1
|
Hovav AH, Wilensky A. The role of the epithelial sentinels, Langerhans cells and γδT cells, in oral squamous cell carcinoma. Periodontol 2000 2024. [PMID: 38273461 DOI: 10.1111/prd.12544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 01/27/2024]
Abstract
Oral squamous cell carcinoma (OSCC) arises in the oral epithelium, a tissue in which immune surveillance is mediated by its primary resident leukocytes, Langerhans cells (LCs), and γδT cells. Under steady-state conditions, LCs and γδT cells play a critical role in maintaining oral mucosal homeostasis. As antigen-presenting cells of stratified epithelia, LCs respond to various challenges faced by the epithelium, orchestrating innate, and adaptive immune responses in order to resolve them. γδT cells also sense diverse epithelial insults and react rapidly through cytokine production and cytolytic activity. These epithelial sentinels are also considered to be the first leukocytes in the oral epithelium to encounter early carcinogenic events that have the potential of becoming OSCC. As evident in many malignancies, leukocyte populations help prevent cancer development although they also promote tumor progression. OSCC is no exception, as studies have reported both anti- and pro-tumor roles of LCs and γδT cells. In this review, we summarize the ontogeny of LCs and γδT cells in the oral epithelium and discuss their role in OSCC.
Collapse
Affiliation(s)
- Avi-Hai Hovav
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Asaf Wilensky
- Department of Periodontology, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Parikh AS, Li Y, Mazul A, Yu VX, Thorstad W, Rich J, Paniello RC, Caruana SM, Troob SH, Jackson RS, Pipkorn P, Zolkind P, Qi Z, Adkins D, Ding L, Puram SV. Immune Cell Deconvolution Reveals Possible Association of γδ T Cells with Poor Survival in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:4855. [PMID: 37835549 PMCID: PMC10571517 DOI: 10.3390/cancers15194855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
(1) Background: The role of rare immune cell subtypes in many solid tumors, chief among them head and neck squamous cell carcinoma (HNSCC), has not been well defined. The objective of this study was to assess the association between proportions of common and rare immune cell subtypes and survival outcomes in HNSCC. (2) Methods: In this cohort study, we utilized a deconvolution approach based on the CIBERSORT algorithm and the LM22 signature matrix to infer proportions of immune cell subtypes from 517 patients with untreated HPV-negative HNSCC from The Cancer Genome Atlas. We performed univariate and multivariable survival analysis, integrating immune cell proportions with clinical, pathologic, and genomic data. (3) Results: We reliably deconvolved 22 immune cell subtypes in most patients and found that the most common immune cell types were M0 macrophages, M2 macrophages, and memory resting CD4 T cells. In the multivariable analysis, we identified advanced N stage and the presence of γδ T cells as independently predictive of poorer survival. (4) Conclusions: We uncovered that γδ T cells in the tumor microenvironment were a negative predictor of survival among patients with untreated HNSCC. Our findings underscore the need to better understand the role of γδ T cells in HNSCC, including potential pro-tumorigenic mechanisms, and whether their presence may predict the need for alternative therapy approaches.
Collapse
Affiliation(s)
- Anuraag S. Parikh
- Department of Otolaryngology—Head and Neck Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA; (V.X.Y.); (S.M.C.); (S.H.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yize Li
- Department of Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA (D.A.); (L.D.)
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Angela Mazul
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63108, USA; (A.M.); (J.R.); (R.C.P.); (R.S.J.); (P.P.); (P.Z.); (Z.Q.)
| | - Victoria X. Yu
- Department of Otolaryngology—Head and Neck Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA; (V.X.Y.); (S.M.C.); (S.H.T.)
| | - Wade Thorstad
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA;
| | - Jason Rich
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63108, USA; (A.M.); (J.R.); (R.C.P.); (R.S.J.); (P.P.); (P.Z.); (Z.Q.)
| | - Randal C. Paniello
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63108, USA; (A.M.); (J.R.); (R.C.P.); (R.S.J.); (P.P.); (P.Z.); (Z.Q.)
| | - Salvatore M. Caruana
- Department of Otolaryngology—Head and Neck Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA; (V.X.Y.); (S.M.C.); (S.H.T.)
| | - Scott H. Troob
- Department of Otolaryngology—Head and Neck Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA; (V.X.Y.); (S.M.C.); (S.H.T.)
| | - Ryan S. Jackson
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63108, USA; (A.M.); (J.R.); (R.C.P.); (R.S.J.); (P.P.); (P.Z.); (Z.Q.)
| | - Patrik Pipkorn
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63108, USA; (A.M.); (J.R.); (R.C.P.); (R.S.J.); (P.P.); (P.Z.); (Z.Q.)
| | - Paul Zolkind
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63108, USA; (A.M.); (J.R.); (R.C.P.); (R.S.J.); (P.P.); (P.Z.); (Z.Q.)
| | - Zongtai Qi
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63108, USA; (A.M.); (J.R.); (R.C.P.); (R.S.J.); (P.P.); (P.Z.); (Z.Q.)
| | - Douglas Adkins
- Department of Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA (D.A.); (L.D.)
| | - Li Ding
- Department of Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA (D.A.); (L.D.)
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63108, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Sidharth V. Puram
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63108, USA; (A.M.); (J.R.); (R.C.P.); (R.S.J.); (P.P.); (P.Z.); (Z.Q.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63108, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
| |
Collapse
|
3
|
Fan K, Dong Y, Li T, Li Y. Cuproptosis-associated CDKN2A is targeted by plicamycin to regulate the microenvironment in patients with head and neck squamous cell carcinoma. Front Genet 2023; 13:1036408. [PMID: 36699463 PMCID: PMC9868476 DOI: 10.3389/fgene.2022.1036408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), the most common malignancy of the head and neck, has an overall 5-year survival rate of <50%. Genes associated with cuproptosis, a newly identified copper-dependent form of cell death, are aberrantly expressed in various tumours. However, their role in HNSCC remains unknown. In this study, bioinformatic analysis revealed that the cuproptosis-related gene CDKN2A was correlated with the malignant behaviour of HNSCC. Kaplan-Meier (KM) curves showed that patients with high CDKN2A expression had a better prognosis. Multiomic analysis revealed that CDKN2A may be associated with cell cycle and immune cell infiltration in the tumour microenvironment and is important for maintaining systemic homeostasis in the body. Furthermore, molecular docking and molecular dynamics simulations suggested strong binding between plicamycin and CDKN2A. And plicamycin inhibits the progression of HNSCC in cellular assays. In conclusion, this study elucidated a potential mechanism of action of the cuproptosis-associated gene CDKN2A in HNSCC and revealed that plicamycin targets CDKN2A to improve the prognosis of patients.
Collapse
|
4
|
Tang J, Bao M, Chen J, Bin X, Xu X, Fang X, Tang Z. Long-Noncoding RNA MANCR is Associated With Head and Neck Squamous Cell Carcinoma Malignant Development and Immune Infiltration. Front Genet 2022; 13:911733. [PMID: 35873456 PMCID: PMC9305332 DOI: 10.3389/fgene.2022.911733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have demonstrated an important role for mitotically associated long non-coding RNA (MANCR) in carcinogenesis and cancer progression, but its function has not been elucidated in head and neck squamous cell carcinoma (HNSCC). In this study, we identified differentially expressed MANCR from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases across 24 cancer types and included 546 HNSCC patients. Furthermore, high expression of MANCR was verified in HNSCC cell lines and tissue by using real-time quantitative PCR (RT-qPCR) analysis. The Kaplan–Meier analysis showed a worse prognosis with higher levels of MANCR for HNSCC. The univariate Cox regression and multivariate Cox regression analyses revealed that MANCR was a high-risk factor in patients with HNSCC. Thereafter, we carried out the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. It was indicated that MANCR participates in axonogenesis and ECM-receptor interaction. Further enrichment analysis demonstrated that the expression of MANCR was positively correlated with the T gamma delta (tgd) cells, neutrophils, and Th1 cells, and negatively correlated with the infiltration of B cells, CD8 T cells, and T cells in HNSCC. In addition, in vitro experiments showed that knockdown of MANCR in HNSCC cells markedly inhibited cell proliferation, migration, and invasion. We find that MANCR was elevated in HNSCC and promoted the malignant progression of HNSCC. MANCR may serve as a potential biomarker in prognostic implications for HNSCC patients. The positive correlation between MANCR and immune infiltration cells may provide novel therapeutic targets and personalized immune-based cancer therapy for HNSCC.
Collapse
|
5
|
Belghali MY, El Moumou L, Hazime R, Brahimi M, El Marrakchi M, Belaid HA, Benali SA, Khouchani M, Ba-M'hamed S, Admou B. Phenotypic characterization of human peripheral γδT-Cell subsets in glioblastoma. Microbiol Immunol 2022; 66:465-476. [PMID: 35718749 DOI: 10.1111/1348-0421.13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The anti-tumoral contribution of γδT cells depends on their activation and differentiation into effectors. This depends on different molecules and membrane receptors, which conditions their physiology. We aimed to determine the phenotypic characteristics of γδT cells in glioblastoma (GBM) according to five layers of membrane receptors. METHODS Among ten GBM cases initially enrolled, five of them who had been confirmed by pathological examination and ten healthy controls underwent phenotyping of peripheral γδT cells by flow cytometry, using the following staining: αβTCR, γδTCR, CD3, CD4, CD8, CD16, CD25, CD27, CD28, CD45, CD45RA, CD56, NKG2D, CD272(BTLA) and CD279(PD-1). RESULTS Compared to controls, our results showed no significant change in the number of γδT cells. However, we noted a decrease of double-negative (CD4- CD8- ) Tγδ cells and an increase of naive γδT cells, a lack of CD25 expression, a decrease of the expression of CD279 and a remarkable, but not significant increase in the expression of the CD27 and CD28 costimulation markers. Among γδT cell subsets, the number of Vδ2 decreased in GBM and showed no significant difference in the expression of CD16, CD56 and NKG2D. In contrast, the number of Vδ1 increased in GBM with overexpression of CD16, CD56 and NKG2D. CONCLUSION Our results showed that γδT cells are prone to adopt a pro-inflammatory profile in the GBM's context, which suggests that they might be a potential tool to consider in T cell-based immunotherapy in GBM. However, this requires additional investigation on larger sample size. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Moulay Yassine Belghali
- Group of morphology and biology of cancers. Faculty of medicine and pharmacy, Cadi Ayyad University, Marrakech, Morocco.,Laboratory of Pharmacology, neurobiology, anthropology and environment, Cadi Ayyad University, Marrakech, Morocco.,Laboratory of Immunology, Center of Clinical Research, University Hospital Mohammed VI, Marrakech, Morocco
| | | | - Raja Hazime
- Laboratory of Immunology, Center of Clinical Research, University Hospital Mohammed VI, Marrakech, Morocco
| | - Maroua Brahimi
- Laboratory of pathology, Mohammed V Hospital, Safi, Morocco
| | - Malak El Marrakchi
- Neurosurgery Department, Mohammed VI University Hospital Center, Cadi Ayyad University, Marrakech, Morocco
| | - Hasna Ait Belaid
- Group of morphology and biology of cancers. Faculty of medicine and pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Said Ait Benali
- Neurosurgery Department, Mohammed VI University Hospital Center, Cadi Ayyad University, Marrakech, Morocco
| | - Mouna Khouchani
- Group of morphology and biology of cancers. Faculty of medicine and pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Saadia Ba-M'hamed
- Laboratory of Pharmacology, neurobiology, anthropology and environment, Cadi Ayyad University, Marrakech, Morocco
| | - Brahim Admou
- Laboratory of Immunology, Center of Clinical Research, University Hospital Mohammed VI, Marrakech, Morocco.,Bioscience Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
6
|
Kim Y, Kang JW, Kang J, Kwon EJ, Ha M, Kim YK, Lee H, Rhee JK, Kim YH. Novel deep learning-based survival prediction for oral cancer by analyzing tumor-infiltrating lymphocyte profiles through CIBERSORT. Oncoimmunology 2021; 10:1904573. [PMID: 33854823 PMCID: PMC8018482 DOI: 10.1080/2162402x.2021.1904573] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/22/2021] [Accepted: 03/13/2021] [Indexed: 01/13/2023] Open
Abstract
The tumor microenvironment (TME) within mucosal neoplastic tissue in oral cancer (ORCA) is greatly influenced by tumor-infiltrating lymphocytes (TILs). Here, a clustering method was performed using CIBERSORT profiles of ORCA data that were filtered from the publicly accessible data of patients with head and neck cancer in The Cancer Genome Atlas (TCGA) using hierarchical clustering where patients were regrouped into binary risk groups based on the clustering-measuring scores and survival patterns associated with individual groups. Based on this analysis, clinically reasonable differences were identified in 16 out of 22 TIL fractions between groups. A deep neural network classifier was trained using the TIL fraction patterns. This internally validated classifier was used on another individual ORCA dataset from the International Cancer Genome Consortium data portal, and patient survival patterns were precisely predicted. Seven common differentially expressed genes between the two risk groups were obtained. This new approach confirms the importance of TILs in the TME and provides a direction for the use of a novel deep-learning approach for cancer prognosis.
Collapse
Affiliation(s)
- Yeongjoo Kim
- Interdisplinary Program of Genomic Science, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Ji Wan Kang
- Interdisplinary Program of Genomic Science, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Junho Kang
- Interdisplinary Program of Genomic Science, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Eun Jung Kwon
- Interdisplinary Program of Genomic Science, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Mihyang Ha
- Interdisplinary Program of Genomic Science, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Yoon Kyeong Kim
- Interdisplinary Program of Genomic Science, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hansong Lee
- Interdisplinary Program of Genomic Science, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Je-Keun Rhee
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Yun Hak Kim
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
7
|
Xu L, Jin Y, Qin X. Comprehensive analysis of significant genes and immune cell infiltration in HPV-related head and neck squamous cell carcinoma. Int Immunopharmacol 2020; 87:106844. [DOI: 10.1016/j.intimp.2020.106844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/28/2020] [Accepted: 07/25/2020] [Indexed: 12/21/2022]
|
8
|
Lu H, Dai W, Guo J, Wang D, Wen S, Yang L, Lin D, Xie W, Wen L, Fang J, Wang Z. High Abundance of Intratumoral γδ T Cells Favors a Better Prognosis in Head and Neck Squamous Cell Carcinoma: A Bioinformatic Analysis. Front Immunol 2020; 11:573920. [PMID: 33101298 PMCID: PMC7555127 DOI: 10.3389/fimmu.2020.573920] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/01/2020] [Indexed: 01/08/2023] Open
Abstract
γδ T cells are a small subset of unconventional T cells that are enriched in the mucosal areas, and are responsible for pathogen clearance and maintaining integrity. However, the role of γδ T cells in head and neck squamous cell carcinoma (HNSCC) is largely unknown. Here, by using RNA-seq data from The Cancer Genome Atlas (TCGA), we discovered that HNSCC patients with higher levels of γδ T cells were positively associated with lower clinical stages and better overall survival, and high abundance of γδ T cells was positively correlated with CD8+/CD4+ T cell infiltration. Gene ontology and pathway analyses showed that genes associated with T cell activation, proliferation, effector functions, cytotoxicity, and chemokine production were enriched in the group with a higher γδ T cell abundance. Furthermore, we found that the abundance of γδ T cells was positively associated with the expression of the butyrophilin (BTN) family proteins BTN3A1/BTN3A2/BTN3A3 and BTN2A1, but only MICB, one of the ligands of NKG2D, was involved in the activation of γδ T cells, indicating that the BTN family proteins might be involved in the activation and proliferation of γδ T cells in the tumor microenvironment of HNSCC. Our results indicated that γδ T cells, along with their ligands, are promising targets in HNSCC with great prognostic values and treatment potentials.
Collapse
Affiliation(s)
- Huanzi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenxiao Dai
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Junyi Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Dikan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shuqiong Wen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lisa Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Dongjia Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenqiang Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Liling Wen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Juan Fang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhi Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Fonseca S, Pereira V, Lau C, Teixeira MDA, Bini-Antunes M, Lima M. Human Peripheral Blood Gamma Delta T Cells: Report on a Series of Healthy Caucasian Portuguese Adults and Comprehensive Review of the Literature. Cells 2020; 9:cells9030729. [PMID: 32188103 PMCID: PMC7140678 DOI: 10.3390/cells9030729] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022] Open
Abstract
Gamma delta T cells (Tc) are divided according to the type of Vδ and Vγ chains they express, with two major γδ Tc subsets being recognized in humans: Vδ2Vγ9 and Vδ1. Despite many studies in pathological conditions, only a few have quantified the γδ Tc subsets in healthy adults, and a comprehensive review of the factors influencing its representation in the blood is missing. Here we quantified the total γδ Tc and the Vδ2/Vγ9 and Vδ1 Tc subsets in the blood from 30 healthy, Caucasian, Portuguese adults, we characterized their immunophenotype by 8-color flow cytometry, focusing in a few relevant Tc markers (CD3/TCR-γδ, CD5, CD8), and costimulatory (CD28), cytotoxic (CD16) and adhesion (CD56) molecules, and we examined the impacts of age and gender. Additionally, we reviewed the literature on the influences of race/ethnicity, age, gender, special periods of life, past infections, diet, medications and concomitant diseases on γδ Tc and their subsets. Given the multitude of factors influencing the γδ Tc repertoire and immunophenotype and the high variation observed, caution should be taken in interpreting “abnormal” γδ Tc values and repertoire deviations, and the clinical significance of small populations of “phenotypically abnormal” γδ Tc in the blood.
Collapse
Affiliation(s)
- Sónia Fonseca
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
| | - Vanessa Pereira
- Department of Clinical Pathology, Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/E); 4434-502 Vila Nova de Gaia, Portugal;
| | - Catarina Lau
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
| | - Maria dos Anjos Teixeira
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
| | - Marika Bini-Antunes
- Laboratory of Immunohematology and Blood Donors Unit, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001Porto, Portugal;
| | - Margarida Lima
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
- Correspondence: ; Tel.: + 351-22-20-77-500
| |
Collapse
|
10
|
Abstract
To successfully withstand a wide variety of microbial and mechanical challenges, the immune system of the oral mucosa is composed of tissue-resident and specially recruited leukocytes. These leukocytes facilitate the establishment and maintenance of local homeostasis but are also capable to cause oral pathologies when are unrestrained. γδT cells represent an important tissue-resident innate T-cell population in various mucosal and nonmucosal barrier tissues, in which they are ideally located to assist in immunosurveillance, tissue repair, and homeostasis. Whereas most works studying γδT cells were focused on tissues such as the skin and intestine, these cells in the oral mucosa were only recently thoroughly studied. The findings obtained by those studies appear to be both complementary and contradicting, likely reflecting differences in the experimental settings and the type of transgenic mouse modalities employed by each study. Nevertheless, oral γδT cells were shown to consist of developmentally distinct tissue-resident Vγ6 cells and circulating Vγ1 and Vγ4 subsets that are independently maintained in the oral mucosa. In the gingiva, a particularly challenging barrier tissue due to its proximity to the dental plaque, γδT cells are strategically positioned close to the plaque and represent the major source of IL-17. While this suggests that γδT cells might be involved in controlling the dental biofilm, conflicting data were reported in this regard. In vivo studies have shown that γδT cells either play a protective role during age-associated bone loss or, alternatively, have no impact in this process. Also, recent reports suggested opposing data concerning the impact of γδT cells in experimental periodontitis based on the ligature model. This review summarizes and discusses the most up-to-date literature on oral γδT cells, providing a balanced perspective regarding our current understanding on the development of oral γδT cells and their role under physiologic conditions and certain oral pathologies.
Collapse
Affiliation(s)
- A H Hovav
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - A Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - O Barel
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - I Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Niedersachsen, Germany
| |
Collapse
|
11
|
Hoeres T, Smetak M, Pretscher D, Wilhelm M. Improving the Efficiency of Vγ9Vδ2 T-Cell Immunotherapy in Cancer. Front Immunol 2018; 9:800. [PMID: 29725332 PMCID: PMC5916964 DOI: 10.3389/fimmu.2018.00800] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/03/2018] [Indexed: 12/28/2022] Open
Abstract
Increasing immunological knowledge and advances in techniques lay the ground for more efficient and broader application of immunotherapies. gamma delta (γδ) T-cells possess multiple favorable anti-tumor characteristics, making them promising candidates to be used in cellular and combination therapies of cancer. They recognize malignant cells, infiltrate tumors, and depict strong cytotoxic and pro-inflammatory activity. Here, we focus on human Vγ9Vδ2 T-cells, the most abundant γδ T-cell subpopulation in the blood, which are able to inhibit cancer progression in various models in vitro and in vivo. For therapeutic use they can be cultured and manipulated ex vivo and in the following adoptively transferred to patients, as well as directly stimulated to propagate in vivo. In clinical studies, Vγ9Vδ2 T-cells repeatedly demonstrated a low toxicity profile but hitherto only the modest therapeutic efficacy. This review provides a comprehensive summary of established and newer strategies for the enhancement of Vγ9Vδ2 T-cell anti-tumor functions. We discuss data of studies exploring methods for the sensitization of malignant cells, the improvement of recognition mechanisms and cytotoxic activity of Vγ9Vδ2 T-cells. Main aspects are the tumor cell metabolism, antibody-dependent cell-mediated cytotoxicity, antibody constructs, as well as activating and inhibitory receptors like NKG2D and immune checkpoint molecules. Several concepts show promising results in vitro, now awaiting translation to in vivo models and clinical studies. Given the array of research and encouraging findings in this area, this review aims at optimizing future investigations, specifically targeting the unanswered questions.
Collapse
Affiliation(s)
- Timm Hoeres
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - Manfred Smetak
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - Dominik Pretscher
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - Martin Wilhelm
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
12
|
Tosolini M, Pont F, Poupot M, Vergez F, Nicolau-Travers ML, Vermijlen D, Sarry JE, Dieli F, Fournié JJ. Assessment of tumor-infiltrating TCRV γ9V δ2 γδ lymphocyte abundance by deconvolution of human cancers microarrays. Oncoimmunology 2017; 6:e1284723. [PMID: 28405516 DOI: 10.1080/2162402x.2017.1284723] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 10/20/2022] Open
Abstract
Most human blood γδ cells are cytolytic TCRVγ9Vδ2+ lymphocytes with antitumor activity. They are currently investigated in several clinical trials of cancer immunotherapy but so far, their tumor infiltration has not been systematically explored across human cancers. Novel algorithms allowing the deconvolution of bulk tumor transcriptomes to find the relative proportions of infiltrating leucocytes, such as CIBERSORT, should be appropriate for this aim but in practice they fail to accurately recognize γδ T lymphocytes. Here, by implementing machine learning from microarray data, we first improved the computational identification of blood-derived TCRVγ9Vδ2+ γδ lymphocytes and then applied this strategy to assess their abundance as tumor infiltrating lymphocytes (γδ TIL) in ∼10,000 cancer biopsies from 50 types of hematological and solid malignancies. We observed considerable inter-individual variation of TCRVγ9Vδ2+γδ TIL abundance both within each type and across the spectrum of cancers tested. We report their prominence in B cell-acute lymphoblastic leukemia (B-ALL), acute promyelocytic leukemia (M3-AML) and chronic myeloid leukemia (CML) as well as in inflammatory breast, prostate, esophagus, pancreas and lung carcinoma. Across all cancers, the abundance of αβ TILs and TCRVγ9Vδ2+ γδ TILs did not correlate. αβ TIL abundance paralleled the mutational load of tumors and positively correlated with inflammation, infiltration of monocytes, macrophages and dendritic cells (DC), antigen processing and presentation, and cytolytic activity, in line with an association with a favorable outcome. In contrast, the abundance of TCRVγ9Vδ2+ γδ TILs did not correlate with these hallmarks and was variably associated with outcome, suggesting that distinct contexts underlie TCRVγ9Vδ2+ γδ TIL and αβ TIL mobilizations in cancer.
Collapse
Affiliation(s)
- Marie Tosolini
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France; INSERM U1037-Université Paul Sabatier-CNRS ERL5294, Université de Toulouse, Toulouse, France; Laboratoire d'Excellence TOUCAN, Toulouse, France; Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France; Pôle Technologique du Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France; Institut Universitaire du Cancer de Toulouse (IUCT), Toulouse, France
| | - Frédéric Pont
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France; INSERM U1037-Université Paul Sabatier-CNRS ERL5294, Université de Toulouse, Toulouse, France; Pôle Technologique du Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
| | - Mary Poupot
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France; INSERM U1037-Université Paul Sabatier-CNRS ERL5294, Université de Toulouse, Toulouse, France; Laboratoire d'Excellence TOUCAN, Toulouse, France; Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France
| | - François Vergez
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France; INSERM U1037-Université Paul Sabatier-CNRS ERL5294, Université de Toulouse, Toulouse, France; Institut Universitaire du Cancer de Toulouse (IUCT), Toulouse, France
| | | | - David Vermijlen
- Central Laboratory for Advanced Diagnostics and Biomedical Research (CLADIBIOR), University of Palermo , Palermo, Italy
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France; INSERM U1037-Université Paul Sabatier-CNRS ERL5294, Université de Toulouse, Toulouse, France; Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France
| | - Francesco Dieli
- Department of Biopharmacy - Institute for Medical Immunology (IMI), Université Libre de Bruxelles , Bruxelles, Belgium
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France; INSERM U1037-Université Paul Sabatier-CNRS ERL5294, Université de Toulouse, Toulouse, France; Laboratoire d'Excellence TOUCAN, Toulouse, France; Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France
| |
Collapse
|
13
|
Bank I, Marcu-Malina V. Quantitative peripheral blood perturbations of γδ T cells in human disease and their clinical implications. Clin Rev Allergy Immunol 2015; 47:311-33. [PMID: 24126758 DOI: 10.1007/s12016-013-8391-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human γδ T cells, which play innate and adaptive, protective as well as destructive, roles in the immune response, were discovered in 1986, but the clinical significance of alterations of the levels of these cells in the peripheral blood in human diseases has not been comprehensively reviewed. Here, we review patterns of easily measurable changes of this subset of T cells in peripheral blood from relevant publications in PubMed and their correlations with specific disease categories, specific diagnoses within disease categories, and prognostic outcomes. These collective data suggest that enumeration of γδ T cells and their subsets in the peripheral blood of patients could be a useful tool to evaluate diagnosis and prognosis in the clinical setting.
Collapse
Affiliation(s)
- Ilan Bank
- Department of Medicine F, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, 52621, Israel,
| | | |
Collapse
|
14
|
Ye J, Ma C, Hsueh EC, Eickhoff CS, Zhang Y, Varvares MA, Hoft DF, Peng G. Tumor-derived γδ regulatory T cells suppress innate and adaptive immunity through the induction of immunosenescence. THE JOURNAL OF IMMUNOLOGY 2013; 190:2403-14. [PMID: 23355732 DOI: 10.4049/jimmunol.1202369] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fundamentally understanding the suppressive mechanisms used by different subsets of tumor-infiltrating regulatory T (Treg) cells is critical for the development of effective strategies for antitumor immunotherapy. γδ Treg cells have recently been identified in human diseases including cancer. However, the suppressive mechanisms and functional regulations of this new subset of unconventional Treg cells are largely unknown. In the current studies, we explored the suppressive mechanism(s) used by breast tumor-derived γδ Treg cells on innate and adaptive immunity. We found that γδ Treg cells induced immunosenescence in the targeted naive and effector T cells, as well as dendritic cells (DCs). Furthermore, senescent T cells and DCs induced by γδ Treg cells had altered phenotypes and impaired functions and developed potent suppressive activities, further amplifying the immunosuppression mediated by γδ Treg cells. In addition, we demonstrated that manipulation of TLR8 signaling in γδ Treg cells can block γδ Treg-induced conversion of T cells and DCs into senescent cells in vitro and in vivo. Our studies identify the novel suppressive mechanism mediated by tumor-derived γδ Treg cells on innate and adaptive immunity, which should be critical for the development of strong and innovative approaches to reverse the tumor-suppressive microenvironment and improve effects of immunotherapy.
Collapse
Affiliation(s)
- Jian Ye
- Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ma C, Zhang Q, Ye J, Wang F, Zhang Y, Wevers E, Schwartz T, Hunborg P, Varvares MA, Hoft DF, Hsueh EC, Peng G. Tumor-infiltrating γδ T lymphocytes predict clinical outcome in human breast cancer. THE JOURNAL OF IMMUNOLOGY 2012; 189:5029-36. [PMID: 23034170 DOI: 10.4049/jimmunol.1201892] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Understanding and dissecting the role of different subsets of regulatory tumor-infiltrating lymphocytes (TILs) in the immunopathogenesis of individual cancer is a challenge for anti-tumor immunotherapy. High levels of γδ regulatory T cells have been discovered in breast TILs. However, the clinical relevance of these intratumoral γδ T cells is unknown. In this study, γδ T cell populations were analyzed by performing immunohistochemical staining in primary breast cancer tissues from patients with different stages of cancer progression. Retrospective multivariate analyses of the correlations between γδ T cell levels and other prognostic factors and clinical outcomes were completed. We found that γδ T cell infiltration and accumulation in breast tumor sites was a general feature in breast cancer patients. Intratumoral γδ T cell numbers were positively correlated with advanced tumor stages, HER2 expression status, and high lymph node metastasis but inversely correlated with relapse-free survival and overall survival of breast cancer patients. Multivariate and univariate analyses of tumor-infiltrating γδ T cells and other prognostic factors further suggested that intratumoral γδ T cells represented the most significant independent prognostic factor for assessing severity of breast cancer compared with the other known factors. Intratumoral γδ T cells were positively correlated with FOXP3(+) cells and CD4(+) T cells but negatively correlated with CD8(+) T cells in breast cancer tissues. These findings suggest that intratumoral γδ T cells may serve as a valuable and independent prognostic biomarker, as well as a potential therapeutic target for human breast cancer.
Collapse
Affiliation(s)
- Chunling Ma
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
γδ T cells are increased in the peripheral blood of patients with gastric cancer. Clin Chim Acta 2012; 413:1495-9. [DOI: 10.1016/j.cca.2012.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/08/2012] [Accepted: 06/11/2012] [Indexed: 11/23/2022]
|
17
|
γδ T cells cross-link innate and adaptive immunity in Mycobacterium tuberculosis infection. Clin Dev Immunol 2011; 2011:587315. [PMID: 21253470 PMCID: PMC3022180 DOI: 10.1155/2011/587315] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 11/27/2010] [Accepted: 12/09/2010] [Indexed: 11/17/2022]
Abstract
Protective immunity against mycobacterial infections such as Mycobacterium tuberculosis is mediated by interactions between specific T cells and activated antigen presenting cells. To date, many aspects of mycobacterial immunity have shown that innate cells could be the key elements that substantially may influence the subsequent adaptive host response. During the early phases of infection, innate lymphocyte subsets play a pivotal role in this context. Here we summarize the findings of recent investigations on γδ T lymphocytes and their role in tuberculosis immunity.
Collapse
|
18
|
Alexander AAZ, Maniar A, Cummings JS, Hebbeler AM, Schulze DH, Gastman BR, Pauza CD, Strome SE, Chapoval AI. Isopentenyl pyrophosphate-activated CD56+ {gamma}{delta} T lymphocytes display potent antitumor activity toward human squamous cell carcinoma. Clin Cancer Res 2008; 14:4232-40. [PMID: 18594005 DOI: 10.1158/1078-0432.ccr-07-4912] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE The expression of CD56, a natural killer cell-associated molecule, on alphabeta T lymphocytes correlates with their increased antitumor effector function. CD56 is also expressed on a subset of gammadelta T cells. However, antitumor effector functions of CD56(+) gammadelta T cells are poorly characterized. EXPERIMENTAL DESIGN To investigate the potential effector role of CD56(+) gammadelta T cells in tumor killing, we used isopentenyl pyrophosphate and interleukin-2-expanded gammadelta T cells from peripheral blood mononuclear cells of healthy donors. RESULTS Thirty to 70% of expanded gammadelta T cells express CD56 on their surface. Interestingly, although both CD56(+) and CD56(-) gammadelta T cells express comparable levels of receptors involved in the regulation of gammadelta T-cell cytotoxicity (e.g., NKG2D and CD94), only CD56(+) gammadelta T lymphocytes are capable of killing squamous cell carcinoma and other solid tumor cell lines. This effect is likely mediated by the enhanced release of cytolytic granules because CD56(+) gammadelta T lymphocytes expressed higher levels of CD107a compared with CD56(-) controls following exposure to tumor cell lines. Lysis of tumor cell lines is blocked by concanamycin A and a combination of anti-gammadelta T-cell receptor + anti-NKG2D monoclonal antibody, suggesting that the lytic activity of CD56(+) gammadelta T cells involves the perforin-granzyme pathway and is mainly gammadelta T-cell receptor/NKG2D dependent. Importantly, CD56-expressing gammadelta T lymphocytes are resistant to Fas ligand and chemically induced apoptosis. CONCLUSIONS Our data indicate that CD56(+) gammadelta T cells are potent antitumor effectors capable of killing squamous cell carcinoma and may play an important therapeutic role in patients with head and neck cancer and other malignancies.
Collapse
Affiliation(s)
- Alan A Z Alexander
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Gamma-delta T (gammadelta T) cells form a subgroup which has been reported to play a role in both natural and acquired immunity. Their levels have been found to increase in some tumour tissues. The aim of this study was to investigate the ratio of gammadelta T cells to all T cells in the peripheral blood of advanced-stage cancer patients; the level of gammadelta T cells expressing the Vdelta2-T-cell receptor (TCR) chain; NKG2D receptor expression; and apoptotic (Annexin-V) gammadelta T-cell levels. Twenty patients with advanced-stage cancer and 13 healthy controls were included. No statistical differences were found between control and patient groups in terms of the gammadelta T/total T-cell ratio (P=0.53), the Vgamma2-TCR expressing gammadelta T-cell ratio (P=0.19) or the Annexin-V ratio (P=0.48). However, NKG2D expression in gammadelta T cells was significantly different between the control and patient groups (P=0.014). In summary it was shown that the levels of NKG2D receptors, which are responsible for the cytolytic effect of gammadelta T cells, were lower in cancer patients than in healthy adults. However, no significant differences were observed in the other parameters studied between groups.
Collapse
|
20
|
Chopra A, O-Sullivan I, Carr J, Kim TS, Cohen EP. T-regulatory cells are relatively deficient in squamous carcinomas undergoing regression in mice immunized with a squamous carcinoma vaccine enriched for immunotherapeutic cells. Cancer Gene Ther 2007; 14:573-82. [PMID: 17384578 DOI: 10.1038/sj.cgt.7701040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In a prior report (Int J Cancer 2006; 119: 339-348), we described a new vaccination strategy for squamous cell carcinoma (SCC). The vaccine was prepared by transfer of unfractionated DNA-fragments (25 kb) from KLN205 cells, a squamous carcinoma cell line (DBA/2 origin; H-2(d)) into LM cells, a highly immunogenic mouse fibroblast cell line (C3H/He origin; (H-2(k))). As only a small proportion of the transfected cell population was expected to have incorporated DNA segments that included genes specifying antigens associated with the squamous carcinoma cells, we devised a novel strategy to enrich the vaccine for immunotherapeutic cells. Enhanced immunity to squamous carcinoma was induced in tumor-bearing mice treated solely by immunization with the enriched vaccine, which translated into prolonged survival without toxicity. Here, we describe the characteristics of the cell populations infiltrating established squamous carcinomas undergoing regression in mice immunized with vaccines enriched for immunotherapeutic cells. The results indicated that CD8+ T cells were predominant and that T-regulatory cells (FoxP3+, CD4/CD25+, CD4/CD62L(high), CD4/CTLA-4e) were relatively deficient in the regressing tumors. Inflammatory infiltrates were not detected in various organs and tissues of mice immunized with the DNA-based vaccine.
Collapse
Affiliation(s)
- A Chopra
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
This paper reviews the main papers related to oral squamous cell carcinoma published in 2006 in oral oncology - an international interdisciplinary journal which publishes high quality original research, clinical trials and review articles, and all other scientific articles relating to the aetiopathogenesis, epidemiology, prevention, clinical features, diagnosis, treatment and management of patients with neoplasms in the head and neck, and orofacial disease in patients with malignant disease.
Collapse
Affiliation(s)
- Crispian Scully
- Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, UK.
| | | |
Collapse
|