1
|
Wang J, Zhang C, Zhang L, Yao HJ, Liu X, Shi Y, Zhao J, Bo X, Chen H, Li L. Comparative study on genomic and epigenomic profiles of retinoblastoma or tuberous sclerosis complex via nanopore sequencing and a joint screening framework. Cancer Gene Ther 2024; 31:439-453. [PMID: 38146007 DOI: 10.1038/s41417-023-00714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/27/2023]
Abstract
Recurrence and extraocular metastasis in advanced intraocular retinoblastoma (RB) are still major obstacles for successful treatment of Chinese children. Tuberous sclerosis complex (TSC) is a very rare, multisystemic genetic disorder characterized by hamartomatous growth. In this study, we aimed to compare genomic and epigenomic profiles with human RB or TSC using recently developed nanopore sequencing, and to identify disease-associated variations or genes. Peripheral blood samples were collected from either RB or RB/TSC patients plus their normal siblings, followed by nanopore sequencing and identification of disease-specific structural variations (SVs) and differentially methylated regions (DMRs) by a systematic biology strategy named as multiomics-based joint screening framework. In total, 316 RB- and 1295 TSC-unique SVs were identified, as well as 1072 RB- and 1114 TSC-associated DMRs, respectively. We eventually identified 6 key genes for RB for further functional validation. Knockdown of CDK19 with specific siRNAs significantly inhibited Y79 cellular proliferation and increased sensitivity to carboplatin, whereas downregulation of AHNAK2 promoted the cell growth as well as drug resistance. Those two genes might serve as potential diagnostic markers or therapeutic targets of RB. The systematic biology strategy combined with functional validation might be an effective approach for rare pediatric malignances with limited samples and challenging collection process.
Collapse
Affiliation(s)
- Junting Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 Tiantan Xili, Beijing, 100050, China
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P.R. China
| | - Chengyue Zhang
- Department of Ophthalmology, Beijing Children's Hospital affiliated with Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Li Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 Tiantan Xili, Beijing, 100050, China
| | - Hong-Juan Yao
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 Tiantan Xili, Beijing, 100050, China
| | - Xiaohong Liu
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, No.5 BeiXianGe St., Beijing, 100053, China
| | - Yuchen Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Beijing, 100700, China
| | - Junyang Zhao
- Department of Ophthalmology, Beijing Children's Hospital affiliated with Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiaochen Bo
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P.R. China
| | - Hebing Chen
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P.R. China.
| | - Liang Li
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 Tiantan Xili, Beijing, 100050, China.
| |
Collapse
|
2
|
Kwong A, Zawistowski M, Fritsche LG, Zhan X, Bragg-Gresham J, Branham KE, Advani J, Othman M, Ratnapriya R, Teslovich TM, Stambolian D, Chew EY, Abecasis GR, Swaroop A. Whole genome sequencing of 4,787 individuals identifies gene-based rare variants in age-related macular degeneration. Hum Mol Genet 2024; 33:374-385. [PMID: 37934784 PMCID: PMC10840384 DOI: 10.1093/hmg/ddad189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
Genome-wide association studies have contributed extensively to the discovery of disease-associated common variants. However, the genetic contribution to complex traits is still largely difficult to interpret. We report a genome-wide association study of 2394 cases and 2393 controls for age-related macular degeneration (AMD) via whole-genome sequencing, with 46.9 million genetic variants. Our study reveals significant single-variant association signals at four loci and independent gene-based signals in CFH, C2, C3, and NRTN. Using data from the Exome Aggregation Consortium (ExAC) for a gene-based test, we demonstrate an enrichment of predicted rare loss-of-function variants in CFH, CFI, and an as-yet unreported gene in AMD, ORMDL2. Our method of using a large variant list without individual-level genotypes as an external reference provides a flexible and convenient approach to leverage the publicly available variant datasets to augment the search for rare variant associations, which can explain additional disease risk in AMD.
Collapse
Affiliation(s)
- Alan Kwong
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - Matthew Zawistowski
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - Lars G Fritsche
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - Xiaowei Zhan
- Southwestern Medical Center, University of Texas, 5323 Harry Hines Blvd, Dallas, TX 75390, United States
| | - Jennifer Bragg-Gresham
- Kidney Epidemiology and Cost Center, Department of Internal Medicine-Nephrology, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - Kari E Branham
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, 1000 Wall St, Ann Arbor, MI 48105, United States
| | - Jayshree Advani
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC 0610, Bethesda, MD 20892, United States
| | - Mohammad Othman
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, 1000 Wall St, Ann Arbor, MI 48105, United States
| | - Rinki Ratnapriya
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC 0610, Bethesda, MD 20892, United States
| | - Tanya M Teslovich
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Rd, Tarrytown, NY 10591, United States
| | - Dwight Stambolian
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania Medical School, 51 N. 39th Street, Philadelphia, PA 19104, United States
| | - Emily Y Chew
- Division of Epidemiology and Clinical Application, National Eye Institute, National Institutes of Health, 10 Center Drive Building 10-CRC, Bethesda, MD 20892, United States
| | - Gonçalo R Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, United States
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Rd, Tarrytown, NY 10591, United States
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC 0610, Bethesda, MD 20892, United States
| |
Collapse
|
3
|
Acar IE, Galesloot TE, Luhmann UFO, Fauser S, Gayán J, den Hollander AI, Nogoceke E. Whole Genome Sequencing Identifies Novel Common and Low-Frequency Variants Associated With Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2023; 64:24. [PMID: 37975850 PMCID: PMC10664724 DOI: 10.1167/iovs.64.14.24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 10/22/2023] [Indexed: 11/19/2023] Open
Abstract
Purpose To identify associations of common, low-frequency, and rare variants with advanced age-related macular degeneration (AMD) using whole genome sequencing (WGS). Methods WGS data were obtained for 2123 advanced AMD patients (participants of clinical trials for advanced AMD) and 2704 controls (participants of clinical trials for asthma [N = 2518] and Alzheimer's disease [N = 186]), and joint genotype calling was performed, followed by quality control of the dataset. Single variant association analyses were performed for all identified common, low-frequency, and rare variants. Gene-based tests were executed for rare and low-frequency variants using SKAT-O and three groups of variants based on putative impact information: (1) all variants, (2) modifier impact variants, and (3) high- and moderate-impact variants. To ascertain independence of the identified associations from previously reported AMD and asthma loci, conditional analyses were performed. Results Previously identified AMD variants at the CFH, ARMS2/HTRA1, APOE, and C3 loci were associated with AMD at a genome-wide significance level. We identified new single variant associations for common variants near the PARK7 gene and in the long non-coding RNA AC103876.1, and for a rare variant near the TENM3 gene. In addition, gene-based association analyses identified a burden of modifier variants in eight intergenic and gene-spanning regions and of high- and moderate-impact variants in the C3, CFHR5, SLC16A8, and CFI genes. Conclusions We describe the largest WGS study in AMD to date. We confirmed previously identified associations and identified several novel associations that are worth exploring in further follow-up studies.
Collapse
Affiliation(s)
- Ilhan E. Acar
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tessel E. Galesloot
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department for Health Evidence, Nijmegen, The Netherlands
| | - Ulrich F. O. Luhmann
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Sascha Fauser
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Javier Gayán
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Anneke I. den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Everson Nogoceke
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
4
|
Trivizki O, Wang L, Shi Y, Rabinovitch D, Iyer P, Gregori G, Feuer W, Rosenfeld PJ. Symmetry of Macular Fundus Features in Age-Related Macular Degeneration. Ophthalmol Retina 2023; 7:672-682. [PMID: 37003480 PMCID: PMC10614575 DOI: 10.1016/j.oret.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
PURPOSE The symmetry of major macular fundus features in both eyes of the same patient with age-related macular degeneration (AMD) was investigated using swept-source(SS)-OCT. DESIGN Retrospective review of a prospective study. PARTICIPANTS Patients with AMD. METHODS Grading was performed on the first SS-OCT images obtained on the patients. Two graders diagnosed the presence of drusen, geographic atrophy (GA), and exudative AMD (eAMD) in each eye. Medical records were reviewed to assess prior exudation. To assess symmetry, 1 eye of each patient was randomly selected as the index eye and compared with the fellow eye. The kappa statistic (κ) was used to assess the symmetry of diagnosis. The intraclass correlation coefficient (ICC) was used to assess the symmetry of drusen area and volume. MAIN OUTCOME MEASURES Interocular symmetry of the AMD stages: drusen, GA, and eAMD. RESULTS A total of 1310 patients with AMD were included. The average age was 78 years (range, 50-102; 60% women). Of the 1310 subjects, 54% (701) presented with symmetric disease: 20% with bilateral drusen, 11% with bilateral GA, and 22% with bilateral eAMD. Only 0.5% of the subjects had both GA and eAMD in both eyes. Of the randomly selected index eyes, 825 (47%) were right eyes. Overall, limited interocular agreement was observed between the index and fellow eyes (54%; κ = 0.29). Kappa coefficients were poor (< 0.4) for index eyes diagnosed with drusen (κ = 0.27), eAMD (κ = 0.17), and mixed disease (κ = 0.03). There was moderate agreement between the index and fellow eyes for GA (κ = 0.50). Of the 265 patients with bilateral drusen, the symmetry of drusen area measurements had moderate ICC values of 0.70, 0.71, and 0.70 in the 3- and 5-mm diameter foveal-centered circles and in the total scan area, respectively. The ICC values for the drusen volumes were 0.65, 0.66, and 0.64, respectively. CONCLUSIONS Interocular symmetry was poor for eyes with drusen, eAMD, and mixed disease, but moderate for GA. Although the diagnosis of drusen was not very symmetric between eyes, when present in both eyes, the drusen area and volume measurements were moderately symmetric. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Omer Trivizki
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida; Department of Ophthalmology, Tel Aviv Medical Center, University of Tel Aviv, Tel Aviv, Israel
| | - Liang Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Yingying Shi
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - David Rabinovitch
- Department of Ophthalmology, Tel Aviv Medical Center, University of Tel Aviv, Tel Aviv, Israel
| | - Prashanth Iyer
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Giovanni Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - William Feuer
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Philip J Rosenfeld
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
5
|
Rosenfeld PJ, Trivizki O, Gregori G, Wang RK. An Update on the Hemodynamic Model of Age-Related Macular Degeneration. Am J Ophthalmol 2022; 235:291-299. [PMID: 34509436 DOI: 10.1016/j.ajo.2021.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/22/2021] [Accepted: 08/30/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE To provide an update on the hemodynamic model of age-related macular degeneration (AMD). DESIGN Evidence-based perspective. METHODS Review of the literature and experience of the authors. RESULTS Choroidal hemodynamics are not the primary cause of AMD as proposed by Ephraim Friedman in 1997. However, evidence is accumulating to suggest that choroidal perfusion is an important environmental influence that contributes to our understanding of disease progression in this complex genetic disorder. Although early and intermediate AMD seem to be influenced to a large extent by the underlying genetics, the asymmetry of disease progression to the later stages of AMD cannot be explained by genetics alone. The progression of disease and the asymmetry of this progression seem to correlate with abnormalities in choroidal perfusion that can be documented by optical coherence tomography. These perfusion abnormalities in the setting of a thickened Bruch's membrane are thought to exacerbate the impaired nutritional exchange between the retinal pigment epithelium and the choriocapillaris. We propose that the genetic susceptibility to develop AMD combined with age-related changes in macular choroidal hemodynamics, such as increasing choriocapillaris perfusion deficits and decreasing choroidal vascular densities, play an important role in disease progression and may help to explain the asymmetry between eyes, particularly in the later stages of AMD. CONCLUSIONS This updated hemodynamic model of AMD focuses on disease progression and highlights the importance of age-related changes in the choroidal circulation as a major environmental influence on disease severity in eyes that are genetically susceptible to develop AMD.
Collapse
Affiliation(s)
- Philip J Rosenfeld
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine (P.J.P., O.T., G.G.), Miami, Florida, USA.
| | - Omer Trivizki
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine (P.J.P., O.T., G.G.), Miami, Florida, USA; Department of Ophthalmology, Tel Aviv Medical Center, Tel Aviv University (O.T.), Tel Aviv, Israel and the Department of Bioengineering (R.K.W.) and Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Giovanni Gregori
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine (P.J.P., O.T., G.G.), Miami, Florida, USA
| | - Ruikang K Wang
- Department of Ophthalmology (R.K.W.), University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Wu Z, Fletcher EL, Kumar H, Greferath U, Guymer RH. Reticular pseudodrusen: A critical phenotype in age-related macular degeneration. Prog Retin Eye Res 2021; 88:101017. [PMID: 34752916 DOI: 10.1016/j.preteyeres.2021.101017] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 12/18/2022]
Abstract
Reticular pseudodrusen (RPD), or subretinal drusenoid deposits (SDD), refer to distinct lesions that occur in the subretinal space. Over the past three decades, their presence in association with age-related macular degeneration (AMD) has become increasingly recognized, especially as RPD have become more easily distinguished with newer clinical imaging modalities. There is also an increasing appreciation that RPD appear to be a critical AMD phenotype, where understanding their pathogenesis will provide further insights into the processes driving vision loss in AMD. However, key barriers to understanding the current evidence related to the independent impact of RPD include the heterogeneity in defining their presence, and failure to account for the confounding impact of the concurrent presence and severity of AMD pathology. This review thus critically discusses the current evidence on the prevalence and clinical significance of RPD and proposes a clinical imaging definition of RPD that will help move the field forward in gathering further key knowledge about this critical phenotype. It also proposes a putative mechanism for RPD formation and how they may drive progression to vision loss in AMD, through examining current evidence and presenting novel findings from preclinical and clinical studies.
Collapse
Affiliation(s)
- Zhichao Wu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Himeesh Kumar
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Ursula Greferath
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
7
|
Ratnapriya R, Acar İE, Geerlings MJ, Branham K, Kwong A, Saksens NTM, Pauper M, Corominas J, Kwicklis M, Zipprer D, Starostik MR, Othman M, Yashar B, Abecasis GR, Chew EY, Ferrington DA, Hoyng CB, Swaroop A, den Hollander AI. Family-based exome sequencing identifies rare coding variants in age-related macular degeneration. Hum Mol Genet 2021; 29:2022-2034. [PMID: 32246154 PMCID: PMC7390936 DOI: 10.1093/hmg/ddaa057] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 12/24/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified 52 independent variants at 34 genetic loci that are associated with age-related macular degeneration (AMD), the most common cause of incurable vision loss in the elderly worldwide. However, causal genes at the majority of these loci remain unknown. In this study, we performed whole exome sequencing of 264 individuals from 63 multiplex families with AMD and analyzed the data for rare protein-altering variants in candidate target genes at AMD-associated loci. Rare coding variants were identified in the CFH, PUS7, RXFP2, PHF12 and TACC2 genes in three or more families. In addition, we detected rare coding variants in the C9, SPEF2 and BCAR1 genes, which were previously suggested as likely causative genes at respective AMD susceptibility loci. Identification of rare variants in the CFH and C9 genes in our study validated previous reports of rare variants in complement pathway genes in AMD. We then extended our exome-wide analysis and identified rare protein-altering variants in 13 genes outside the AMD-GWAS loci in three or more families. Two of these genes, SCN10A and KIR2DL4, are of interest because variants in these genes also showed association with AMD in case-control cohorts, albeit not at the level of genome-wide significance. Our study presents the first large-scale, exome-wide analysis of rare variants in AMD. Further independent replications and molecular investigation of candidate target genes, reported here, would assist in gaining novel insights into mechanisms underlying AMD pathogenesis.
Collapse
Affiliation(s)
- Rinki Ratnapriya
- Neurobiology, Neurodegeneration and Repair Laboratory (NNRL), National Eye Institute, Bethesda, MD 20892, USA.,Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - İlhan E Acar
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500, The Netherlands
| | - Maartje J Geerlings
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500, The Netherlands
| | - Kari Branham
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Alan Kwong
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicole T M Saksens
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500, The Netherlands
| | - Marc Pauper
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500, The Netherlands
| | - Jordi Corominas
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500, The Netherlands
| | - Madeline Kwicklis
- Neurobiology, Neurodegeneration and Repair Laboratory (NNRL), National Eye Institute, Bethesda, MD 20892, USA
| | - David Zipprer
- Neurobiology, Neurodegeneration and Repair Laboratory (NNRL), National Eye Institute, Bethesda, MD 20892, USA
| | - Margaret R Starostik
- Neurobiology, Neurodegeneration and Repair Laboratory (NNRL), National Eye Institute, Bethesda, MD 20892, USA
| | - Mohammad Othman
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Beverly Yashar
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Goncalo R Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily Y Chew
- Neurobiology, Neurodegeneration and Repair Laboratory (NNRL), National Eye Institute, Bethesda, MD 20892, USA
| | - Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500, The Netherlands
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory (NNRL), National Eye Institute, Bethesda, MD 20892, USA
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500, The Netherlands
| |
Collapse
|
8
|
Predictive genetics for AMD: Hype and hopes for genetics-based strategies for treatment and prevention. Exp Eye Res 2019; 191:107894. [PMID: 31862397 DOI: 10.1016/j.exer.2019.107894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/14/2019] [Accepted: 12/04/2019] [Indexed: 01/18/2023]
Abstract
Age-related macular degeneration (AMD) is a complex disease with multiple genetic and environmental risk factors. In the age of molecular genetics, many investigators have established a link between genes and development or progression of the disease. This later evolved to determine whether phenotypic features of AMD have distinct genetic profiles. Molecular genetics have subsequently been introduced as factors in risk assessment models, increasing the predictive value of these tools. Models seek to predict either development or progression of disease, and different AMD-related genes aid our understanding of these respective features. Several investigators have attempted to link molecular genetics with treatment response, but results and their clinical significance vary. Ocular and systemic biomarkers may interact with established genes, promising future routes of ongoing clinical assessment. Our understanding of AMD molecular genetics is not yet sufficient to recommend routine testing, despite its utility in the research setting. Clinicians must be wary of misusing population-based risk models from genetic and biomarker associations, as they are not necessarily relevant for individual counseling. This review addresses the known uses of predictive genetics, and suggests future directions.
Collapse
|
9
|
Rohrer B, Frazer-Abel A, Leonard A, Ratnapriya R, Ward T, Pietraszkiewicz A, O’Quinn E, Adams K, Swaroop A, Wolf BJ. Association of age-related macular degeneration with complement activation products, smoking, and single nucleotide polymorphisms in South Carolinians of European and African descent. Mol Vis 2019; 25:79-92. [PMID: 30820144 PMCID: PMC6377374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 02/06/2019] [Indexed: 11/16/2022] Open
Abstract
Purpose Smoking and the incidence of age-related macular degeneration (AMD) have been linked to an overactive complement system. Here, we examined in a retrospective cohort study whether AMD-associated single nucleotide polymorphisms (SNPs), smoking, ethnicity, and disease status are correlated with blood complement levels. Methods Population: The study involved 91 AMD patients and 133 controls, which included 73% Americans of European descent (EUR) and 27% Americans of African descent (AFR) in South Carolina. Readouts: Participants were genotyped for 10 SNPs and systemic levels of complement factor H (CFH) activity, and the complement activation products C3a, C5a, and Bb were assessed. Main Outcome Measures: Univariate and multivariable logistic regression models were used to examine associations between AMD status and distinct readouts. Results AMD affects EUR individuals more than AFRs. EUR but not AFR AMD subjects revealed higher levels of Factors C3a and Bb. In all subjects, a 10-unit increase in C3a levels was associated with an approximately 10% increase in the odds of being AMD-positive, and C3a and Bb were associated with smoking. While CFH activity levels were not correlated with AMD, a significant interaction was evident between patient age and CFH activity. Finally, EURs had lower odds of AMD with enhanced copies of rs1536304 (VEGFA) and higher odds with more copy numbers of rs3766404 (CFH). Conclusions Our results support previous studies of systemic complement components being potential biomarkers for AMD, but they suggest that smoking and disease do not synergistically affect complement levels. We also suggest a novel susceptibility and protective haplotypes in the South Carolinian AMD population. Our studies indicate that augmented complement activation associated with advanced AMD could be attributed to a decrease in CFH activity in younger patients.
Collapse
Affiliation(s)
- Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC
| | | | - Anthony Leonard
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC
| | - Rinki Ratnapriya
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Tyson Ward
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC
| | - Alexandra Pietraszkiewicz
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Elizabeth O’Quinn
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC
| | - Katherine Adams
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Bethany Jacobs Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| |
Collapse
|