1
|
An G, Zhang M, Gao W, Yang F, Li L, Xu Y, Jin X, Du L. Association of a COL1A1 gene haplotype with pathologic myopia in a Northern Chinese Han population. Exp Eye Res 2025; 250:110151. [PMID: 39542392 DOI: 10.1016/j.exer.2024.110151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/26/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
To investigate the relationship between COL1A1 variations and the susceptibility to pathologic myopia (PM) among the general population in Northern China, we included 525 PM patients and 1105 non-myopic controls. All PM patients underwent comprehensive ophthalmologic examinations. DNA was extracted from peripheral venous blood samples and genotyped using the MassArray System. Statistical analyses, including Hardy-Weinberg equilibrium, χ2 test, and linkage disequilibrium analysis, were conducted to compare the genotypic and allelic distributions of SNPs between PM patients and controls. The results showed no significant differences in the genotypic and allelic distributions of rs2075555, rs2269336, and rs1107946 between the PM and control groups. However, haplotype analysis revealed that the G-G-C and T-C-A haplotypes are risk factors for PM (G-G-C: OR = 1.399, 95% CI = 1.206-1.623, P < 0.001, Pc < 0.001; T-C-A: OR = 1.248, 95% CI = 1.064-1.456, P = 0.007, Pc = 0.021). Although individual SNPs in COL1A1 were not significantly associated with PM, specific haplotypes (G-G-C and T-C-A) were identified as risk factors. This suggests a potential role of COL1A1 in the development of PM.
Collapse
Affiliation(s)
- Guangqi An
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Min Zhang
- Department of Ophthalmology, Zhengzhou People's Hospital, Zhengzhou, Henan, China
| | - Wenna Gao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fan Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lin Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Youmei Xu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuemin Jin
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Liping Du
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Hao J, Yang Z, Zhang R, Ma Z, Liu J, Bi H, Guo D. Crosstalk between heredity and environment in myopia: An overview. Heliyon 2024; 10:e29715. [PMID: 38660258 PMCID: PMC11040123 DOI: 10.1016/j.heliyon.2024.e29715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 03/04/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024] Open
Abstract
In recent years, the prevalence of myopia has gradually increased, and it has become a significant global public health problem in the 21st century, posing a serious challenge to human eye health. Currently, it is confirmed that the development of myopia is attributed to the combined action of genes and environmental factors. Thus, elucidating the risk factors and pathogenesis of myopia is of great significance for the prevention and control of myopia. To elucidate the impact of gene-environment interaction on myopia, we used the Pubmed database to search for literature related to myopia. Search terms are as follows: myopia, genes, environmental factors, gene-environment interaction, and treatment. This paper reviews the effects of gene and environmental interaction on myopia.
Collapse
Affiliation(s)
- Jiawen Hao
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Zhaohui Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Ruixue Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Zhongyu Ma
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Jinpeng Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, 250002, China
- Shandong Academy of Eye Disease Prevention and Therapy, Jinan, 250002, China
- Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Jinan, 250002, China
- Shandong Engineering Technology Research Center of Visual Intelligence, Jinan, 250002, China
- Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, 250002, China
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Dadong Guo
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, 250002, China
- Shandong Academy of Eye Disease Prevention and Therapy, Jinan, 250002, China
- Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Jinan, 250002, China
- Shandong Engineering Technology Research Center of Visual Intelligence, Jinan, 250002, China
- Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, 250002, China
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| |
Collapse
|
3
|
Hirahara L, Kirino Y, Soejima Y, Iizuka Y, Yoshimi R, Fujieda Y, Atsumi T, Tono T, Kobayashi D, Meguro A, Takeuchi M, Sakamaki K, Takeno M, Mizuki N, Nakajima H. Association of high disease activity and serum IL-6 levels with the incidence of inflammatory major organ events in Behçet disease: a prospective registry study. Front Immunol 2024; 15:1354969. [PMID: 38686380 PMCID: PMC11057327 DOI: 10.3389/fimmu.2024.1354969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/22/2024] [Indexed: 05/02/2024] Open
Abstract
Background Little is known about the relationship between the disease activity of Behçet disease (BD) and the incidence of inflammatory major organ events. Objectives In this prospective registry study, we investigated the association between the Behçet Disease Current Activity Form (BDCAF) and incidence of inflammatory major organ events, defined as the inflammation of the ocular, central nervous, intestinal, and vascular systems in BD. Methods We enrolled participants from Japanese multicenter prospective cohorts. The BDCAF was evaluated annually. BD-related symptoms, including inflammatory major organ events, were monitored. The association between BDCAF and inflammatory major organ events was analyzed by time-to-event analysis. An unsupervised clustering of the participants' BDCAF, therapeutic agents, and multiple serum cytokines was also performed to examine their association with inflammatory major organ events. Results A total of 260 patients were included. The patients had a median BDCAF score of 2 [Interquartile range, 1-3] at the enrolment and remained disease active at 1- and 2-year follow-ups, indicating residual disease activity in BD. Patients with a BDCAF score of 0 had a longer inflammatory major organ event-free survival at 52 weeks than those with a score of 1 or higher (p=2.2 x 10-4). Clustering analysis revealed that patients who did not achieve remission despite treatment with tumor necrosis factor inhibitors had high serum inflammatory cytokine levels and incidences of inflammatory major organ events. Among the elevated cytokines, IL-6 was associated with inflammatory major organ events. Conclusion This study suggests that treatment strategies targeting overall disease activity and monitoring residual serum IL-6 may help prevent inflammatory major organ events in BD.
Collapse
Affiliation(s)
- Lisa Hirahara
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yohei Kirino
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yutaro Soejima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuki Iizuka
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryusuke Yoshimi
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuichiro Fujieda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshihiro Tono
- Department of General Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Daisuke Kobayashi
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masaki Takeuchi
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kentaro Sakamaki
- Faculty of Health Data Science, Juntendo University, Urayasu, Japan
| | - Mitsuhiro Takeno
- Department of Allergy and Rheumatology, Nippon Medical School Musashi Kosugi Hospital, Kawasaki, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hideaki Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
4
|
Kim JM, Choi YJ. Nutritional intake, environmental factors, and their impact on myopia prevalence in Korean children aged 5-12 years. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:14. [PMID: 38287408 PMCID: PMC10823653 DOI: 10.1186/s41043-024-00506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/13/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND Myopia is a complex condition influenced by numerous factors, including genetic predisposition, environmental factors, and lifestyle choices. Although evidence indicates that certain dietary factors may influence the development of myopia, this relationship is still not completely understood and is a topic of ongoing research. METHODS This study analyzed the relationship between dietary habits, environmental factors, and the prevalence of myopia in a sample of 24,345 children aged 5-12 years from the seventh Korea National Health and Nutrition Examination Survey (KNHANES VII). The average daily intake of dietary nutrients associated with the refractive error status of the participants was analyzed using analysis of variance (GLM) and the Scheffe method for post-hoc comparison. Multiple logistic regression analysis was conducted between the participant's refractive error status and daily dietary nutrient intake, while taking into consideration the age, sex, BMI, parental myopia, and near-work hours. RESULTS The risk of myopia increased with age, especially notable between ages 11 and 12, and was higher in children with both parents having myopia. Dietary factors played a crucial role; children with myopia had significantly lower intake of fat, omega-3 fatty acids, and retinol but higher intake of other nutrients compared to emmetropic and hyperopic counterparts. High consumption of carbohydrates, protein, phosphorus, iron, potassium, and sodium was associated with increased myopia risk. High sodium intake was particularly associated with a 2.05-fold increased myopia risk. CONCLUSIONS This study highlights the significant role of diet and lifestyle choices in the development of myopia in children. Our findings suggest the importance of considering these specific factors in the management and prevention strategies for myopia, underscoring the need for targeted interventions in children's health and vision care.
Collapse
Affiliation(s)
- Jeong-Mee Kim
- Department of Visual Optics, Far East University, Eumseong, South Korea
| | - Yean-Jung Choi
- Department of Food and Nutrition, Sahmyook University, 815, Hwarang-ro, Nowon-gu, Seoul, 01795, South Korea.
| |
Collapse
|
5
|
Sánchez-Cazorla E, González-Atienza C, López-Vázquez A, Arruti N, Nieves-Moreno M, Noval S, Mena R, Rodríguez-Jiménez C, Rodríguez-Solana P, González-Iglesias E, Guerrero-Carretero M, D’Anna Mardero O, Coca-Robinot J, Acal JC, Blasco J, Castañeda C, Fraile Maya J, Del Pozo Á, Gómez-Pozo MV, Montaño VEF, Dios-Blázquez LD, Rodríguez-Antolín C, Gómez-Cano MDLÁ, Delgado-Mora L, Vallespín E. Whole-Exome Sequencing of 21 Families: Candidate Genes for Early-Onset High Myopia. Int J Mol Sci 2023; 24:15676. [PMID: 37958660 PMCID: PMC10649067 DOI: 10.3390/ijms242115676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
High myopia is the most severe and pathological form of myopia. It occurs when the spherical refractive error exceeds -6.00 spherical diopters (SDs) or the axial length (AL) of the eye is greater than 26 mm. This article focuses on early-onset high myopia, an increasingly common condition that affects children under 10 years of age and can lead to other serious ocular pathologies. Through the genetic analysis of 21 families with early-onset high myopia, this study seeks to contribute to a better understanding of the role of genetics in this disease and to propose candidate genes. Whole-exome sequencing studies with a panel of genes known to be involved in the pathology were performed in families with inconclusive results: 3% of the variants found were classified as pathogenic, 6% were likely pathogenic and the remaining 91% were variants of uncertain significance. Most of the families in this study were found to have alterations in several of the proposed genes. This suggests a polygenic inheritance of the pathology due to the cumulative effect of the alterations. Further studies are needed to validate and confirm the role of these alterations in the development of early-onset high myopia and its polygenic inheritance.
Collapse
Affiliation(s)
- Eloísa Sánchez-Cazorla
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
| | - Carmen González-Atienza
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
| | - Ana López-Vázquez
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
| | - Natalia Arruti
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
- European Reference Network on Eye Diseases (ERN-EYE), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - María Nieves-Moreno
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
- European Reference Network on Eye Diseases (ERN-EYE), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Susana Noval
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
- European Reference Network on Eye Diseases (ERN-EYE), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Rocío Mena
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain;
| | - Carmen Rodríguez-Jiménez
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
| | - Patricia Rodríguez-Solana
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
| | - Eva González-Iglesias
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
| | - Marta Guerrero-Carretero
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
| | - Oriana D’Anna Mardero
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
| | - Javier Coca-Robinot
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
| | - Juan Carlos Acal
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
| | - Joana Blasco
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
| | - Carlos Castañeda
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
| | - Jesús Fraile Maya
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
| | - Ángela Del Pozo
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain;
- Clinical Bioinformatics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; (L.D.D.-B.); (C.R.-A.)
| | - María V. Gómez-Pozo
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain;
| | - Victoria E. F. Montaño
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain;
| | - Lucía De Dios-Blázquez
- Clinical Bioinformatics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; (L.D.D.-B.); (C.R.-A.)
| | - Carlos Rodríguez-Antolín
- Clinical Bioinformatics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; (L.D.D.-B.); (C.R.-A.)
| | - María de Los Ángeles Gómez-Cano
- Clinical Genetics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; (M.d.L.Á.G.-C.); (L.D.-M.)
| | - Luna Delgado-Mora
- Clinical Genetics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; (M.d.L.Á.G.-C.); (L.D.-M.)
| | - Elena Vallespín
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
- European Reference Network on Eye Diseases (ERN-EYE), Hospital Universitario La Paz, 28046 Madrid, Spain
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain;
| |
Collapse
|
6
|
Lu Q, Du Y, Zhang Y, Chen Y, Li H, He W, Tang Y, Zhao Z, Zhang Y, Wu J, Zhu X, Lu Y. A Genome-Wide Association Study for Susceptibility to Axial Length in Highly Myopic Eyes. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:255-267. [PMID: 37325711 PMCID: PMC10260730 DOI: 10.1007/s43657-022-00082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
High myopia has long been highly prevalent worldwide with a largely yet unexplained genetic contribution. To identify novel susceptibility genes for axial length (AL) in highly myopic eyes, a genome-wide association study (GWAS) was performed using the genomic dataset of 350 deep whole-genome sequencing data from highly myopic patients. Top single nucleotide polymorphisms (SNPs) were functionally annotated. Immunofluorescence staining, quantitative polymerase chain reaction, and western blot were performed using neural retina of form-deprived myopic mice. Enrichment analyses were further performed. We identified the four top SNPs and found that ADAM Metallopeptidase With Thrombospondin Type 1 Motif 16 (ADAMTS16) and Phosphatidylinositol Glycan Anchor Biosynthesis Class Z (PIGZ) had the potential of clinical significance. Animal experiments confirmed that PIGZ expression could be observed and showed higher expression level in form-deprived mice, especially in the ganglion cell layer. The messenger RNA (mRNA) levels of both ADAMTS16 and PIGZ were significantly higher in the neural retina of form-deprived eyes (p = 0.005 and 0.007 respectively), and both proteins showed significantly upregulated expression in the neural retina of deprived eyes (p = 0.004 and 0.042, respectively). Enrichment analysis revealed a significant role of cellular adhesion and signal transduction in AL, and also several AL-related pathways including circadian entrainment and inflammatory mediator regulation of transient receptor potential channels were proposed. In conclusion, the current study identified four novel SNPs associated with AL in highly myopic eyes and confirmed that the expression of ADAMTS16 and PIGZ was significantly upregulated in neural retina of deprived eyes. Enrichment analyses provided novel insight into the etiology of high myopia and opened avenues for future research interest. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00082-x.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Yu Du
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Ye Zhang
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Yuxi Chen
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Hao Li
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Wenwen He
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Yating Tang
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Zhennan Zhao
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Yinglei Zhang
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Jihong Wu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Xiangjia Zhu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032 China
| | - Yi Lu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| |
Collapse
|
7
|
Su J, Yuan J, Xu L, Xing S, Sun M, Yao Y, Ma Y, Chen F, Jiang L, Li K, Yu X, Xue Z, Zhang Y, Fan D, Zhang J, Liu H, Liu X, Zhang G, Wang H, Zhou M, Lyu F, An G, Yu X, Xue Y, Yang J, Qu J. Sequencing of 19,219 exomes identifies a low-frequency variant in FKBP5 promoter predisposing to high myopia in a Han Chinese population. Cell Rep 2023; 42:112510. [PMID: 37171956 DOI: 10.1016/j.celrep.2023.112510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/13/2022] [Accepted: 04/28/2023] [Indexed: 05/14/2023] Open
Abstract
High myopia (HM) is one of the leading causes of visual impairment and blindness worldwide. Here, we report a whole-exome sequencing (WES) study in 9,613 HM cases and 9,606 controls of Han Chinese ancestry to pinpoint HM-associated risk variants. Single-variant association analysis identified three newly identified -genetic loci associated with HM, including an East Asian ancestry-specific low-frequency variant (rs533280354) in FKBP5. Multi-ancestry meta-analysis with WES data of 2,696 HM cases and 7,186 controls of European ancestry from the UK Biobank discerned a newly identified European ancestry-specific rare variant in FOLH1. Functional experiments revealed a mechanism whereby a single G-to-A transition at rs533280354 disrupted the binding of transcription activator KLF15 to the promoter of FKBP5, resulting in decreased transcription of FKBP5. Furthermore, burden tests showed a significant excess of rare protein-truncating variants among HM cases involved in retinal blood vessel morphogenesis and neurotransmitter transport.
Collapse
Affiliation(s)
- Jianzhong Su
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China.
| | - Jian Yuan
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Liangde Xu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Shilai Xing
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Institute of PSI Genomics, Wenzhou 325024, China
| | - Mengru Sun
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yinghao Yao
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
| | - Yunlong Ma
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Fukun Chen
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Longda Jiang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Kai Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
| | - Xiangyi Yu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhengbo Xue
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yaru Zhang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Dandan Fan
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ji Zhang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hui Liu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xinting Liu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Guosi Zhang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hong Wang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Meng Zhou
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Fan Lyu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, Zhejiang, China
| | - Gang An
- Institute of PSI Genomics, Wenzhou 325024, China
| | - Xiaoguang Yu
- Institute of PSI Genomics, Wenzhou 325024, China
| | - Yuanchao Xue
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.
| | - Jia Qu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China.
| |
Collapse
|
8
|
Yi J, Dai Y, Ma S, Zheng Y, Liang Y, Huang X. Correlation between High Myopia Susceptibility and Polymorphisms of RASGRF1 Gene among College Students in Zhejiang. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2023; 2023:6767410. [PMID: 36864897 PMCID: PMC9974243 DOI: 10.1155/2023/6767410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/10/2022] [Accepted: 01/24/2023] [Indexed: 02/23/2023]
Abstract
Objective The aim of the study is to analyze the correlation between high myopia susceptibility and Ras protein-specific guanine nucleotide-releasing factor-1(RASGRF1) gene polymorphism among college students in Zhejiang. Methods A stratified whole-group sampling method was used to select 218 cases of college students in Zhejiang who met the inclusion and exclusion criteria from January, 2019, to December, 2021, and they were divided into 77 cases (154 eyes) in the high myopia group and 141 cases (282 eyes) in the medium-low myopia group according to the degree of myopia, and 109 cases of college volunteers without myopia from the same period of medical examination in the region were included in the control group. The single nucleotide polymorphisms (SNPs) located in functional regions were selected by searching the literature and genetic databases, and the base sequences of rs939658, rs4778879, and rs8033417 loci were obtained by genotyping candidate SNPs using multiplex ligase detection reaction technique. The cardinality test was used to compare the differences in genotype frequency distribution of each locus of the RASGRF1 gene between the high myopia group and the low to moderate myopia group and the control group. Results The genotype frequencies and allele frequencies of the RASGRF1 gene rs939658 locus in the high myopia group compared with the moderate-low myopia group and the control group were not statistically significant (P > 0.05). The genotype frequencies and allele frequencies of the rs4778879 locus of the RASGRF1 gene were compared among the three groups, and the differences were not statistically significant (P > 0.05). The genotype frequency and allele frequency of the rs8033417 locus of the RASGRF1 gene differed significantly among the three groups (P < 0.05). Conclusion The polymorphism of the rs8033417 locus of the RASGRF1 gene was significantly correlated with the susceptibility of high myopia among college students in Zhejiang.
Collapse
Affiliation(s)
- Jipan Yi
- Optometry Technology of Zhejiang Industry and Trade Vocational College, Wenzhou 325000, Zhejiang, China
| | - Yingying Dai
- Optometry Technology of Zhejiang Industry and Trade Vocational College, Wenzhou 325000, Zhejiang, China
| | - Shangsheng Ma
- Optometry Technology of Zhejiang Industry and Trade Vocational College, Wenzhou 325000, Zhejiang, China
| | - Yiyi Zheng
- Optometry Technology of Zhejiang Industry and Trade Vocational College, Wenzhou 325000, Zhejiang, China
| | - Yunjie Liang
- Optometry Technology of Zhejiang Industry and Trade Vocational College, Wenzhou 325000, Zhejiang, China
| | - Xiaojie Huang
- Optometry Technology of Zhejiang Industry and Trade Vocational College, Wenzhou 325000, Zhejiang, China
| |
Collapse
|
9
|
Shoham N, Dunca D, Cooper C, Hayes JF, McQuillin A, Bass N, Lewis G, Kuchenbaecker K. Investigating the association between schizophrenia and distance visual acuity: Mendelian randomisation study. BJPsych Open 2023; 9:e33. [PMID: 36746515 PMCID: PMC9970182 DOI: 10.1192/bjo.2023.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/28/2022] [Accepted: 01/07/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Increased rates of visual impairment are observed in people with schizophrenia. AIMS We assessed whether genetically predicted poor distance acuity is causally associated with schizophrenia, and whether genetically predicted schizophrenia is causally associated with poorer visual acuity. METHOD We used bidirectional, two-sample Mendelian randomisation to assess the effect of poor distance acuity on schizophrenia risk, poorer visual acuity on schizophrenia risk and schizophrenia on visual acuity, in European and East Asian ancestry samples ranging from approximately 14 000 to 500 000 participants. Genetic instrumental variables were obtained from the largest available summary statistics: for schizophrenia, from the Psychiatric Genomics Consortium; for visual acuity, from the UK Biobank; and for poor distance acuity, from a meta-analysis of case-control samples. We used the inverse variance-weighted method and sensitivity analyses to test validity of results. RESULTS We found little evidence that poor distance acuity was causally associated with schizophrenia (odds ratio 1.00, 95% CI 0.91-1.10). Genetically predicted schizophrenia was associated with poorer visual acuity (mean difference in logMAR score: 0.024, 95% CI 0.014-0.033) in European ancestry samples, with a similar but less precise effect that in smaller East Asian ancestry samples (mean difference: 0.186, 95% CI -0.008 to 0.379). CONCLUSIONS Genetic evidence supports schizophrenia being a causal risk factor for poorer visual acuity, but not the converse. This highlights the importance of visual care for people with psychosis and refutes previous hypotheses that visual impairment is a potential target for prevention of schizophrenia.
Collapse
Affiliation(s)
- Natalie Shoham
- Division of Psychiatry, University College London, UK; and Islington Early Intervention Service, Camden and Islington NHS Foundation Trust, St Pancras Hospital, London, UK
| | - Diana Dunca
- UCL Genetics Institute, University College London, UK
| | - Claudia Cooper
- Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, UK; and Tower Hamlets Memory Service, East London NHS Foundation Trust, London, UK
| | - Joseph F. Hayes
- Division of Psychiatry, University College London, UK; and Camden and Islington NHS Foundation Trust, St Pancras Hospital, London, UK
| | | | - Nick Bass
- Division of Psychiatry, University College London, UK; and Tower Hamlets Memory Service, East London NHS Foundation Trust, London, UK
| | - Gemma Lewis
- Division of Psychiatry, University College London, UK
| | - Karoline Kuchenbaecker
- Division of Psychiatry, University College London, UK; and UCL Genetics Institute, University College London, UK
| |
Collapse
|
10
|
Myopia Genetics and Heredity. CHILDREN 2022; 9:children9030382. [PMID: 35327754 PMCID: PMC8947159 DOI: 10.3390/children9030382] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/19/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022]
Abstract
Myopia is the most common eye condition leading to visual impairment and is greatly influenced by genetics. Over the last two decades, more than 400 associated gene loci have been mapped for myopia and refractive errors via family linkage analyses, candidate gene studies, genome-wide association studies (GWAS), and next-generation sequencing (NGS). Lifestyle factors, such as excessive near work and short outdoor time, are the primary external factors affecting myopia onset and progression. Notably, besides becoming a global health issue, myopia is more prevalent and severe among East Asians than among Caucasians, especially individuals of Chinese, Japanese, and Korean ancestry. Myopia, especially high myopia, can be serious in consequences. The etiology of high myopia is complex. Prediction for progression of myopia to high myopia can help with prevention and early interventions. Prediction models are thus warranted for risk stratification. There have been vigorous investigations on molecular genetics and lifestyle factors to establish polygenic risk estimations for myopia. However, genes causing myopia have to be identified in order to shed light on pathogenesis and pathway mechanisms. This report aims to examine current evidence regarding (1) the genetic architecture of myopia; (2) currently associated myopia loci identified from the OMIM database, genetic association studies, and NGS studies; (3) gene-environment interactions; and (4) the prediction of myopia via polygenic risk scores (PRSs). The report also discusses various perspectives on myopia genetics and heredity.
Collapse
|
11
|
Fuse N, Sakurai M, Motoike IN, Kojima K, Takai-Igarashi T, Nakaya N, Tsuchiya N, Nakamura T, Ishikuro M, Obara T, Miyazawa A, Homma K, Ido K, Taira M, Kobayashi T, Shimizu R, Uruno A, Kodama EN, Suzuki K, Hamanaka Y, Tomita H, Sugawara J, Suzuki Y, Nagami F, Ogishima S, Katsuoka F, Minegishi N, Hozawa A, Kuriyama S, Yaegashi N, Kure S, Kinoshita K, Yamamoto M. Genome-wide Association Study of Axial Length in Population-based Cohorts in Japan. OPHTHALMOLOGY SCIENCE 2022; 2:100113. [PMID: 36246171 PMCID: PMC9559092 DOI: 10.1016/j.xops.2022.100113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 11/20/2022]
Abstract
Purpose To elucidate the differences in ocular biometric parameters by generation and gender and to identify axial length (AL)-associated genetic variants in Japanese individuals, we analyzed Tohoku Medical Megabank Organization (ToMMo) Eye Study data. Design We designed the ToMMo Eye Study, examined AL variations, and conducted genome-wide association studies (GWASs). Participants In total, 33 483 participants aged > 18 years who were recruited into the community-based cohort (CommCohort) and the birth and three-generation cohort (BirThree Cohort) of the ToMMo Eye Study were examined. Methods Each participant was screened with an interview, ophthalmic examinations, and a microarray analysis. The GWASs were performed in 22 379 participants in the CommCohort (discovery stage) and 11 104 participants in the BirThree Cohort (replication stage). We evaluated the associations of single nucleotide polymorphisms (SNPs) with AL using a genome-wide significance threshold (5 × 10-8) in each stage of the study and in the subsequent meta-analysis. Main Outcome Measures We identified the association of SNPs with AL and distributions of AL in right and left eyes and individuals of different sexes and ages. Results In the discovery stage, the mean AL of the right eye (23.99 mm) was significantly greater than that of the left eye (23.95 mm). This difference was reproducible across sexes and ages. The GWASs revealed 703 and 215 AL-associated SNPs with genome-wide significance in the discovery and validation stages, respectively, and many of the SNPs in the discovery stage were replicated in the validation stage. Validated SNPs and their associated loci were meta-analyzed for statistical significance (P < 5 × 10-8). This study identified 1478 SNPs spread over 31 loci. Of the 31 loci, 5 are known AL loci, 15 are known refractive-error loci, 4 are known corneal-curvature loci, and 7 loci are newly identified loci that are not known to be associated with AL. Of note, some of them shared functional relationships with previously identified loci. Conclusions Our large-scale GWASs exploiting ToMMo Eye Study data identified 31 loci linked to variations in AL, 7 of which are newly reported in this article. The results revealed genetic heterogeneity and similarity in SNPs related to ethnic variations in AL.
Collapse
|
12
|
Li X, Long J, Liu Y, Cai Q, Zhao Y, Jin L, Liu M, Li C. Association of MTOR and PDGFRA gene polymorphisms with different degrees of myopia severity. Exp Eye Res 2022; 217:108962. [DOI: 10.1016/j.exer.2022.108962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/17/2021] [Accepted: 01/23/2022] [Indexed: 11/04/2022]
|
13
|
Wang P, Chen S, Liu Y, Lin F, Song Y, Li T, Aung T, Zhang X. Lowering Intraocular Pressure: A Potential Approach for Controlling High Myopia Progression. Invest Ophthalmol Vis Sci 2021; 62:17. [PMID: 34787640 PMCID: PMC8606873 DOI: 10.1167/iovs.62.14.17] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
High myopia is among the most common causes of vision impairment, and it is mainly characterized by abnormal elongation of the axial length, leading to pathologic changes in the ocular structures. Owing to the close relationship between high myopia and glaucoma, the association between intraocular pressure (IOP) and high myopia progression has garnered attention. However, whether lowering IOP can retard the progression of high myopia is unclear. On reviewing previous studies, we suggest that lowering IOP plays a role in progressive axial length elongation in high myopia, particularly in pathologic myopia, wherein the sclera is more remodeled. Based on the responses of the ocular layers, we further proposed the potential mechanisms. For the sclera, lowering the IOP could inhibit the activation of scleral fibroblasts and then reduce scleral remodeling, and a decrease in the scleral distending force would retard the ocular expansion like a balloon. For the choroid, lowering IOP results in an increase in choroidal blood perfusion, thereby reducing scleral hypoxia and slowing down scleral remodeling. The final effect of these pathways is slowing axial elongation and the development of scleral staphyloma. Further animal and clinical studies regarding high myopia with varied degree of IOP and the changes of choroid and sclera during IOP fluctuation in high myopia are needed to verify the role of IOP in the pathogenesis and progression of high myopia. It is hoped that this may lead to the development of a prospective treatment option to prevent and control high myopia progression.
Collapse
Affiliation(s)
- Peiyuan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shida Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yaoming Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Fengbin Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yunhe Song
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Tuozhang Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tin Aung
- Singapore National Eye Center, National University of Singapore, Singapore
| | - Xiulan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | | |
Collapse
|
14
|
Han X, Liu T, Ding X, Liu J, Lin X, Wang D, Riaz M, Baird PN, Xie Z, Cheng Y, Li Y, Mori Y, Miyake M, Li H, Cheng CY, Zeng C, Ohno-Matsui K, Zhou X, Liu F, He M. Identification of novel loci influencing refractive error in East Asian populations using an extreme phenotype design. J Genet Genomics 2021; 49:54-62. [PMID: 34520856 DOI: 10.1016/j.jgg.2021.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/27/2022]
Abstract
The global "myopia boom" has raised significant international concerns. Despite a higher myopia prevalence in Asia, previous large-scale genome-wide association studies (GWASs) were mostly based on European descendants. Here, we report a GWAS of spherical equivalent (SE) in 1852 Chinese Han individuals with extreme SE from Guangzhou (631 < -6D and 574 > 0D) and Wenzhou (593 < -6D and 54 > -1.75 D), followed by a replication study in two independent cohorts with totaling 3538 East Asian individuals. The discovery GWAS and meta-analysis identify three novel loci which show genome-wide significant associations with SE, including 1q25.2 FAM163A, 10p11.22 NRP1/PRAD3, and 10p11.21 ANKRD30A/MTRNR2L7, together explaining 3.34% of SE variance. 10p11.21 was successfully replicated. The allele frequencies of all three loci show significant differences between major continental groups (P < 0.001). The SE reducing (more myopic) allele of rs10913877 (1q25.2 FAM163A) demonstrates the highest frequency in East Asians and much lower frequencies in Europeans and Africans (EAS = 0.60, EUR = 0.20, AFR = 0.18). The gene-based analysis additionally identifies three novel genes associated with SE, including EI24, LHX5 and ARPP19. These results provide new insights into myopia pathogenesis, and indicate the role of genetic heterogeneity in myopia epidemiology among different ethnicities.
Collapse
Affiliation(s)
- Xiaotong Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510000, China
| | - Tianzi Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China
| | - Xiaohu Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510000, China
| | - Jialin Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xingyan Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510000, China
| | - Decai Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510000, China
| | - Moeen Riaz
- School of Public Health and Preventive Medicine, Monash University 3800, Australia
| | - Paul N Baird
- Department of Surgery, Ophthalmology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510000, China
| | - Yuan Cheng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yuki Mori
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Masahiro Miyake
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hengtong Li
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore; Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Changqing Zeng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang 325035, China
| | - Fan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510000, China.
| |
Collapse
|
15
|
Zhi Z, Xiang J, Fu Q, Pei X, Zhou D, Cao Y, Xie L, Zhang S, Chen S, Qu J, Zhou X. The Role of Retinal Connexins Cx36 and Horizontal Cell Coupling in Emmetropization in Guinea Pigs. Invest Ophthalmol Vis Sci 2021; 62:27. [PMID: 34283211 PMCID: PMC8300059 DOI: 10.1167/iovs.62.9.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 06/24/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to determine whether retinal gap junctions (GJs) via connexin 36 (Cx36, mediating coupling of many retinal cell types) and horizontal cell (HC-HC) coupling, are involved in emmetropization. Methods Guinea pigs (3 weeks old) were monocularly form deprived (FD) or raised without FD (in normal visual [NV] environment) for 2 days or 4 weeks; alternatively, they wore a -4 D lens (hyperopic defocus [HD]) or 0 D lens for 2 days or 1 week. FD and NV eyes received daily subconjunctival injections of a nonspecific GJ-uncoupling agent, 18-β-Glycyrrhetinic Acid (18-β-GA). The amounts of total Cx36 and of phosphorylated Cx36 (P-Cx36; activated state that increases cell-cell coupling), in the inner and outer plexiform layers (IPLs and OPLs), were evaluated by quantitative immunofluorescence (IF), and HC-HC coupling was evaluated by cut-loading with neurobiotin. Results FD per se (excluding effect of light-attenuation) increased HC-HC coupling in OPL, whereas HD did not affect it. HD for 2 days or 1 week had no significant effect on retinal content of Cx36 or P-Cx36. FD for 4 weeks decreased the total amounts of Cx36 and P-Cx36, and the P-Cx36/Cx36 ratio, in the IPL. Subconjunctival 18-β-GA induced myopia in NV eyes and increased the myopic shifts in FD eyes, while reducing the amounts of Cx36 and P-Cx36 in both the IPL and OPL. Conclusions These results suggest that cell-cell coupling via GJs containing Cx36 (particularly those in the IPL) plays a role in emmetropization and form deprivation myopia (FDM) in mammals. Although both FD and 18-β-GA induced myopia, they had opposite effects on HC-HC coupling. These findings suggest that HC-HC coupling in the OPL might not play a significant role in emmetropization and myopia development.
Collapse
Affiliation(s)
- Zhina Zhi
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Jing Xiang
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Qian Fu
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Xiaomeng Pei
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Dengke Zhou
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Yuqing Cao
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Liqin Xie
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Sen Zhang
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Si Chen
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| |
Collapse
|
16
|
Xiao H, Lin S, Jiang D, Lin Y, Liu L, Zhang Q, He J, Chen Y. Association of Extracellular Signal-Regulated Kinase Genes With Myopia: A Longitudinal Study of Chinese Children. Front Genet 2021; 12:654869. [PMID: 34122509 PMCID: PMC8191505 DOI: 10.3389/fgene.2021.654869] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Objective The present study was designed to investigate whether the extracellular signal-regulated kinase (ERK) signaling pathway, a downstream component of dopamine signaling, is involved in myopia among Chinese children. Methods During a 3.5-year follow-up, 488 primary school students were enrolled in this study. Non-cycloplegic spherical equivalent refraction (SE) and other ocular parameters were assessed. Four variants of four genes in the ERK signaling pathway were selected: RASGRF1 rs6495367, PTPN5 rs1550870, PTPRR rs11178469, and PDGFRA rs6554163. SNPscan was used to genotype single-nucleotide polymorphisms (SNPs). PLINK software was used to assess the associations of the genetic variants with the occurrence or development of myopia, SE, and other ocular parameters. We created a protein-protein interaction (PPI) network and microRNA (miRNA)-gene network using String and Cytoscape and conducted enrichment analyses on the genes in these networks. Results In total, 426 children (baseline age: 7.28 ± 0.26 years; 236 (55.4%) boys and 190 girls) wereenrolled. After adjusting for confounding factors with 10,000 permutations, children with the CT or TT genotype of PTPN5 rs1550870 were more susceptible to myopia than those with the CC genotype (adjusted p = 0.011). Additionally, PTPN5 rs1550870 was correlated with significant myopic shift and increasing axial length (AL) and lens thickness (LT) but had a negative effect on central corneal thickness (CCT). RASGRF1 rs6495367 was negatively associated with myopic shift (additive: adjusted p = 0.034; dominant: adjusted p = 0.020), myopic SE and AL. PDGFRA rs6554163 TA or AA was negatively associated with increasing LT (adjusted p = 0.033). Evaluation of the effects of SNP-SNP combinations on incident myopia revealed a statistically significant one-locus model: PTPN5 rs1550870 [cross-validation consistency (CVC) = 10/10, adjusted p = 0.0107]. The genes in the PPI and miRNA-gene interaction networks were subjected to enrichment analyses, which suggested that these genes are involved mainly in eye development and dopaminergic synapse-related processes. Conclusion We identified genetic variants of crucial ERK signaling pathway genes that were significantly correlated with myopia and ocular parameter alterations in Chinese children. A combination of gene and miRNA functional analyses with enrichment analyses highlights the regulatory effects associated with ocular development and dopamine biological functions. This study offers novel clues to understand the role of dopamine in the molecular mechanisms of myopia.
Collapse
Affiliation(s)
- Haishao Xiao
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Shudan Lin
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Dandan Jiang
- The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yaoyao Lin
- The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Linjie Liu
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Qiqi Zhang
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Juan He
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Yanyan Chen
- The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
17
|
Zhou Z, Li S, Yang Q, Yang X, Hao K, Liu Y, Xu S. Genetic Association Study Revealed Three Loci Were Associated Risk of Myopia Among Minors. Pharmgenomics Pers Med 2021; 14:547-551. [PMID: 34007202 PMCID: PMC8124010 DOI: 10.2147/pgpm.s296444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/08/2021] [Indexed: 11/30/2022] Open
Abstract
Background Myopia has raised a predominant public concern among minors. A recent genome-wide association study (GWAS) identified six novel loci in Asian adults. Whether these genetic loci works for myopia in minors remains unknown and worthy of exploration. Methods In order to validate the findings, here we performed a case-control study (600 myopia minors, 110 high myopia (HM) minors, and 800 non-myopia minors as controls) utilizing the TaqMan single nucleotide polymorphism (SNP) genotyping assays. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) was adopted. Results The median ages in controls, myopia, and HM were 15.1, 15.0, and 15.1, respectively, while the means ± standard deviations for them were 0.32±0.41, - 3.2 ±1.6, and −9.8±2.2, respectively. We found rs2246661 (allelic OR: 1.29; 95% CI: 1.09–1.52; P =0.003), rs74633073 (allelic OR: 1.41; 95% CI: 1.12–1.78; P =0.004), and rs76903431 (allelic OR: 1.42; 95% CI: 1.11–1.81; P =0.005) were significantly associated with increased risk of myopia. Rs2246661 was also significantly associated with increased risk of HM in minors (OR: 1.37; 95% CI: 1.02–1.84; P =0.035). Conclusion We identified three loci contributed to myopia in minors and these findings gave new insight into the genetic susceptibility mechanisms of myopia at the molecular level.
Collapse
Affiliation(s)
- Zixiu Zhou
- Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, 211102, People's Republic of China
| | - Sizhen Li
- Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, 211102, People's Republic of China
| | - Qingsong Yang
- Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, 211102, People's Republic of China
| | - Xiaodong Yang
- Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, 211102, People's Republic of China
| | - Kuanxiao Hao
- Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, 211102, People's Republic of China
| | - Yating Liu
- Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, 211102, People's Republic of China
| | - Shanshan Xu
- Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, 211102, People's Republic of China
| |
Collapse
|
18
|
Wolffsohn JS, Jong M, Smith EL, Resnikoff SR, Jonas JB, Logan NS, Morgan I, Sankaridurg P, Ohno-Matsui K. IMI 2021 Reports and Digest - Reflections on the Implications for Clinical Practice. Invest Ophthalmol Vis Sci 2021; 62:1. [PMID: 33909037 PMCID: PMC8083124 DOI: 10.1167/iovs.62.5.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The International Myopia Institute's (IMI) mission is to advance research, education, and management of myopia to decrease future vision impairment and blindness associated with increasing myopia. Its approach is to bring together scientists, clinicians, policymakers, government members, and educators into the field of myopia to stimulate collaboration and sharing of knowledge. The latest reports are on pathologic myopia, the impact of myopia, risk factors for myopia, accommodation and binocular vision in myopia development and progression, and the prevention of myopia and its progression. Together with the digest updating the 2019 International Myopia Institute white papers using the research published in the last 18 months, these evidence-based consensus white papers help to clarify the imperative for myopia control and the role of environmental modification initiatives, informing an evidence-based clinical approach. This guidance includes who to treat and when to start or stop treatment, and the advantages and limitations of different management approaches.
Collapse
Affiliation(s)
| | - Monica Jong
- Brien Holden Vision Institute, Sydney, Australia.,School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.,Discipline of Optometry and Vision Science, University of Canberra, Canberra, Australia
| | - Earl L Smith
- Brien Holden Vision Institute, Sydney, Australia.,College of Optometry, University of Houston, Houston, Texas, United States
| | - Serge R Resnikoff
- Brien Holden Vision Institute, Sydney, Australia.,School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nicola S Logan
- School of Optometry, Aston University, Birmingham, United Kingdom
| | - Ian Morgan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yatsen University, Guangzhou, China.,Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Padmaja Sankaridurg
- Brien Holden Vision Institute, Sydney, Australia.,School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
19
|
Chen LJ, Li FF, Lu SY, Zhang XJ, Kam KW, Tang SM, Tam PO, Yip WW, Young AL, Tham CC, Pang CP, Yam JC. Association of polymorphisms in ZFHX1B, KCNQ5 and GJD2 with myopia progression and polygenic risk prediction in children. Br J Ophthalmol 2021; 105:1751-1757. [PMID: 33811038 DOI: 10.1136/bjophthalmol-2020-318708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/03/2022]
Abstract
AIMS To assess the association of single-nucleotide polymorphisms (SNPs) with myopia progression for polygenic risk prediction in children. METHODS Six SNPs (ZC3H11B rs4373767, ZFHX1B rs13382811, KCNQ5 rs7744813, MET rs2073560, SNTB1 rs7839488 and GJD2 rs524952) were analysed in 1043 school children, who completed 3-year follow-up, using TaqMan genotyping assays. SNP associations with progression in spherical equivalent (SE) were analysed by logistic regression. Polygenic risk scores (PRS) were applied for computing the sum of the risk alleles of multiple SNPs corresponding to myopia progression, weighted by the effect sizes of corresponding SNPs. RESULTS GJD2 rs524952 showed significant association with fast progression (OR=1.32, 95% CI 1.10 to 1.59; p=0.003) and KCNQ5 rs7744813 had nominal association (OR=1.32, 95% CI 1.04 to 1.67; p=0.02). In quantitative traits locus analysis, GJD2 rs524952 and KCNQ5 rs7744813 were associated with progression in SE (β=-0.038 D/year, p=0.008 and β=-0.042 D/year, p=0.02) and axial elongation (β=0.016 mm/year, p=0.01 and β=0.017 mm/year, p=0.027). ZFHX1B rs13382811 also showed nominal association with faster progression in SE (β=-0.041 D/year, p=0.02). PRS analysis showed that children with the highest PRS defined by rs13382811, rs7744813 and rs524952 had a 2.26-fold of increased risk of fast myopia progression (p=4.61×10-5). PRS was also significantly associated with SE progression (R2=1.6%, p=3.15×10-5) and axial elongation (R2=1.2%, p=2.6×10-4). CONCLUSIONS In this study, multi-tiered evidence suggested SNPs in ZFHX1B, KCNQ5 and GJD2 as risk factors for myopia progression in children. Additional attention and appropriate interventions should be given for myopic children with high-risk PRS as defined by GJD2 rs524952, KCNQ5 rs7744813 and ZFHX1B rs13382811.
Collapse
Affiliation(s)
- Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China .,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Fen Fen Li
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shi Yao Lu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiu Juan Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Wai Kam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Shu Min Tang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology, First Affiliated Hospital of Fujian Medical University, Xiamen, China
| | - Pancy Os Tam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wilson Wk Yip
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Alvin L Young
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong Eye Hospital, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China .,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong Eye Hospital, Hong Kong, China
| |
Collapse
|
20
|
Brennan NA, Toubouti YM, Cheng X, Bullimore MA. Efficacy in myopia control. Prog Retin Eye Res 2020; 83:100923. [PMID: 33253901 DOI: 10.1016/j.preteyeres.2020.100923] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Abstract
There is rapidly expanding interest in interventions to slow myopia progression in children and teenagers, with the intent of reducing risk of myopia-associated complications later in life. Despite many publications dedicated to the topic, little attention has been devoted to understanding 'efficacy' in myopia control and its application. Treatment effect has been expressed in multiple ways, making comparison between therapies and prognosis for an individual patient difficult. Available efficacy data are generally limited to two to three years making long-term treatment effect uncertain. From an evidence-based perspective, efficacy projection should be conservative and not extend beyond that which has been empirically established. Using this principle, review of the literature, data from our own clinical studies, assessment of demonstrated myopia control treatments and allowance for the limitations and context of available data, we arrive at the following important interpretations: (i) axial elongation is the preferred endpoint for assessing myopic progression; (ii) there is insufficient evidence to suggest that faster progressors, or younger myopes, derive greater benefit from treatment; (iii) the initial rate of reduction of axial elongation by myopia control treatments is not sustained; (iv) consequently, using percentage reduction in progression as an index to describe treatment effect can be very misleading and (v) cumulative absolute reduction in axial elongation (CARE) emerges as a preferred efficacy metric; (vi) maximum CARE that has been measured for existing myopia control treatments is 0.44 mm (which equates to about 1 D); (vii) there is no apparent superior method of treatment, although commonly prescribed therapies such as 0.01% atropine and progressive addition spectacles lenses have not consistently provided clinically important effects; (viii) while different treatments have shown divergent efficacy in the first year, they have shown only small differences after this; (ix) rebound should be assumed until proven otherwise; (x) an illusion of inflated efficacy is created by measurement error in refraction, sample bias in only treating 'measured' fast progressors and regression to the mean; (xi) decision to treat should be based on age of onset (or refraction at a given age), not past progression; (xii) the decreased risk of complications later in life provided by even modest reductions in progression suggest treatment is advised for all young myopes and, because of limitations of available interventions, should be aggressive.
Collapse
Affiliation(s)
- Noel A Brennan
- Johnson & Johnson Vision, 7500 Centurion Pkwy, Jacksonville, FL, 32256, USA.
| | - Youssef M Toubouti
- Johnson & Johnson Vision, 7500 Centurion Pkwy, Jacksonville, FL, 32256, USA
| | - Xu Cheng
- Johnson & Johnson Vision, 7500 Centurion Pkwy, Jacksonville, FL, 32256, USA
| | | |
Collapse
|
21
|
Patasova K, Hysi PG. The Slowly Emerging Uniqueness of the High Myopia Genetic Architecture. Ophthalmology 2020; 127:1625-1626. [PMID: 33222773 DOI: 10.1016/j.ophtha.2020.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 11/26/2022] Open
|