1
|
Zhang J, Chen J, Lin K. Immunogenic cell death-based oncolytic virus therapy: A sharp sword of tumor immunotherapy. Eur J Pharmacol 2024; 981:176913. [PMID: 39154830 DOI: 10.1016/j.ejphar.2024.176913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Tumor immunotherapy, especially immune checkpoint inhibitors (ICIs), has been applied in clinical practice, but low response to immune therapies remains a thorny issue. Oncolytic viruses (OVs) are considered promising for cancer treatment because they can selectively target and destroy tumor cells followed by spreading to nearby tumor tissues for a new round of infection. Immunogenic cell death (ICD), which is the major mechanism of OVs' anticancer effects, is induced by endoplasmic reticulum stress and reactive oxygen species overload after virus infection. Subsequent release of specific damage-associated molecular patterns (DAMPs) from different types of tumor cells can transform the tumor microenvironment from "cold" to "hot". In this paper, we broadly define ICD as those types of cell death that is immunogenic, and describe their signaling pathways respectively. Focusing on ICD, we also elucidate the advantages and disadvantages of recent combination therapies and their future prospects.
Collapse
Affiliation(s)
- Jingyu Zhang
- The First Clinical College of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahe Chen
- The First Clinical College of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kezhi Lin
- Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiential Center of Basic Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Yin Z(S, Wang Z. Strategies for engineering oncolytic viruses to enhance cancer immunotherapy. Front Pharmacol 2024; 15:1450203. [PMID: 39309012 PMCID: PMC11413971 DOI: 10.3389/fphar.2024.1450203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/30/2024] [Indexed: 09/25/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is the predominant form of lung cancer and is characterized by rapid metastasis and high mortality, presenting a challenge for early-stage treatment modalities. The heterogeneity of NSCLC's tumor microenvironment (TME) significantly influences the efficacy of anti-PD-1 immune checkpoint inhibitors (ICIs) therapy, leading to varied patient responses. This review characterized different strains of oncolytic viruses in NSCLC and the different gene edits in pre-existing oncolytic viruses. This study also aimed to provide strategies to enhance anti-PD-1 therapy in NSCLC by engineering oncolytic viruses (OVs). This study offers insights into the genomic adaptations necessary for OVs targeting NSCLC, identify genetic determinants of anti-PD-1 response variability, and propose genomic edits to bolster therapy effectiveness. The primary goal of this study is to present a theoretically designed OV with a detailed genomic framework capable of enhancing the response to anti-PD-1 therapy, thereby advancing the field of cancer immunotherapy.
Collapse
Affiliation(s)
| | - Zhengfeng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Liu Y, Zhang N, Wen Y, Wen J. Head and neck cancer: pathogenesis and targeted therapy. MedComm (Beijing) 2024; 5:e702. [PMID: 39170944 PMCID: PMC11338281 DOI: 10.1002/mco2.702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Head and neck cancer (HNC) is a highly aggressive type of tumor characterized by delayed diagnosis, recurrence, metastasis, relapse, and drug resistance. The occurrence of HNC were associated with smoking, alcohol abuse (or both), human papillomavirus infection, and complex genetic and epigenetic predisposition. Currently, surgery and radiotherapy are the standard treatments for most patients with early-stage HNC. For recurrent or metastatic (R/M) HNC, the first-line treatment is platinum-based chemotherapy combined with the antiepidermal growth factor receptor drug cetuximab, when resurgery and radiation therapy are not an option. However, curing HNC remains challenging, especially in cases with metastasis. In this review, we summarize the pathogenesis of HNC, including genetic and epigenetic changes, abnormal signaling pathways, and immune regulation mechanisms, along with all potential therapeutic strategies such as molecular targeted therapy, immunotherapy, gene therapy, epigenetic modifications, and combination therapies. Recent preclinical and clinical studies that may offer therapeutic strategies for future research on HNC are also discussed. Additionally, new targets and treatment methods, including antibody-drug conjugates, photodynamic therapy, radionuclide therapy, and mRNA vaccines, have shown promising results in clinical trials, offering new prospects for the treatment of HNC.
Collapse
Affiliation(s)
- Yan Liu
- Frontiers Medical CenterTianfu Jincheng LaboratoryChengduChina
- National Facility for Translational Medicine (Sichuan)West China Hospital of Sichuan UniversityChengduChina
| | - Nannan Zhang
- National Center for Birth Defect MonitoringKey Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationWest China Second University HospitalSichuan UniversityChengduChina
| | - Yi Wen
- State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduChina
| | - Jiaolin Wen
- Frontiers Medical CenterTianfu Jincheng LaboratoryChengduChina
| |
Collapse
|
4
|
Umer BA, Noyce RS, Kieser Q, Favis NA, Shenouda MM, Rans KJ, Middleton J, Hitt MM, Evans DH. Oncolytic vaccinia virus immunotherapy antagonizes image-guided radiotherapy in mouse mammary tumor models. PLoS One 2024; 19:e0298437. [PMID: 38498459 PMCID: PMC10947714 DOI: 10.1371/journal.pone.0298437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/23/2024] [Indexed: 03/20/2024] Open
Abstract
Ionizing radiation (IR) and oncolytic viruses are both used to treat cancer, and the effectiveness of both agents depends upon stimulating an immune response against the tumor. In this study we tested whether combining image guided ionizing radiation (IG-IR) with an oncolytic vaccinia virus (VACV) could yield a better therapeutic response than either treatment alone. ΔF4LΔJ2R VACV grew well on irradiated human and mouse breast cancer cells, and the virus can be combined with 4 or 8 Gy of IR to kill cells in an additive or weakly synergistic manner. To test efficacy in vivo we used immune competent mice bearing orthotopic TUBO mammary tumors. IG-IR worked well with 10 Gy producing 80% complete responses, but this was halved when the tumors were treated with VACV starting 2 days after IG-IR. VACV monotherapy was ineffective in this model. The antagonism was time dependent as waiting for 21 days after IG-IR eliminated the inhibitory effect but without yielding any further benefits over IR alone. In irradiated tumors, VACV replication was also lower, suggesting that irradiation created an environment that did not support infection as well in vivo as in vitro. A study of how four different treatment regimens affected the immune composition of the tumor microenvironment showed that treating irradiated tumors with VACV altered the immunological profiles in tumors exposed to IR or VACV alone. We detected more PD-1 and PD-L1 expression in tumors exposed to IR+VACV but adding an αPD-1 antibody to the protocol did not change the way VACV interferes with IG-IR therapy. VACV encodes many immunosuppressive gene products that may interfere with the ability of radiotherapy to induce an effective anti-tumor immune response through the release of danger-associated molecular patterns. These data suggest that infecting irradiated tumors with VACV, too soon after exposure, may interfere in the innate and linked adaptive immune responses that are triggered by radiotherapy to achieve a beneficial impact.
Collapse
Affiliation(s)
- Brittany A. Umer
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Ryan S. Noyce
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute for Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Quinten Kieser
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole A. Favis
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Mira M. Shenouda
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Kim J. Rans
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Jackie Middleton
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Mary M. Hitt
- Li Ka Shing Institute for Virology, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - David H. Evans
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute for Virology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Dash SR, Kundu A, Kundu CN. The role of viruses in cancer progression versus cancer treatment: A dual paradigm. Life Sci 2024; 341:122506. [PMID: 38373620 DOI: 10.1016/j.lfs.2024.122506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Most human malignancies are attributed to exposure to infectious organisms such as viruses. Certain infections that can induce cancer can evade the immune system, leading to persistent inflammation that facilitates uncontrolled cell growth. Moreover, these pathogens can increase the likelihood of oncogenic transformation, leading to cancer development. Despite significant advancements in medicine, oncological research continues to seek innovative treatment techniques in light of the constraints imposed by traditional therapeutic agents. Virus-based therapy is a novel treatment method that has garnered significant interest due to its broad range of applications. Virotherapy employs oncolytic viruses that are genetically modified to target tumor cells specifically, undergo replication inside them and destroy the malignant cells. Additionally, this therapeutic approach elicits an anticancer response by boosting the patient's immune system. In addition, viruses are commonly employed as targeted delivery vectors for the precise transportation of various genes, medicinal compounds and immune-stimulating substances. Furthermore, virotherapy offers more excellent anticancer activity in combination with established treatment modalities such as immune therapy, chemotherapy and radiation therapy. This review presents a concise overview of the roles played by infectious agents, such as viruses in cancer progression. In addition, we have thoroughly summarized the advancements in utilizing viruses for their oncolytic properties in conjunction with established cancer treatment modalities such as chemotherapy, radiation and immunotherapy.
Collapse
Affiliation(s)
- Somya Ranjan Dash
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, Odisha, India
| | - Anushka Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
6
|
Mirbahari SN, Da Silva M, Zúñiga AIM, Kooshki Zamani N, St-Laurent G, Totonchi M, Azad T. Recent progress in combination therapy of oncolytic vaccinia virus. Front Immunol 2024; 15:1272351. [PMID: 38558795 PMCID: PMC10979700 DOI: 10.3389/fimmu.2024.1272351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
In recent years, oncolytic viruses have emerged as promising agents for treating various cancers. An oncolytic virus is a non-pathogenic virus that, due to genetic manipulation, tends to replicate in and cause lysis of cancerous cells while leaving healthy cells unaffected. Among these viruses, vaccinia virus is an attractive platform for use as an oncolytic platform due to its 190 Kb genome with a high capacity for encoding therapeutic payloads. Combining oncolytic VV therapy with other conventional cancer treatments has been shown to be synergistic and more effective than monotherapies. Additionally, OVV can be used as a vector to deliver therapeutic payloads, alone or in combination with other treatments, to increase overall efficacy. Here, we present a comprehensive analysis of preclinical and clinical studies that have evaluated the efficacy of oncolytic vaccinia viruses in cancer immunotherapy. We discuss the outcomes of these studies, including tumor regression rates, overall survival benefits, and long-term responses. Moreover, we provide insights into the challenges and limitations associated with oncolytic vaccinia virus- based therapies, including immune evasion mechanisms, potential toxicities, and the development of resistance.
Collapse
Affiliation(s)
- Seyedeh Nasim Mirbahari
- Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Miles Da Silva
- Department of Microbiology and Immunology, University of British Colombia, Vancouver, BC, Canada
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| | - Abril Ixchel Muñoz Zúñiga
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC, Canada
| | - Nika Kooshki Zamani
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC, Canada
| | - Gabriel St-Laurent
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC, Canada
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Taha Azad
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC, Canada
| |
Collapse
|
7
|
Seyed-Khorrami SM, Azadi A, Rastegarvand N, Habibian A, Soleimanjahi H, Łos MJ. A promising future in cancer immunotherapy: Oncolytic viruses. Eur J Pharmacol 2023; 960:176063. [PMID: 37797673 DOI: 10.1016/j.ejphar.2023.176063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
Alongside the conventional methods, attention has been drawn to the use of immunotherapy-based methods for cancer treatment. Immunotherapy has developed as a therapeutic option that can be more specific with better outcomes in tumor treatment. It can boost or regulate the immune system behind the targeted virotherapy. Virotherapy is a kind of oncolytic immunotherapy that investigated broadly in cancer treatment in recent decades, due to its several advantages. According to recent advance in the field of understanding cancer cell biology and its occurrence, as well as increasing the knowledge about conditionally replicating oncolytic viruses and their destructive function in the tumor cells, nowadays, it is possible to apply this strategy in the treatment of malignancies. Relying on achievements in clinical trials of oncolytic viruses, we can certainly expect that this therapeutic perception can play a more central role in cancer treatment. In cancer treatment, combination therapy using oncolytic viruses alongside standard cancer treatment methods and other immunotherapy-based treatments can expect more promising results in the future.
Collapse
Affiliation(s)
| | - Arezou Azadi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nasrin Rastegarvand
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ala Habibian
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100, Gliwice, Poland; LinkoCare Life Sciences AB, Linkoping, Sweden.
| |
Collapse
|
8
|
Storozynsky QT, Han X, Komant S, Agopsowicz KC, Potts KG, Gamper AM, Godbout R, Evans DH, Hitt MM. Radiation-Induced Cellular Senescence Reduces Susceptibility of Glioblastoma Cells to Oncolytic Vaccinia Virus. Cancers (Basel) 2023; 15:3341. [PMID: 37444452 DOI: 10.3390/cancers15133341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma (GBM) is a malignant brain cancer refractory to the current standard of care, prompting an extensive search for novel strategies to improve outcomes. One approach under investigation is oncolytic virus (OV) therapy in combination with radiotherapy. In addition to the direct cytocidal effects of radiotherapy, radiation induces cellular senescence in GBM cells. Senescent cells cease proliferation but remain viable and are implicated in promoting tumor progression. The interaction of viruses with senescent cells is nuanced; some viruses exploit the senescent state to their benefit, while others are hampered, indicating senescence-associated antiviral activity. It is unknown how radiation-induced cellular senescence may impact the oncolytic properties of OVs based on the vaccinia virus (VACV) that are used in combination with radiotherapy. To better understand this, we induced cellular senescence by treating GBM cells with radiation, and then evaluated the growth kinetics, infectivity, and cytotoxicity of an oncolytic VACV, ∆F4LΔJ2R, as well as wild-type VACV in irradiated senescence-enriched and non-irradiated human GBM cell lines. Our results show that both viruses display attenuated oncolytic activities in irradiated senescence-enriched GBM cell populations compared to non-irradiated controls. These findings indicate that radiation-induced cellular senescence is associated with antiviral activity and highlight important considerations for the combination of VACV-based oncolytic therapies with senescence-inducing agents such as radiotherapy.
Collapse
Affiliation(s)
- Quinn T Storozynsky
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Cancer Research Institute of Northern Alberta (CRINA), University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Xuefei Han
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Shae Komant
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Kate C Agopsowicz
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Kyle G Potts
- Alberta Children's Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Alberta Cellular Therapy and Immune Oncology (ACTION) Initiative, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Armin M Gamper
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Cancer Research Institute of Northern Alberta (CRINA), University of Alberta, Edmonton, AB T6G 2R3, Canada
- Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada
| | - David H Evans
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Mary M Hitt
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Cancer Research Institute of Northern Alberta (CRINA), University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
9
|
Ottolino-Perry K, Mealiea D, Sellers C, Acuna SA, Angarita FA, Okamoto L, Scollard D, Ginj M, Reilly R, McCart JA. Vaccinia virus and peptide-receptor radiotherapy synergize to improve treatment of peritoneal carcinomatosis. Mol Ther Oncolytics 2023; 29:44-58. [PMID: 37180034 PMCID: PMC10173076 DOI: 10.1016/j.omto.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
Tumor-specific overexpression of receptors enables a variety of targeted cancer therapies, exemplified by peptide-receptor radiotherapy (PRRT) for somatostatin receptor (SSTR)-positive neuroendocrine tumors. While effective, PRRT is restricted to tumors with SSTR overexpression. To overcome this limitation, we propose using oncolytic vaccinia virus (vvDD)-mediated receptor gene transfer to permit molecular imaging and PRRT in tumors without endogenous SSTR overexpression, a strategy termed radiovirotherapy. We hypothesized that vvDD-SSTR combined with a radiolabeled somatostatin analog could be deployed as radiovirotherapy in a colorectal cancer peritoneal carcinomatosis model, producing tumor-specific radiopeptide accumulation. Following vvDD-SSTR and 177Lu-DOTATOC treatment, viral replication and cytotoxicity, as well as biodistribution, tumor uptake, and survival, were evaluated. Radiovirotherapy did not alter virus replication or biodistribution, but synergistically improved vvDD-SSTR-induced cell killing in a receptor-dependent manner and significantly increased the tumor-specific accumulation and tumor-to-blood ratio of 177Lu-DOTATOC, making tumors imageable by microSPECT/CT and causing no significant toxicity. 177Lu-DOTATOC significantly improved survival over virus alone when combined with vvDD-SSTR but not control virus. We have therefore demonstrated that vvDD-SSTR can convert receptor-negative tumors into receptor-positive tumors and facilitate molecular imaging and PRRT using radiolabeled somatostatin analogs. Radiovirotherapy represents a promising treatment strategy with potential applications in a wide range of cancers.
Collapse
Affiliation(s)
- Kathryn Ottolino-Perry
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - David Mealiea
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - Clara Sellers
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
| | - Sergio A. Acuna
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
| | - Fernando A. Angarita
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - Lili Okamoto
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - Deborah Scollard
- STTARR, Radiation Medicine Program, Princess Margaret Hospital, UHN, 610 University Avenue, M5G 2C1 Toronto, ON, Canada
| | - Mihaela Ginj
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - Raymond Reilly
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, M5S 3M2 Toronto, ON, Canada
| | - J. Andrea McCart
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
- Department of Surgery, Mount Sinai Hospital and University of Toronto, 600 University Avenue, M5G 1X5 Toronto, ON, Canada
- Corresponding author: Dave Mealiea, Room 1225, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
10
|
Storozynsky QT, Agopsowicz KC, Noyce RS, Bukhari AB, Han X, Snyder N, Umer BA, Gamper AM, Godbout R, Evans DH, Hitt MM. Radiation combined with oncolytic vaccinia virus provides pronounced antitumor efficacy and induces immune protection in an aggressive glioblastoma model. Cancer Lett 2023; 562:216169. [PMID: 37061120 DOI: 10.1016/j.canlet.2023.216169] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 04/17/2023]
Abstract
Glioblastoma (GB) is a malignant and immune-suppressed brain cancer that remains incurable despite the current standard of care. Radiotherapy is a mainstay of GB treatment, however invasive cancer cells outside the irradiated field and radioresistance preclude complete eradication of GB cells. Oncolytic virus therapy harnesses tumor-selective viruses to spread through and destroy tumors while stimulating antitumor immune responses, and thus has potential for use following radiotherapy. We demonstrate that oncolytic ΔF4LΔJ2R vaccinia virus (VACV) replicates in and induces cytotoxicity of irradiated brain tumor initiating cells in vitro. Importantly, a single 10 Gy dose of radiation combined with ΔF4LΔJ2R VACV produced considerably superior anticancer effects relative to either monotherapy when treating immune-competent orthotopic CT2A-luc mouse models-significantly extending survival and curing the majority of mice. Mice cured by the combination displayed significantly increased survival relative to naïve age-matched controls following intracranial tumor challenge, with some complete rejections. Further, the combination therapy was associated with an increased ratio of CD8+ effector T cells to regulatory T cells compared to either monotherapy. This study validates the use of radiation with an oncolytic ΔF4LΔJ2R VACV to improve treatment of this malignant brain cancer.
Collapse
Affiliation(s)
- Quinn T Storozynsky
- Department of Oncology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada; Cancer Research Institute of Northern Alberta (CRINA), University of Alberta, Edmonton, AB, Canada
| | | | - Ryan S Noyce
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Amirali B Bukhari
- Department of Oncology, University of Alberta, Edmonton, AB, Canada; Cancer Research Institute of Northern Alberta (CRINA), University of Alberta, Edmonton, AB, Canada
| | - Xuefei Han
- Department of Oncology, University of Alberta, Edmonton, AB, Canada; Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Natalie Snyder
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Brittany A Umer
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Armin M Gamper
- Department of Oncology, University of Alberta, Edmonton, AB, Canada; Cancer Research Institute of Northern Alberta (CRINA), University of Alberta, Edmonton, AB, Canada
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Edmonton, AB, Canada; Cancer Research Institute of Northern Alberta (CRINA), University of Alberta, Edmonton, AB, Canada
| | - David H Evans
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Mary M Hitt
- Department of Oncology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada; Cancer Research Institute of Northern Alberta (CRINA), University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
11
|
Zhu Z, McGray AJR, Jiang W, Lu B, Kalinski P, Guo ZS. Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways. Mol Cancer 2022; 21:196. [PMID: 36221123 PMCID: PMC9554963 DOI: 10.1186/s12943-022-01664-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Oncolytic viruses (OVs) represent a new class of multi-modal immunotherapies for cancer, with OV-elicited antitumor immunity being key to their overall therapeutic efficacy. Currently, the clinical effectiveness of OV as monotherapy remains limited, and thus investigators have been exploring various combinations with other anti-cancer agents and demonstrated improved therapeutic efficacy. As cancer cells have evolved to alter key signaling pathways for enhanced cell proliferation, cancer progression and metastasis, these cellular and molecular changes offer promising targets for rational cancer therapy design. In this regard, key molecules in relevant signaling pathways for cancer cells or/and immune cells, such as EGFR-KRAS (e.g., KRASG12C), PI3K-AKT-mTOR, ERK-MEK, JAK-STAT, p53, PD-1-PD-L1, and epigenetic, or immune pathways (e.g., histone deacetylases, cGAS-STING) are currently under investigation and have the potential to synergize with OV to modulate the immune milieu of the tumor microenvironment (TME), thereby improving and sustaining antitumor immunity. As many small molecule modulators of these signaling pathways have been developed and have shown strong therapeutic potential, here we review key findings related to both OV-mediated immunotherapy and the utility of small molecule modulators of signaling pathways in immuno-oncology. Then, we focus on discussion of the rationales and potential strategies for combining OV with selected modulators targeting key cellular signaling pathways in cancer or/and immune cells to modulate the TME and enhance antitumor immunity and therapeutic efficacy. Finally, we provide perspectives and viewpoints on the application of novel experimental systems and technologies that can propel this exciting branch of medicine into a bright future.
Collapse
Affiliation(s)
- Zhi Zhu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - A J Robert McGray
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Weijian Jiang
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Binfeng Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA. .,Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
12
|
Yun CO, Hong J, Yoon AR. Current clinical landscape of oncolytic viruses as novel cancer immunotherapeutic and recent preclinical advancements. Front Immunol 2022; 13:953410. [PMID: 36091031 PMCID: PMC9458317 DOI: 10.3389/fimmu.2022.953410] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses (OVs) have been gaining attention in the pharmaceutical industry as a novel immunotherapeutic and therapeutic adjuvant due to their ability to induce and boost antitumor immunity through multiple mechanisms. First, intrinsic mechanisms of OVs that enable exploitation of the host immune system (e.g., evading immune detection) can nullify the immune escape mechanism of tumors. Second, many types of OVs have been shown to cause direct lysis of tumor cells, resulting in an induction of tumor-specific T cell response mediated by release of tumor-associated antigens and danger signal molecules. Third, armed OV-expressing immune stimulatory therapeutic genes could be highly expressed in tumor tissues to further improve antitumor immunity. Last, these OVs can inflame cold tumors and their microenvironment to be more immunologically favorable for other immunotherapeutics. Due to these unique characteristics, OVs have been tested as an adjuvant of choice in a variety of therapeutics. In light of these promising attributes of OVs in the immune-oncology field, the present review will examine OVs in clinical development and discuss various strategies that are being explored in preclinical stages for the next generation of OVs that are optimized for immunotherapy applications.
Collapse
Affiliation(s)
- Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, South Korea
- GeneMedicine CO., Ltd., Seoul, South Korea
| | | | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, South Korea
| |
Collapse
|
13
|
Therapeutic Efficacy of Oncolytic Viruses in Fighting Cancer: Recent Advances and Perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3142306. [PMID: 35910836 PMCID: PMC9337963 DOI: 10.1155/2022/3142306] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/20/2022] [Accepted: 05/26/2022] [Indexed: 12/22/2022]
Abstract
Immunotherapy is at the cutting edge of modern cancer treatment. Innovative medicines have been developed with varying degrees of success that target all aspects of tumor biology: tumors, niches, and the immune system. Oncolytic viruses (OVs) are a novel and potentially immunotherapeutic approach for cancer treatment. OVs reproduce exclusively in cancer cells, causing the tumor mass to lyse. OVs can also activate the immune system in addition to their primary activity. Tumors create an immunosuppressive environment by suppressing the immune system’s ability to respond to tumor cells. By injecting OVs into the tumor, the immune system is stimulated, allowing it to generate a robust and long-lasting response against the tumor. The essential biological properties of oncolytic viruses, as well as the underlying mechanisms that enable their usage as prospective anticancer medicines, are outlined in this review. We also discuss the increased efficacy of virotherapy when combined with other cancer medications.
Collapse
|
14
|
Stereotactic body radiation combined with oncolytic vaccinia virus induces potent anti-tumor effect by triggering tumor cell necroptosis and DAMPs. Cancer Lett 2021; 523:149-161. [PMID: 34606928 DOI: 10.1016/j.canlet.2021.09.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023]
Abstract
Radiation is an integral part of cancer therapy. With the emergence of oncolytic vaccinia virus immunotherapy, it is important to study the combination of radiation and vaccinia virus in cancer therapy. In this study, we investigated the anti-tumor effect of and immune mechanisms underlying the combination of high-dose hypofractionated stereotactic body radiotherapy (SBRT) and oncolytic vaccinia virus in preclinical murine models. The combination enhanced the in vivo anti-tumor effect and increased the numbers of splenic CD4+Ki-67+ helper T lymphocytes and CD8+Ki-67+ cytotoxic T lymphocytes. Combinational therapy also increased tumor-infiltrating CD3+CD4+ helper T lymphocytes and CD3+CD8+ cytotoxic T lymphocytes, but decreased tumor-infiltrating regulatory T cells. In addition, SBRT combined with oncolytic vaccinia virus enhanced in vitro cell death, partly through necroptosis, and subsequent release of damage-associated molecular patterns (DAMPs), and shifted the macrophage M1/M2 ratio. We concluded that SBRT combined with oncolytic vaccinia virus can trigger tumor cell necroptosis and modify macrophages through the release of DAMPs, and then generate potent anti-tumor immunity and effects. Thus, combined therapy is potentially an important strategy for clinical cancer therapy.
Collapse
|
15
|
Modeling the Spatiotemporal Dynamics of Oncolytic Viruses and Radiotherapy as a Treatment for Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:3642654. [PMID: 32411281 PMCID: PMC7201857 DOI: 10.1155/2020/3642654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/29/2020] [Accepted: 03/24/2020] [Indexed: 11/26/2022]
Abstract
Virotherapy is a novel treatment for cancer, which may be delivered as a single agent or in combination with other therapies. Research studies indicated that the combination of viral therapy and radiation therapy has synergistic antitumor effects in in vitro and in vivo. In this paper, we proposed two models in the form of partial differential equations to investigate the spatiotemporal dynamics of tumor cells under virotherapy and radiovirotherapy. We first presented a virotherapy model and solved it numerically for different values of the parameters related to the oncolytic virus, which is administered continuously. The results showed that virotherapy alone cannot eradicate cancer, and thus, we extended the model to include the effect of radiotherapy in combination with virotherapy. Numerical investigations were carried out for three modes of radiation delivery which are constant, decaying, and periodic. The numerical results showed that radiovirotherapy leads to complete eradication of the tumor provided that the delivery of radiation is constant. Moreover, there is an optimal timing for administering radiation, as well as an ideal dose that improves the results of the treatment. The virotherapy in our model is given continuously over a certain period of time, and bolus treatment (where virotherapy is given in cycles) could be considered and compared with our results.
Collapse
|
16
|
Heidbuechel JPW, Abate-Daga D, Engeland CE, Enderling H. Mathematical Modeling of Oncolytic Virotherapy. Methods Mol Biol 2020; 2058:307-320. [PMID: 31486048 DOI: 10.1007/978-1-4939-9794-7_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mathematical modeling in biology has a long history as it allows the analysis and simulation of complex dynamic biological systems at little cost. A mathematical model trained on experimental or clinical data can be used to generate and evaluate hypotheses, to ask "what if" questions, and to perform in silico experiments to guide future experimentation and validation. Such models may help identify and provide insights into the mechanisms that drive changes in dynamic systems. While a mathematical model may never replace actual experiments, it can synergize with experiments to save time and resources by identifying experimental conditions that are unlikely to yield favorable outcomes, and by using optimization principles to identify experiments that are most likely to be successful. Over the past decade, numerous models have also been developed for oncolytic virotherapy, ranging from merely theoretic frameworks to fully integrated studies that utilize experimental data to generate actionable hypotheses. Here we describe how to develop such models for specific oncolytic virotherapy experimental setups, and which questions can and cannot be answered using integrated mathematical oncology.
Collapse
Affiliation(s)
- Johannes P W Heidbuechel
- Research Group Mechanisms of Oncolytic Immunotherapy, Clinical Cooperation Unit Virotherapy, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), University Hospital Heidelberg, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Daniel Abate-Daga
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Christine E Engeland
- Research Group Mechanisms of Oncolytic Immunotherapy, Clinical Cooperation Unit Virotherapy, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), University Hospital Heidelberg, Heidelberg, Germany
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| |
Collapse
|
17
|
Gao H, Zhang X, Ding Y, Qiu R, Hong Y, Chen W. Synergistic Suppression Effect on Tumor Growth of Colorectal Cancer by Combining Radiotherapy With a TRAIL-Armed Oncolytic Adenovirus. Technol Cancer Res Treat 2019; 18:1533033819853290. [PMID: 31138083 PMCID: PMC6542122 DOI: 10.1177/1533033819853290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The combination of gene therapy and radiation is a promising new treatment for cancer. This study aimed to clarify the synergistic effect of targeted oncolytic adenovirus (radiotherapy-tumor necrosis factor-related apoptosis-inducing ligand) and radiotherapy on colorectal cancer cells and elucidate the mechanisms of the underlying antitumor activity. Viability, cell cycle status, and apoptosis of treated colorectal cancer cells were determined via MTT and flow cytometric assays. The molecular mechanism underlying apoptotic pathway activation was elucidated through Western blot analysis of caspase-8, caspase-3, and PARP proteins. Combination treatment with radiotherapy-tumor necrosis factor-related apoptosis-inducing ligand and radiotherapy displayed significantly greater antitumor activity than either of the monotherapies. The primary mechanism behind the antitumor activity in the SW480 and Lovo colorectal cancer cell lines was apoptosis induction through the caspase pathway and G1 phase arrest. In an SW480 xenograft model of colorectal cancer, the combination therapy achieved a significantly greater reduction in tumor volume than the monotherapies. Overall, in this study, we demonstrate that the oncolytic radiotherapy-tumor necrosis factor-related apoptosis-inducing ligand construct can sensitize human colorectal cancer cells to radiation-induced apoptosis both in vitro and in vivo. Therefore, our findings point toward a novel synergistic approach to colorectal cancer treatment.
Collapse
Affiliation(s)
- Hangxiang Gao
- 1 Department of Radiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin Zhang
- 2 Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Ding
- 3 Department of Intensive Care Unit, School of Medicine, Sir Run Run Shaw Hospital Xiasha Campus, Zhejiang University, Hangzhou, Zhejiang, China
| | - Rong Qiu
- 4 Department of Pathology and Pathophysiology, Hangzhou Medical University, Hangzhou, Zhejiang, China
| | - Yupeng Hong
- 5 Departments of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wanyuan Chen
- 2 Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Oncolytic vaccinia virus combined with radiotherapy induces apoptotic cell death in sarcoma cells by down-regulating the inhibitors of apoptosis. Oncotarget 2018; 7:81208-81222. [PMID: 27783991 PMCID: PMC5348387 DOI: 10.18632/oncotarget.12820] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/11/2016] [Indexed: 12/13/2022] Open
Abstract
Advanced extremity melanoma and sarcoma present a significant therapeutic challenge, requiring multimodality therapy to treat or even palliate disease. These aggressive tumours are relatively chemo-resistant, therefore new treatment approaches are urgently required. We have previously reported on the efficacy of oncolytic virotherapy (OV) delivered by isolated limb perfusion. In this report, we have improved therapeutic outcomes by combining OV with radiotherapy. In vitro, the combination of oncolytic vaccinia virus (GLV-1h68) and radiotherapy demonstrated synergistic cytotoxicity. This effect was not due to increased viral replication, but mediated through induction of intrinsic apoptosis. GLV-1h68 therapy downregulated the anti-apoptotic BCL-2 proteins (MCL-1 and BCL-XL) and the downstream inhibitors of apoptosis, resulting in cleavage of effector caspases 3 and 7. In an in vivo ILP model, the combination of OV and radiotherapy significantly delayed tumour growth and prolonged survival compared to single agent therapy. These data suggest that the virally-mediated down-regulation of anti-apoptotic proteins may increase the sensitivity of tumour cells to the cytotoxic effects of ionizing radiation. Oncolytic virotherapy represents an exciting candidate for clinical development when delivered by ILP. Its ability to overcome anti-apoptotic signals within tumour cells points the way to further development in combination with conventional anti-cancer therapies.
Collapse
|
19
|
Oliva S, Gambella M, Boccadoro M, Bringhen S. Systemic virotherapy for multiple myeloma. Expert Opin Biol Ther 2017; 17:1375-1387. [PMID: 28796556 DOI: 10.1080/14712598.2017.1364359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The multiple myeloma (MM) treatment scenario has changed considerably over the past few years. Several novel targeted therapies are currently under consideration including oncolytic virotherapy. Areas covered: This review provides an analysis of the mechanisms of action of virotherapy, and summarizes the preclinical and clinical studies of systemic virotherapy developed for the treatment of MM. Different types of viruses have been identified, including: adenovirus, vaccinia virus, herpes simplex virus 1, myxoma virus, reovirus, measles virus, vesicular stomatitis virus and coxsackievirus A21. Expert opinion: The above-mentioned viruses can do more than simply infect and kill malignant plasma cells alone or in combination with chemo and/or radiotherapy. In fact, some of them can also be used to purge myeloma cells from an autologous bone marrow (BM) transplant. Further investigations are required to better explore the best therapeutic combinations for MM and to also overcome antiviral response immunity that can limit the efficacy of this therapeutic strategy.
Collapse
Affiliation(s)
- Stefania Oliva
- a Myeloma Unit, Division of Hematology , University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino , Torino , Italy
| | - Manuela Gambella
- a Myeloma Unit, Division of Hematology , University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino , Torino , Italy
| | - Mario Boccadoro
- a Myeloma Unit, Division of Hematology , University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino , Torino , Italy
| | - Sara Bringhen
- a Myeloma Unit, Division of Hematology , University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino , Torino , Italy
| |
Collapse
|
20
|
Mell LK, Brumund KT, Daniels GA, Advani SJ, Zakeri K, Wright ME, Onyeama SJ, Weisman RA, Sanghvi PR, Martin PJ, Szalay AA. Phase I Trial of Intravenous Oncolytic Vaccinia Virus (GL-ONC1) with Cisplatin and Radiotherapy in Patients with Locoregionally Advanced Head and Neck Carcinoma. Clin Cancer Res 2017; 23:5696-5702. [PMID: 28679776 DOI: 10.1158/1078-0432.ccr-16-3232] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/21/2017] [Accepted: 06/27/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Preclinical models have shown that the effectiveness of GL-ONC1, a modified oncolytic vaccinia virus, is enhanced by radiation and chemotherapy. The purpose of this study was to determine the safety of GL-ONC1 when delivered intravenously with chemoradiotherapy to patients with primary, nonmetastatic head and neck cancer.Experimental Design: Patients with locoregionally advanced unresected, nonmetastatic carcinoma of the head/neck, excluding stage III-IVA p16-positive oropharyngeal cancers, were treated with escalating doses and cycles of intravenous GL-ONC1, along with radiotherapy and chemotherapy. The primary aims were to define the MTD and dose-limiting toxicities, and to recommend a dose for phase II trials.Results: Between May 2012 and December 2014, 19 patients were enrolled. The most frequent adverse reactions included grade 1-2 rigors, fever, fatigue, and rash. Grade 3 adverse reactions included hypotension, mucositis, nausea, and vomiting. In 2 patients, the rash was confirmed as viral in origin by fluorescence imaging and viral plaque assay. In 4 patients, viral presence in tumor was confirmed on midtreatment biopsy by quantitative PCR. In 1 patient, live virus was confirmed in a tongue tumor 7 days after receiving the first dose of virus. The MTD was not reached. With median follow-up of 30 months, 1-year (2-year) progression-free survival and overall survival were 74.4% (64.1%) and 84.6% (69.2%), respectively.Conclusions: Delivery of GL-ONC1 is safe and feasible in patients with locoregionally advanced head/neck cancer undergoing standard chemoradiotherapy. A phase II study is warranted to further investigate this novel treatment strategy. Clin Cancer Res; 23(19); 5696-702. ©2017 AACR.
Collapse
Affiliation(s)
- Loren K Mell
- Center for Translational Radiation Medicine and Imaging, Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California.
| | - Kevin T Brumund
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, California
| | - Gregory A Daniels
- Center for Personalized Cancer Therapy, and Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, California
| | - Sunil J Advani
- Center for Translational Radiation Medicine and Imaging, Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Kaveh Zakeri
- Center for Translational Radiation Medicine and Imaging, Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Mary E Wright
- Center for Translational Radiation Medicine and Imaging, Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Sara-Jane Onyeama
- Center for Translational Radiation Medicine and Imaging, Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Robert A Weisman
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, California
| | - Parag R Sanghvi
- Center for Translational Radiation Medicine and Imaging, Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Peter J Martin
- Department of Otolaryngology, Kaiser Permanente, San Diego, California
| | - Aladar A Szalay
- Center for Translational Radiation Medicine and Imaging, Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| |
Collapse
|
21
|
Wilkinson MJ, Smith HG, Pencavel TD, Mansfield DC, Kyula‐Currie J, Khan AA, McEntee G, Roulstone V, Hayes AJ, Harrington KJ. Isolated limb perfusion with biochemotherapy and oncolytic virotherapy combines with radiotherapy and surgery to overcome treatment resistance in an animal model of extremity soft tissue sarcoma. Int J Cancer 2016; 139:1414-22. [PMID: 27116656 PMCID: PMC5082541 DOI: 10.1002/ijc.30162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/15/2016] [Indexed: 11/18/2022]
Abstract
The management of locally advanced or recurrent extremity sarcoma often necessitates multimodal therapy to preserve a limb, of which isolated limb perfusion (ILP) is a key component. However, with standard chemotherapeutic agents used in ILP, the duration of response is limited. Novel agents or treatment combinations are urgently needed to improve outcomes. Previous work in an animal model has demonstrated the efficacy of oncolytic virotherapy when delivered by ILP and, in this study, we report further improvements from combining ILP‐delivered oncolytic virotherapy with radiation and surgical resection. In vitro, the combination of radiation with an oncolytic vaccinia virus (GLV‐1h68) and melphalan demonstrated increased cytotoxicity in a panel of sarcoma cell lines. The effects were mediated through activation of the intrinsic apoptotic pathway. In vivo, combinations of radiation, oncolytic virotherapy and standard ILP resulted in delayed tumour growth and prolonged survival when compared with standard ILP alone. However, local disease control could only be secured when such treatment was combined with surgical resection, the timing of which was crucial in determining outcome. Combinations of oncolytic virotherapy with surgical resection and radiation have direct clinical relevance in extremity sarcoma and represent an exciting prospect for improving outcomes in this pathology. What's new? The management of locally advanced or recurrent extremity sarcoma often necessitates multimodal therapy to preserve a limb, of which isolated limb perfusion (ILP) is a key component. But the response to standard ILP is short‐lived in the majority of cases, making novel agents or treatment combinations urgently needed. Previous work in an animal model has demonstrated the effectiveness of combining oncolytic virotherapy with ILP. However, local disease progression was delayed rather than prevented. This paper demonstrates that durable local disease control can be achieved when ILP‐delivered oncolytic virotherapy is utilised as an induction therapy prior to surgical resection and radiotherapy.
Collapse
Affiliation(s)
- Michelle J. Wilkinson
- Targeted Therapy TeamThe Institute of Cancer ResearchLondonUnited Kingdom
- Sarcoma/Melanoma Unit, Department Of Academic SurgeryThe Royal Marsden Hospital NHS Foundation TrustLondonUnited Kingdom
| | - Henry G. Smith
- Targeted Therapy TeamThe Institute of Cancer ResearchLondonUnited Kingdom
- Sarcoma/Melanoma Unit, Department Of Academic SurgeryThe Royal Marsden Hospital NHS Foundation TrustLondonUnited Kingdom
| | - Timothy D. Pencavel
- Targeted Therapy TeamThe Institute of Cancer ResearchLondonUnited Kingdom
- Sarcoma/Melanoma Unit, Department Of Academic SurgeryThe Royal Marsden Hospital NHS Foundation TrustLondonUnited Kingdom
| | - David C. Mansfield
- Targeted Therapy TeamThe Institute of Cancer ResearchLondonUnited Kingdom
| | - Joan Kyula‐Currie
- Targeted Therapy TeamThe Institute of Cancer ResearchLondonUnited Kingdom
| | - Aadil A. Khan
- Targeted Therapy TeamThe Institute of Cancer ResearchLondonUnited Kingdom
| | - Gráinne McEntee
- Targeted Therapy TeamThe Institute of Cancer ResearchLondonUnited Kingdom
| | - Victoria Roulstone
- Targeted Therapy TeamThe Institute of Cancer ResearchLondonUnited Kingdom
| | - Andrew J. Hayes
- Sarcoma/Melanoma Unit, Department Of Academic SurgeryThe Royal Marsden Hospital NHS Foundation TrustLondonUnited Kingdom
| | | |
Collapse
|
22
|
Mansfield DC, Kyula JN, Rosenfelder N, Chao-Chu J, Kramer-Marek G, Khan AA, Roulstone V, McLaughlin M, Melcher AA, Vile RG, Pandha HS, Khoo V, Harrington KJ. Oncolytic vaccinia virus as a vector for therapeutic sodium iodide symporter gene therapy in prostate cancer. Gene Ther 2016; 23:357-68. [PMID: 26814609 PMCID: PMC4827015 DOI: 10.1038/gt.2016.5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/07/2015] [Accepted: 01/13/2016] [Indexed: 12/16/2022]
Abstract
Oncolytic strains of vaccinia virus are currently in clinical development with clear evidence of safety and promising signs of efficacy. Addition of therapeutic genes to the viral genome may increase the therapeutic efficacy of vaccinia. We evaluated the therapeutic potential of vaccinia virus expressing the sodium iodide symporter (NIS) in prostate cancer models, combining oncolysis, external beam radiotherapy and NIS-mediated radioiodide therapy. The NIS-expressing vaccinia virus (VV-NIS), GLV-1h153, was tested in in vitro analyzes of viral cell killing, combination with radiotherapy, NIS expression, cellular radioiodide uptake and apoptotic cell death in PC3, DU145, LNCaP and WPMY-1 human prostate cell lines. In vivo experiments were carried out in PC3 xenografts in CD1 nude mice to assess NIS expression and tumor radioiodide uptake. In addition, the therapeutic benefit of radioiodide treatment in combination with viral oncolysis and external beam radiotherapy was measured. In vitro viral cell killing of prostate cancers was dose- and time-dependent and was through apoptotic mechanisms. Importantly, combined virus therapy and iodizing radiation did not adversely affect oncolysis. NIS gene expression in infected cells was functional and mediated uptake of radioiodide both in vitro and in vivo. Therapy experiments with both xenograft and immunocompetent Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mouse models showed that the addition of radioiodide to VV-NIS-infected tumors was more effective than each single-agent therapy, restricting tumor growth and increasing survival. In conclusion, VV-NIS is effective in prostate cancer models. This treatment modality would be an attractive complement to existing clinical radiotherapy practice.
Collapse
Affiliation(s)
- D C Mansfield
- Divisions of Cancer Biology and Radiotherapy and Imaging, The Institute of Cancer Research, Chester Beatty Labs, London, UK
| | - J N Kyula
- Divisions of Cancer Biology and Radiotherapy and Imaging, The Institute of Cancer Research, Chester Beatty Labs, London, UK
| | - N Rosenfelder
- Divisions of Cancer Biology and Radiotherapy and Imaging, The Institute of Cancer Research, Chester Beatty Labs, London, UK
| | - J Chao-Chu
- Divisions of Cancer Biology and Radiotherapy and Imaging, The Institute of Cancer Research, Chester Beatty Labs, London, UK
| | - G Kramer-Marek
- Divisions of Cancer Biology and Radiotherapy and Imaging, The Institute of Cancer Research, Chester Beatty Labs, London, UK
| | - A A Khan
- Divisions of Cancer Biology and Radiotherapy and Imaging, The Institute of Cancer Research, Chester Beatty Labs, London, UK
| | - V Roulstone
- Divisions of Cancer Biology and Radiotherapy and Imaging, The Institute of Cancer Research, Chester Beatty Labs, London, UK
| | - M McLaughlin
- Divisions of Cancer Biology and Radiotherapy and Imaging, The Institute of Cancer Research, Chester Beatty Labs, London, UK
| | - A A Melcher
- Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, UK
| | - R G Vile
- Molecular Medicine Program, Mayo Clinic, Rochester, MN, USA
| | - H S Pandha
- Postgraduate Medical School, The University of Surrey, Guildford, UK
| | - V Khoo
- Divisions of Cancer Biology and Radiotherapy and Imaging, The Institute of Cancer Research, Chester Beatty Labs, London, UK
- The Royal Marsden Hospital, London, UK
- University of Melbourne and Monash University, Victoria, Australia
| | - K J Harrington
- Divisions of Cancer Biology and Radiotherapy and Imaging, The Institute of Cancer Research, Chester Beatty Labs, London, UK
- The Royal Marsden Hospital, London, UK
| |
Collapse
|
23
|
Malhotra A, Sendilnathan A, Old MO, Wise-Draper TM. Oncolytic virotherapy for head and neck cancer: current research and future developments. Oncolytic Virother 2015; 4:83-93. [PMID: 27512673 PMCID: PMC4918384 DOI: 10.2147/ov.s54503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Head and neck cancer (HNC) is the sixth most common malignancy worldwide. Despite recent advancements in surgical, chemotherapy, and radiation treatments, HNC remains a highly morbid and fatal disease. Unlike many other cancers, local control rather than systemic control is important for HNC survival. Therefore, novel local therapy in addition to systemic therapy is urgently needed. Oncolytic virotherapy holds promise in this regard as viruses can be injected intratumorally as well as intravenously with excellent safety profiles. This review will discuss the recent advancements in oncolytic virotherapy, highlighting some of the most promising candidates and modifications to date.
Collapse
Affiliation(s)
- Akshiv Malhotra
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Arun Sendilnathan
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Matthew O Old
- Department of Otolaryngology-Head and Neck Surgery, Ohio State University, Columbus, OH, USA
| | - Trisha M Wise-Draper
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
24
|
Oncolytic vaccinia virus synergizes with irinotecan in colorectal cancer. Mol Oncol 2015; 9:1539-52. [PMID: 26004084 DOI: 10.1016/j.molonc.2015.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 04/15/2015] [Accepted: 04/24/2015] [Indexed: 12/17/2022] Open
Abstract
Metastatic colorectal cancer (CRC) is complex clinical challenge for which there are limited treatment options. Chemotherapy with or without surgery provides moderate improvements in overall survival and quality of life; nevertheless the 5-year survival remains below 30%. Oncolytic vaccinia virus (VV) shows strong anti-tumour activity in models of CRC, however transient delays in disease progression are insufficient to lead to long-term survival. Here we examined the efficacy of VV with oxaliplatin or SN-38 (active metabolite of irinotecan) in CRC cell lines in vitro and VV with irinotecan in an orthotopic model of metastatic CRC. Synergistic improvements in in vitro cell killing were observed in multiple cell lines. Combination therapy was well tolerated in tumour-bearing mice and the median survival was significantly increased relative to monotherapy despite a drug-dependent decrease in the mean tumour titer. Increased apoptosis following in vitro and in vivo combination therapy was observed. In vitro cell cycle analysis showed increases in S-phase cells following infection occurred in both infected and uninfected cell populations. This corresponded to a 4-fold greater increase in apoptosis in the uninfected compared to infected cells following combination therapy. Combination treatment strategies are among the best options for patients with advanced cancers. VV is currently under clinical investigation in patients with CRC and the data presented here suggest that its combination with irinotecan may provide benefit to a subset of CRC patients. Further, investigation of this combination is necessary to determine the tumour characteristics responsible for mediating synergy.
Collapse
|
25
|
Pencavel TD, Wilkinson MJ, Mansfield DC, Khan AA, Seth R, Karapanagiotou EM, Roulstone V, Aguilar RJ, Chen NG, Szalay AA, Hayes AJ, Harrington KJ. Isolated limb perfusion with melphalan, tumour necrosis factor-alpha and oncolytic vaccinia virus improves tumour targeting and prolongs survival in a rat model of advanced extremity sarcoma. Int J Cancer 2014; 136:965-76. [DOI: 10.1002/ijc.29059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 05/08/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Tim D. Pencavel
- Targeted Therapy Team, The Institute of Cancer Research; London United Kingdom
- Department of Academic Surgery; Sarcoma/Melanoma Unit, Royal Marsden Hospital NHS Foundation Trust; London United Kingdom
| | - Michelle J. Wilkinson
- Targeted Therapy Team, The Institute of Cancer Research; London United Kingdom
- Department of Academic Surgery; Sarcoma/Melanoma Unit, Royal Marsden Hospital NHS Foundation Trust; London United Kingdom
| | - David C. Mansfield
- Targeted Therapy Team, The Institute of Cancer Research; London United Kingdom
| | - Aadil A. Khan
- Targeted Therapy Team, The Institute of Cancer Research; London United Kingdom
| | - Rohit Seth
- Targeted Therapy Team, The Institute of Cancer Research; London United Kingdom
| | | | - Victoria Roulstone
- Targeted Therapy Team, The Institute of Cancer Research; London United Kingdom
| | | | - Nanhai G. Chen
- Genelux Corporation, San Diego Science Center; San Diego CA
- Department of Radiation Oncology, Rebecca and John Moores Comprehensive Cancer Center; University of California; San Diego CA
| | - Aladar A. Szalay
- Genelux Corporation, San Diego Science Center; San Diego CA
- Department of Radiation Oncology, Rebecca and John Moores Comprehensive Cancer Center; University of California; San Diego CA
- Department of Biochemistry, Rudolf Virchow Center for Experimental Biomedicine; University of Würzberg; Am Hubland Germany
- Institute for Molecular Infection Biology; University of Würzberg; Am Hubland Germany
| | - Andrew J. Hayes
- Department of Academic Surgery; Sarcoma/Melanoma Unit, Royal Marsden Hospital NHS Foundation Trust; London United Kingdom
| | - Kevin J. Harrington
- Targeted Therapy Team, The Institute of Cancer Research; London United Kingdom
| |
Collapse
|
26
|
Nichols AC, Yoo J, Um S, Mundi N, Palma DA, Fung K, Macneil SD, Koropatnick J, Mymryk JS, Barrett JW. Vaccinia virus outperforms a panel of other poxviruses as a potent oncolytic agent for the control of head and neck squamous cell carcinoma cell lines. Intervirology 2013; 57:17-22. [PMID: 23942307 DOI: 10.1159/000353854] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/13/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the fifth most common cancer worldwide. Existing therapies for advanced tumors have high failure rates and can have severe consequences in terms of pain, disfigurement, and poor speech and swallowing function. New treatment strategies are needed to improve outcomes for patients suffering with this disease and oncolytic viruses represent a promising approach. METHODS We infected six well-characterized HNSCC cell lines (Cal27, Detroit562, FaDu, SCC4, SCC15, SCC25), with increasing doses of a panel of poxviruses (including myxoma, vaccinia, raccoonpox and tanapox viruses) modified to express green fluorescence protein to determine which virus was the most effective oncolytic agent in cell-based assays. RESULTS While myxoma, raccoonpox and tanapox displayed differing efficacy in the panel of cell lines, vaccinia virus was the most potent of the tested poxviruses and was highly effective in controlling cell growth in all cell lines. CONCLUSION Oncolytic poxviruses, particularly vaccinia virus, were effective in killing HNSCC in vitro and hold promise as potential treatments for patients with HNSCC.
Collapse
Affiliation(s)
- Anthony C Nichols
- Department of Otolaryngology Head and Neck Surgery, Western University, London, Ont., Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Buckel L, Advani SJ, Frentzen A, Zhang Q, Yu YA, Chen NG, Ehrig K, Stritzker J, Mundt AJ, Szalay AA. Combination of fractionated irradiation with anti-VEGF expressing vaccinia virus therapy enhances tumor control by simultaneous radiosensitization of tumor associated endothelium. Int J Cancer 2013; 133:2989-99. [PMID: 23729266 DOI: 10.1002/ijc.28296] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/29/2013] [Indexed: 02/04/2023]
Abstract
Oncolytic viruses are currently in clinical trials for a variety of tumors, including high grade gliomas. A characteristic feature of high grade gliomas is their high vascularity and treatment approaches targeting tumor endothelium are under investigation, including bevacizumab. The aim of this study was to improve oncolytic viral therapy by combining it with ionizing radiation and to radiosensitize tumor vasculature through a viral encoded anti-angiogenic payload. Here, we show how vaccinia virus-mediated expression of a single-chain antibody targeting VEGF resulted in radiosensitization of the tumor-associated vasculature. Cell culture experiments demonstrated that purified vaccinia virus encoded antibody targeting VEGF reversed VEGF-induced radioresistance specifically in endothelial cells but not tumor cells. In a subcutaneous model of U-87 glioma, systemically administered oncolytic vaccinia virus expressing anti-VEGF antibody (GLV-1h164) in combination with fractionated irradiation resulted in enhanced tumor growth inhibition when compared to nonanti-VEGF expressing oncolytic virus (GLV-1h68) and irradiation. Irradiation of tumor xenografts resulted in an increase in VACV replication of both GLV-1h68 and GLV-1h164. However, GLV-1h164 in combination with irradiation resulted in a drastic decrease in intratumoral VEGF levels and tumor vessel numbers in comparison to GLV-1h68 and irradiation. These findings demonstrate the incorporation of an oncolytic virus expressing an anti-VEGF antibody (GLV-1h164) into a fractionated radiation scheme to target tumor cells by enhanced VACV replication in irradiated tumors as well as to radiosensitize tumor endothelium which results in enhanced efficacy of combination therapy of human glioma xenografts.
Collapse
Affiliation(s)
- Lisa Buckel
- Department of Biochemistry, Rudolph Virchow Center for Experimental Biomedicine and Institute for Molecular Infection Biology, University of Würzburg, D-97074, Würzburg, Germany; Genelux Corporation, San Diego Science Center, San Diego, CA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Oncolytic virotherapy is a new strategy to reduce tumor burden through selective virus replication in rapidly proliferating cells. Oncolytic viruses are members of at least ten virus families, each with its advantages and disadvantages. Here, I briefly review the recent advances and key challenges, as exemplified by the best-studied platforms. Recent advances include preclinical proof of feasibility, clinical evidence of tolerability and effectiveness, and the development of new strategies to improve efficacy. These include engineered tumor selectivity and expression of antitumorigenic genes that could function independently of virus replication, identification of combinatorial therapies that accelerate intratumoral virus propagation, and modification of immune responses and vascular delivery for treatment of metastatic disease. Key challenges are to select "winners" from the distinct oncolytic platforms that can stimulate anti-cancer immunity without affecting virus replication and can lyse cancer stem cells, which are most likely responsible for tumor maintenance, aggressiveness, and recurrence. Preventing the emergence of resistant tumor cells during virotherapy through the activation of multiple death pathways, the development of a better understanding of the mechanisms of cancer stem-cell lysis, and the development of more meaningful preclinical animal models are additional challenges for the next-generation of engineered viruses.
Collapse
Affiliation(s)
- Laure Aurelian
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Synergistic cytotoxicity of radiation and oncolytic Lister strain vaccinia in (V600D/E)BRAF mutant melanoma depends on JNK and TNF-α signaling. Oncogene 2013; 33:1700-12. [PMID: 23624923 DOI: 10.1038/onc.2013.112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 01/10/2013] [Accepted: 02/13/2013] [Indexed: 02/07/2023]
Abstract
Melanoma is an aggressive skin cancer that carries an extremely poor prognosis when local invasion, nodal spread or systemic metastasis has occurred. Recent advances in melanoma biology have revealed that RAS-RAF-MEK-ERK signaling has a pivotal role in governing disease progression and treatment resistance. Proof-of-concept clinical studies have shown that direct BRAF inhibition yields impressive responses in advanced disease but these are short-lived as treatment resistance rapidly emerges. Therefore, there is a pressing need to develop new targeted strategies for BRAF mutant melanoma. As such, oncolytic viruses represent a promising cancer-specific approach with significant activity in melanoma. This study investigated interactions between genetically-modified vaccinia virus (GLV-1h68) and radiotherapy in melanoma cell lines with BRAF mutant, Ras mutant or wild-type genotype. Preclinical studies revealed that GLV-1h68 combined with radiotherapy significantly increased cytotoxicity and apoptosis relative to either single agent in (V600D)BRAF/(V600E)BRAF mutant melanoma in vitro and in vivo. The mechanism of enhanced cytotoxicity with GLV-1h68/radiation (RT) was independent of viral replication and due to attenuation of JNK, p38 and ERK MAPK phosphorylation specifically in BRAF mutant cells. Further studies showed that JNK pathway inhibition sensitized BRAF mutant cells to GLV-1h68-mediated cell death, mimicking the effect of RT. GLV-1h68 infection activated MAPK signaling in (V600D)BRAF/(V600E)BRAF mutant cell lines and this was associated with TNF-α secretion which, in turn, provided a prosurvival signal. Combination GLV-1h68/RT (or GLV-1h68/JNK inhibition) caused abrogation of TNF-α secretion. These data provide a strong rationale for combining GLV-1h68 with irradiation in (V600D/E)BRAF mutant tumors.
Collapse
|