Guy's & St Thomas' NHS Foundation Trust, London, UK; Section of Ophthalmology, King's College London, UK; Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Lamin A, Jarrar Z, Williams KM, Garg A, Basheer K, Sivaprasad S, Hammond CJ, Mahroo OA. Segmented Macular Layer Volumes from Spectral Domain Optical Coherence Tomography in 184 Adult Twins: Associations With Age and Heritability. Invest Ophthalmol Vis Sci 2020; 61:44. [PMID: 32446249 PMCID: PMC7405717 DOI: 10.1167/iovs.61.5.44] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate segmented macular layer volumes from a healthy adult twin cohort (TwinsUK), exploring changes with age and heritability. Methods Macular spectral domain optical coherence tomography images were acquired from monozygotic (MZ) and dizygotic (DZ) twins in a cross-sectional study. The following layer volumes were derived for circles of 3 and 6 mm diameter around the foveal center, using automated segmentation software: retinal nerve fiber layer (RNFL), ganglion cell–inner plexiform layer (GCIPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), photoreceptors (PR), retinal pigment epithelium (RPE), and total retinal volume (TRV). Correlation coefficients (intereye; age; intrapair for MZ and DZ pairs) were quantified; heritability was estimated using structural equation modeling. Results Scans from 184 participants were included. Intereye correlation was highest for TRV and GCIPL. Negative correlations with age (for 3- or 6-mm areas, or both) were observed for TRV, RNFL, GCIPL, and INL. Positive correlations were observed for PR, RPE, and OPL. For all layers, intrapair correlation was greater for MZ than DZ pairs. Heritability estimates were highest (>80%) for TRV and GCIPL volume, and lowest for RPE volume. Conclusions Although TRV was negatively correlated with age, all layers did not show negative correlation. Some inner layers thinned with age, whereas some outer volumes increased (not the ONL). Reduced RPE phagocytic function with age and remodeling in the OPL could be contributing factors. Heritability estimates were highest for inner retinal layers (particularly GCIPL), and lowest for RPE volume.
Collapse
|
10
|
The photopic negative response of the Light-adapted 3.0 ERG in clinical settings. Doc Ophthalmol 2019; 140:115-128. [DOI: 10.1007/s10633-019-09723-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 09/16/2019] [Indexed: 11/27/2022]
|
11
|
Effect of varying skin surface electrode position on electroretinogram responses recorded using a handheld stimulating and recording system. Doc Ophthalmol 2018; 137:79-86. [PMID: 30046929 PMCID: PMC6153519 DOI: 10.1007/s10633-018-9652-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/17/2018] [Indexed: 11/23/2022]
Abstract
Purpose A handheld device (the RETeval system, LKC Technologies) aims to increase the ease of electroretinogram (ERG) recording by using specially designed skin electrodes, rather than corneal electrodes. We explored effects of electrode position on response parameters recorded using this device. Methods Healthy adult twins were recruited from the TwinsUK cohort and underwent recording of light-adapted flicker ERGs (corresponding to international standard stimuli). In Group 1, skin electrodes were placed in a “comfortable” position, which was up to 20 mm below the lid margin. For subsequent participants (Group 2), the electrode was positioned 2 mm from the lid margin as recommended by the manufacturer. Amplitudes and peak times (averaged from both eyes) were compared between groups after age-matching and inclusion of only one twin per pair. Light-adapted flicker and flash ERGs were recorded for an additional 10 healthy subjects in two consecutive recording sessions: in the test eye, electrode position was varied from 2 to 10–20 mm below the lid margin between sessions; in the fellow (control) eye, the electrode was 2 mm below the lid margin throughout. Amplitudes and peak times (test eye normalised to control eye) were compared for the two sessions. Results Including one twin per pair, and age-matching yielded 28 individuals per group. Flicker ERG amplitudes were significantly lower for Group 1 than Group 2 participants (p = 0.0024). However, mean peak times did not differ between groups (p = 0.54). For the subjects in whom electrode position was changed between recording sessions, flash and flicker amplitudes were significantly lower when positioned further from the lid margin (p < 0.005), but peak times were similar (p > 0.5). Conclusions Moving the skin electrodes further from the lid margin significantly reduces response amplitudes, highlighting the importance of consistent electrode positioning. However, this does not significantly affect peak times. Thus, it may be feasible to adopt a more comfortable position in participants who cannot tolerate the recommended position if analysis is restricted to peak time parameters.
Collapse
|