1
|
Wen W, Jin K, Che Y, Du LY, Wang LN. Arnicolide D Inhibits Oxidative Stress-induced Breast Cancer Cell Growth and Invasion through Apoptosis, Ferroptosis, and Parthanatos. Anticancer Agents Med Chem 2024; 24:836-844. [PMID: 36503456 DOI: 10.2174/1871520623666221208102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/15/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Breast cancer is the most common malignant tumor in women, and its pathogenesis is very complicated. More and more studies have found that Traditional Chinese Medicine plays an important role in tumor prevention. OBJECTIVE To investigate the mechanism of arnicolide D isolated from Centipeda minima in breast cancer. METHODS Cell Counting Kit-8 (CCK-8), western blot, RT-qPCR, ELISA, flow cytometry, and Transwell were used to detect the effect of arnicolide D on the biological function of breast cancer cells. RESULTS Arnicolide D promoted reactive oxygen species (ROS) production and induced a decrease in mitochondrial membrane potential in breast cancer cells, thereby inhibiting cell viability and increasing lactate dehydrogenase (LDH) release. Arnicolide D activated the classical apoptosis pathway to induce cell apoptosis; it significantly promoted PARP-1 expression, enhanced the nuclear translocation of apoptosis-inducing factor (AIF), and reduced the expression of AIF in mitochondria, indicating that it can induce the occurrence of parthanatos in a ROS dependent manner. In addition, arnicolide D down-regulated glutathione peroxidase 4 (GPX4) expression and increased the accumulation of Fe2+ and malondialdehyde (MDA), thereby activating ferroptosis. Apoptosis inhibitor, ferroptosis inhibitor, PARP inhibitor, PARP-1 siRNA, AIF siRNA and GPX4 overexpression vector significantly attenuated the inhibitory effect of arnicolide D on cell viability and reduced LDH release, which indicates that arnicolide D inhibits breast cancer cell growth by inducing apoptosis, parthanatos and ferroptosis. Arnicolide D also reduced breast cancer cell invasion and inhibited the expression of matrix metallopeptidase (MMP)-2 and MMP-9. CONCLUSION Arnicolide D can activate a variety of cell death modes by inducing oxidative stress, thereby inhibiting the growth and invasion of breast cancer cells, indicating that arnicolide D has a good anti-tumor effect.
Collapse
Affiliation(s)
- Wei Wen
- General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Ke Jin
- Emergency Department, The second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Ying Che
- Ultrasonic Diagnostics Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Lin-Yao Du
- Ultrasonic Diagnostics Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Li-Na Wang
- Ultrasonic Diagnostics Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| |
Collapse
|
2
|
Correa-Arzate L, Portilla-Robertson J, Ramírez-Jarquín JO, Jacinto-Alemán LF, Mejía-Velázquez CP, Villanueva-Sánchez FG, Rodríguez-Vázquez M. LRP5, SLC6A3, and SOX10 Expression in Conventional Ameloblastoma. Genes (Basel) 2023; 14:1524. [PMID: 37628576 PMCID: PMC10453908 DOI: 10.3390/genes14081524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Cell proliferation and invasion are characteristic of many tumors, including ameloblastoma, and are important features to target in possible future therapeutic applications. OBJECTIVE The objective of this study was the identification of key genes and inhibitory drugs related to the cell proliferation and invasion of ameloblastoma using bioinformatic analysis. METHODS The H10KA_07_38 gene profile database was analyzed by Rstudio and ShinyGO Gene Ontology enrichment. String, Cytoscape-MCODE, and Kaplan-Meier plots were generated, which were subsequently validated by RT-qPCR relative expression and immunoexpression analyses. To propose specific inhibitory drugs, a bioinformatic search using Drug Gene Budger and DrugBank was performed. RESULTS A total of 204 significantly upregulated genes were identified. Gene ontology enrichment analysis identified four pathways related to cell proliferation and cell invasion. A total of 37 genes were involved in these pathways, and 11 genes showed an MCODE score of ≥0.4; however, only SLC6A3, SOX10, and LRP5 were negatively associated with overall survival (HR = 1.49 (p = 0.0072), HR = 1.55 (p = 0.0018), and HR = 1.38 (p = 0.025), respectively). The RT-qPCR results confirmed the significant differences in expression, with overexpression of >2 for SLC6A3 and SOX10. The immunoexpression analysis indicated positive LRP5 and SLC6A3 expression. The inhibitory drugs bioinformatically obtained for the above three genes were parthenolide and vorinostat. CONCLUSIONS We identify LRP5, SLC6A3, and SOX10 as potentially important genes related to cell proliferation and invasion in the pathogenesis of ameloblastomas, along with both parthenolide and vorinostat as inhibitory drugs that could be further investigated for the development of novel therapeutic approaches against ameloblastoma.
Collapse
Affiliation(s)
- Lorena Correa-Arzate
- Department of Oral Medicine and Pathology, Postgraduate Division, Dental School, National Autonomous University of Mexico, Mexico City 04510, Mexico (J.P.-R.); (C.P.M.-V.)
| | - Javier Portilla-Robertson
- Department of Oral Medicine and Pathology, Postgraduate Division, Dental School, National Autonomous University of Mexico, Mexico City 04510, Mexico (J.P.-R.); (C.P.M.-V.)
| | - Josué Orlando Ramírez-Jarquín
- Neurosciences Division, Cellular Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Luis Fernando Jacinto-Alemán
- Department of Oral Medicine and Pathology, Postgraduate Division, Dental School, National Autonomous University of Mexico, Mexico City 04510, Mexico (J.P.-R.); (C.P.M.-V.)
| | - Claudia Patricia Mejía-Velázquez
- Department of Oral Medicine and Pathology, Postgraduate Division, Dental School, National Autonomous University of Mexico, Mexico City 04510, Mexico (J.P.-R.); (C.P.M.-V.)
| | | | - Mariana Rodríguez-Vázquez
- Infectomic and Molecular Pathogenesis Department, CINVESTAV, National Polytechnic Institute, Mexico City 07738, Mexico;
| |
Collapse
|
3
|
Liu J, Cui M, Wang Y, Wang J. Trends in parthenolide research over the past two decades: A bibliometric analysis. Heliyon 2023; 9:e17843. [PMID: 37483705 PMCID: PMC10362189 DOI: 10.1016/j.heliyon.2023.e17843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
Parthenolide (PTL) is a new compound extracted from traditional Chinese medicine. In recent years, it has been proven to play an undeniable role in tumors, autoimmune diseases, and inflammatory diseases. Similarly, an increasing number of experiments have also confirmed the biological mechanism of PTL in these diseases. In order to better understand the development trend and potential hot spots of PTL in cancer and other diseases, we conducted a detailed bibliometric analysis. The purpose of presenting this bibliometric analysis was to highlight and inform researchers of the important research directions, co-occurrence relationships and research status in this field. Publications related to PTL research from 2002 to 2022 were extracted on the web of science core collection (WoSCC) platform. CiteSpace, VOSviewers and R package "bibliometrix" were applied to build relevant network diagrams. The bibliometric analysis was presented in terms of performance analysis (including publication statistics, top publishing countries, top publishing institutions, publishing journals and co-cited journals, authors and co-cited authors, co-cited references statistics, citation bursts statistics, keyword statistics and trend topic statistics) and science mapping (including citations by country, citations by institution, citations by journal, citations by author, co-citation analysis, and keyword co-occurrence). The detailed discussion of the results explained the focus and latest trends from the bibliometric analysis. Finally, the current status and shortcomings of the research field on PTLwere clearly pointed out for reference by scholars.
Collapse
Affiliation(s)
- Jiye Liu
- Department of Family Medicine, Shengjing Hospital of China Medical University, 110000 Shenyang, Liaoning, China
- Department of Rehabilitation Medicine, Huludao Central Hospital, 125000 Huludao, Liaoning, China
| | - Meng Cui
- Department of Hospice Care, Shengjing Hospital of China Medical University, 110004 Shenyang, Liaoning, China
| | - Yibing Wang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 110000 Shenyang, Liaoning, China
| | - Jiahe Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, 110000 Shenyang, Liaoning, China
| |
Collapse
|
4
|
Zhu S, Sun P, Bennett S, Charlesworth O, Tan R, Peng X, Gu Q, Kujan O, Xu J. The therapeutic effect and mechanism of parthenolide in skeletal disease, cancers, and cytokine storm. Front Pharmacol 2023; 14:1111218. [PMID: 37033622 PMCID: PMC10080395 DOI: 10.3389/fphar.2023.1111218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Parthenolide (PTL or PAR) was first isolated from Magnolia grandiflora and identified as a small molecule cancer inhibitor. PTL has the chemical structure of C15H20O3 with characteristics of sesquiterpene lactones and exhibits the biological property of inhibiting DNA biosynthesis of cancer cells. In this review, we summarise the recent research progress of medicinal PTL, including the therapeutic effects on skeletal diseases, cancers, and inflammation-induced cytokine storm. Mechanistic investigations reveal that PTL predominantly inhibits NF-κB activation and other signalling pathways, such as reactive oxygen species. As an inhibitor of NF-κB, PTL appears to inhibit several cytokines, including RANKL, TNF-α, IL-1β, together with LPS induced activation of NF-κB and NF-κB -mediated specific gene expression such as IL-1β, TNF-α, COX-2, iNOS, IL-8, MCP-1, RANTES, ICAM-1, VCAM-1. It is also proposed that PTL could inhibit cytokine storms or hypercytokinemia triggered by COVID-19 via blocking the activation of NF-κB signalling. Understanding the pharmacologic properties of PTL will assist us in developing its therapeutic application for medical conditions, including arthritis, osteolysis, periodontal disease, cancers, and COVID-19-related disease.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Sipin Zhu, ; Jiake Xu,
| | - Ping Sun
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Oscar Charlesworth
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Renxiang Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, China
| | - Xing Peng
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiang Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Omar Kujan
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Sipin Zhu, ; Jiake Xu,
| |
Collapse
|
5
|
Kashkooli AB, van Dijk ADJ, Bouwmeester H, van der Krol A. Individual lipid transfer proteins from Tanacetum parthenium show different specificity for extracellular accumulation of sesquiterpenes. PLANT MOLECULAR BIOLOGY 2023; 111:153-166. [PMID: 36255594 PMCID: PMC9849177 DOI: 10.1007/s11103-022-01316-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
A highly specialized function for individual LTPs for different products from the same terpenoid biosynthesis pathway is described and the function of an LTP GPI anchor is studied. Sequiterpenes produced in glandular trichomes of the medicinal plant Tanacetum parthenium (feverfew) accumulate in the subcuticular extracellular space. Transport of these compounds over the plasma membrane is presumably by specialized membrane transporters, but it is still not clear how these hydrophobic compounds are subsequently transported over the hydrophilic cell wall. Here we identified eight so-called non-specific Lipid transfer proteins (nsLTPs) genes that are expressed in feverfew trichomes. A putative function of these eight nsLTPs in transport of the lipophilic sesquiterpene lactones produced in feverfew trichomes, was tested in an in-planta transport assay using transient expression in Nicotiana benthamiana. Of eight feverfew nsLTP candidate genes analyzed, two (TpLTP1 and TpLTP2) can specifically improve extracellular accumulation of the sesquiterpene costunolide, while one nsLTP (TpLTP3) shows high specificity towards export of parthenolide. The specificity of the nsLTPs was also tested in an assay that test for the exclusion capacity of the nsLTP for influx of extracellular substrates. In such assay, TpLTP3 was identified as most effective in blocking influx of both costunolide and parthenolide, when these substrates are infiltrated into the apoplast. The TpLTP3 is special in having a GPI-anchor domain, which is essential for the export activity of TpLTP3. However, addition of the TpLTP3 GPI-anchor domain to TpLTP1 resulted in loss of TpLTP1 export activity. These novel export and exclusion assays thus provide new means to test functionality of plant nsLTPs.
Collapse
Affiliation(s)
- Arman Beyraghdar Kashkooli
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336, Tehran, Iran
| | - Aalt D J van Dijk
- Applied Bioinformatics, Bioscience, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Alexander van der Krol
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
6
|
Jing L, Du Y, Fu D. Characterization of tumor immune microenvironment and cancer therapy for head and neck squamous cell carcinoma through identification of a genomic instability-related lncRNA prognostic signature. Front Genet 2022; 13:979575. [PMID: 36105083 PMCID: PMC9465021 DOI: 10.3389/fgene.2022.979575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents one of the most prevalent and malignant tumors of epithelial origins with unfavorable outcomes. Increasing evidence has shown that dysregulated long non-coding RNAs (lncRNAs) correlate with tumorigenesis and genomic instability (GI), while the roles of GI-related lncRNAs in the tumor immune microenvironment (TIME) and predicting cancer therapy are still yet to be clarified. In this study, transcriptome and somatic mutation profiles with clinical parameters were obtained from the TCGA database. Patients were classified into GI-like and genomic stable (GS)-like groups according to the top 25% and bottom 25% cumulative counts of somatic mutations. Differentially expressed lncRNAs (DElncRNAs) between GI- and GS-like groups were identified as GI-related lncRNAs. These lncRNA-related coding genes were enriched in cancer-related KEGG pathways. Patients totaling 499 with clinical information were randomly divided into the training and validation sets. A total of 18 DElncRNAs screened by univariate Cox regression analysis were associated with overall survival (OS) in the training set. A GI-related lncRNA signature that comprised 10 DElncRNAs was generated through least absolute shrinkage and selection operator (Lasso)-Cox regression analysis. Patients in the high-risk group have significantly decreased OS vs. patients in the low-risk group, which was verified in internal validation and entire HNSCC sets. Integrated HNSCC sets from GEO confirmed the notable survival stratification of the signature. The time-dependent receiver operating characteristic curve demonstrated that the signature was reliable. In addition, the signature retained a strong performance of OS prediction for patients with various clinicopathological features. Cell composition analysis showed high anti-tumor immunity in the low-risk group which was evidenced by increased infiltrating CD8+ T cells and natural killer cells and reduced cancer-associated fibroblasts, which was convinced by immune signatures analysis via ssGSEA algorithm. T helper/IFNγ signaling, co-stimulatory, and co-inhibitory signatures showed increased expression in the low-risk group. Low-risk patients were predicted to be beneficial to immunotherapy, which was confirmed by patients with progressive disease who had high risk scores vs. complete remission patients. Furthermore, the drugs that might be sensitive to HNSCC were identified. In summary, the novel prognostic GILncRNA signature provided a promising approach for characterizing the TIME and predicting therapeutic strategies for HNSCC patients.
Collapse
Affiliation(s)
- Lijun Jing
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Denggang Fu,
| | - Yabing Du
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Denggang Fu,
| | - Denggang Fu
- School of Medicine, Indiana University, Indianapolis, IN, United States
- *Correspondence: Denggang Fu,
| |
Collapse
|
7
|
Parthenolide reverses the epithelial to mesenchymal transition process in breast cancer by targeting TGFbeta1: In vitro and in silico studies. Life Sci 2022; 301:120610. [PMID: 35525305 DOI: 10.1016/j.lfs.2022.120610] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/23/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
AIMS Breast cancer metastasis is the leading cause of mortality among breast cancer patients. Epithelial to mesenchymal transition (EMT) is a biological process that plays a fundamental role in facilitating breast cancer metastasis. The present study assessed the efficacy of parthenolide (PTL Tanacetum parthenium) on EMT and its underlying mechanisms in both lowly metastatic, estrogen-receptor positive, MCF-7 cells and highly metastatic, triple-negative MDA-MB-231 cells. MAIN METHODS MCF-7 and MDA-MB-231 cells were treated with PTL (2 μM and 5 μM). Cell viability was determined by MTT (3-(4,5-dimethy lthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. Apoptosis was analyzed by the FITC (fluorescein isothiocyanate) annexin V apoptosis detection kit. The monolayer wound scratch assay was employed to evaluate cancer cell migration. Proteins were separated and identified by Western blotting. Gene expression was analyzed by quantitative real-time PCR. KEY FINDINGS PTL treatment significantly reduced cell viability and migration while inducing apoptosis in both cell lines. Also, PTL treatment reverses the EMT process by decreasing the mesenchymal marker vimentin and increasing the epithelial marker E-cadherin compared to the control treatment. Importantly, PTL downregulates TWIST1 (a transcription factor and regulator of EMT) gene expression, concomitant with the reduction of transforming growth factor beta1 (TGFβ1) protein and gene expression in both cell lines. Additionally, molecular docking studies suggest that PTL may induce anticancer properties by targeting TGFβ1 in both breast cancer cell lines. SIGNIFICANCE Our findings provide insights into the therapeutic potential of PTL to mitigate EMT and breast cancer metastasis. These promising results demand in vivo studies.
Collapse
|
8
|
Cui M, Wang Z, Huang LT, Wang JH. Parthenolide leads to proteomic differences in thyroid cancer cells and promotes apoptosis. BMC Complement Med Ther 2022; 22:99. [PMID: 35366876 PMCID: PMC8977004 DOI: 10.1186/s12906-022-03579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Parthenolide has anti-inflammatory, immunomodulatory and anti-cancer activities. But its effect on thyroid cancer cells is still largely unknown.
Methods
Label-free quantitative proteomics and bioinformatics analysis were used to investigate the differentially expressed proteins and their functions in thyroid cancer treated with parthenolide and control pair. Hoechst 33258 fluorescent staining and Annexin V-FITC/PI double staining flow cytometry were used to detected BCPAP cells apoptosis. Parallel reaction monitoring (PRM) and quantitative real-time PCR were used to verify the expression of apoptosis-related differential proteins and their mRNA.
Results
Sixty up-regulated and 96 down-regulated differentially expressed proteins were identified in parthenolide treated thyroid cancer cells BCPAP compared with control thyroid cancer cells. The proteins were mainly relevant to various biological processes that included metabolic processes, response to extracellular stimulus and interaction with host. The molecular functions of most differentially expressed proteins were associated with binding functions and nucleotidyltransferase activity. According to the Kyoto Encyclopedia of Genes and Genomes, the differentially expressed proteins identified are primarily related to various types of metabolic pathways and DNA replication. In cell experiments in vitro, with the increase of the dose of parthenolide, the number of cells gradually decreased, the apoptosis rate gradually increased. PRM verified that the apoptosis-related proteins HMOX1 and GCLM were up-regulated and IL1B was down-regulated in BCPAP cells treated with parthenolide. The mRNA expressions of HMOX1, GCLM, ITGA6 and CASP8 were up-regulated and HSPA1A was down-regulated by PCR.
Conclusions
Parthenolide may influence the biological behavior of human thyroid cancer cells by affecting the expression of proteins related to cell metabolism and DNA replication. Parthenolide induced significant cellular morphological changes and apoptosis in human thyroid cancer cells, leading to an anti-proliferative effect.
Collapse
|
9
|
Karam L, Abou Staiteieh S, Chaaban R, Hayar B, Ismail B, Neipel F, Darwiche N, Abou Merhi R. Anticancer activities of parthenolide in primary effusion lymphoma preclinical models. Mol Carcinog 2021; 60:567-581. [PMID: 34101920 DOI: 10.1002/mc.23324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022]
Abstract
The sesquiterpene lactone parthenolide is a major component of the feverfew medicinal plant, Tanacetum parthenium. Parthenolide has been extensively studied for its anti-inflammatory and anticancer properties in several tumor models. Parthenolide's antitumor activities depend on several mechanisms but it is mainly known as an inhibitor of the nuclear factor-κB (NF-κB) pathway. This pathway is constitutively activated and induces cell survival in primary effusion lymphoma (PEL), a rare aggressive AIDS-related lymphoproliferative disorder that is commonly caused by the human herpesvirus 8 (HHV-8) infection. The aim of this study is to evaluate the targeted effect of Parthenolide both in vitro and in vivo. Herein, parthenolide significantly inhibited cell growth, induced G0 /G1 cell cycle arrest, and induced massive apoptosis in PEL cells and ascites. In addition, parthenolide inhibited the NF-ĸB pathway suppressing IĸB phosphorylation and p65 nuclear translocation. It also reduced the expression of the DNA methylase inhibitor (DNMT1). Parthenolide induced HHV-8 lytic gene expression without inhibiting latent viral gene expression. Importantly, DMAPT, the more soluble parthenolide prodrug, promoted delay in ascites development and prolonged the survival of PEL xenograft mice. This study supports the therapeutic use of parthenolide in PEL and encourages its further clinical development.
Collapse
Affiliation(s)
- Louna Karam
- Faculty of Sciences, GSBT Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon.,Department of Natural Sciences, School of Arts & Sciences, Lebanese American University, Beirut, Lebanon
| | - Soumaiah Abou Staiteieh
- Faculty of Sciences, GSBT Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Rady Chaaban
- Faculty of Sciences, GSBT Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Berthe Hayar
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Bassel Ismail
- Faculty of Sciences, GSBT Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Frank Neipel
- Virologisches Institut, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Raghida Abou Merhi
- Faculty of Sciences, GSBT Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| |
Collapse
|
10
|
Abu-Izneid T, Rauf A, Shariati MA, Khalil AA, Imran M, Rebezov M, Uddin MS, Mahomoodally MF, Rengasamy KRR. Sesquiterpenes and their derivatives-natural anticancer compounds: An update. Pharmacol Res 2020; 161:105165. [PMID: 32835868 DOI: 10.1016/j.phrs.2020.105165] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/07/2023]
Abstract
Sesquiterpenes belong to the largest group of plant secondary metabolites, which consist of three isoprene building units. These compounds are widely distributed in various angiosperms, a few gymnosperms and bryophytes. Sesquiterpenes and their allied derivatives are bio-synthesized in various plant parts including leaves, fruits and roots. These plant-based metabolites are predominantly identified in the Asteraceae family, wherein up to 5000 complexes have been documented to date. Sesquiterpenes and their derivatives are characteristically associated with plant defence mechanisms owing to their antifungal, antibacterial and antiviral activities. Over the last two decades, these compounds have been reportedly demonstrated health promoting perspectives against a wide range of metabolic syndromes i.e. hyperglycemia, hyperlipidemia, cardiovascular complications, neural disorders, diabetes, and cancer. The high potential of sesquiterpenes and their derivatives against various cancers like breast, colon, bladder, pancreatic, prostate, cervical, brain, liver, blood, ovarium, bone, endometrial, oral, lung, eye, stomach and kidney are the object of this review. Predominantly, it recapitulates the literature elucidating sesquiterpenes and their derivatives while highlighting the mechanistic approaches associated with their potent anticancer activities such as modulating nuclear factor kappa (NF-kB) activity, inhibitory action against lipid peroxidation and retarding the production of reactive oxygen & nitrogen species (ROS&RNS).
Collapse
Affiliation(s)
- Tareq Abu-Izneid
- Pharmaceutical Sciences Department, College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Maksim Rebezov
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian Federation
| | - Md Sahab Uddin
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | - Kannan R R Rengasamy
- Bionanotechnology Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
11
|
Freund RRA, Gobrecht P, Fischer D, Arndt HD. Advances in chemistry and bioactivity of parthenolide. Nat Prod Rep 2020; 37:541-565. [DOI: 10.1039/c9np00049f] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
(−)-Parthenolide is a germacrane sesquiterpene lactone, available in ample amounts from the traditional medical plant feverfew (Tanacetum parthenium).
Collapse
Affiliation(s)
- Robert R. A. Freund
- Institut für Organische Chemie und Makromolekulare Chemie
- Friedrich-Schiller-Universität
- D-07743 Jena
- Germany
| | - Philipp Gobrecht
- Lehrstuhl für Zellphysiologie
- Ruhr-Universität Bochum
- D-44780 Bochum
- Germany
| | - Dietmar Fischer
- Lehrstuhl für Zellphysiologie
- Ruhr-Universität Bochum
- D-44780 Bochum
- Germany
| | - Hans-Dieter Arndt
- Institut für Organische Chemie und Makromolekulare Chemie
- Friedrich-Schiller-Universität
- D-07743 Jena
- Germany
| |
Collapse
|
12
|
Pseudolaric Acid B Induces Growth Inhibition and Caspase-Dependent Apoptosis on Head and Neck Cancer Cell lines through Death Receptor 5. Molecules 2019; 24:molecules24203715. [PMID: 31623058 PMCID: PMC6832876 DOI: 10.3390/molecules24203715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
Pseudolaric Acid B (PAB), diterpenoid isolated from the root bark of Pseudolarix kaempferi Gordon tree (Pinaceae), exhibits an anti-proliferative and apoptotic activity in various cancer cell lines but to date, the effects of PAB on head and neck cancer (HNC) cell lines remain to be elucidated. In this study, we showed that PAB significantly inhibited the viability and caspase-dependent apoptosis in HN22 cell line. PAB-induced apoptosis is through inducing death receptor 5 (DR5) together with the increase in the expression of cleaved caspase-8. It also inhibited the proliferations and induced apoptosis through DR5 in other three HNC cell lines (HSC3, Ca9.22, and HSC4). Extending our in vitro findings, we found that ethanol extract of Pseudolarix kaempferi (2.5 mg/kg/day) reduced tumor growth in a xenograft model bearing HN22 cell line without any change in body weight. DR5 were also found to be increased in tumors tissue of PAB-treated mice without any apparent histopathological changes in liver or kidney tissues. Taken together, PAB may be a potential lead compound for chemotherapeutic agents against head and neck cancer.
Collapse
|
13
|
Jin X, Zhou J, Zhang Z, Lv H. The combined administration of parthenolide and ginsenoside CK in long circulation liposomes with targeted tLyp-1 ligand induce mitochondria-mediated lung cancer apoptosis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S931-S942. [PMID: 30307334 DOI: 10.1080/21691401.2018.1518913] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Combinations of natural products with low toxicities using tumor-targeting carriers may improve cancer treatment. The combined parthenolide and ginsenoside compound K (CK) within tLyp-1 liposomes, with the aim of improving the efficacy of lung cancer treatment. RESULTS In vitro studies in A549 human pulmonary adenocarcinoma cells demonstrated that parthenolide/CK tLyp-1 liposomes increased reactive oxygen species levels and induced mitochondrial apoptosis. It enters into cells via receptor-mediated uptake and micropinocytosis, followed by endosomal/lysosomal escape. In vivo studies illustrated that it produced a greater antitumor effect than combined administration of these compounds, with minimal toxicity. CONCLUSION The findings of this study indicated that combined application of natural products in nanocarriers could offer attractive therapeutic options.
Collapse
Affiliation(s)
- Xin Jin
- a Department of Hospital Pharmacy , Suqian Branch Jiangsu Province Hospital , Suqian , China.,b Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , China
| | - Jianping Zhou
- b Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , China
| | - Zhenhai Zhang
- c Jiangsu Province Hospital on Integration of Chinese and Western Medicine , Nanjing University of Chinese Medicine , Nanjing , China
| | - Huixia Lv
- b Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
14
|
Tang H, Zhang Y, Li D, Fu S, Tang M, Wan L, Chen K, Liu Z, Xue L, Peng A, Ye H, Chen L. Discovery and synthesis of novel magnolol derivatives with potent anticancer activity in non-small cell lung cancer. Eur J Med Chem 2018; 156:190-205. [PMID: 30006164 DOI: 10.1016/j.ejmech.2018.06.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 02/05/2023]
Abstract
EGFR T790 M accounts for 50% to 60% of cases of non-small-cell lung carcinoma (NSCLC) resistance to the first-generation EGFR tyrosine kinase inhibitors (TKIs). Hence, identifying novel compounds with activity against TKIs resistant is of great value. In this study, twenty honokiol and magnolol derivatives were isolated from the EtOH extract of Magnolia officinalis and the antiproliferative activity was evaluated on HCC827 (19del EGFR mutation), H1975 (L858 R/T790 M EGFR mutation), and H460 (KRAS mutation) cell lines. Among the isolated compounds, piperitylmagnolol (a 3-substituted magnolol derivative) showed the best antiproliferative activity against those three cell lines with the IC50 values of 15.85, 15.60 and 18.60 μM, respectively, which provided a direction for the structural modification of magnolol. Further structural modification led to the synthesis of thirty-one magnolol derivatives, and compounds A13, C1, and C2 exhibited significant and broad-spectrum antiproliferative activity with the IC50 values ranging from 4.81 to 13.54 μM, which were approximately 4- and 8-fold more potent than those of honokiol and magnolol, respectively. Moreover, their aqueous solubility was remarkably improved with 12-, 400- and 105 fold greater than those of honokiol and magnolol. Anti-tumor mechanism research revealed that these three compounds were able to induce cell cycle arrest at G0/G1 phase, cause efficient apoptosis in H1975 cells, and also prevent the migration of HUVECs in a dose-dependent manner through Cdk2, Cdk4, Cyclin E, and Cyclin D1 inhibition as well as up-regulation of cleaved-PARP and cleaved-caspase 3 levels. In in vivo antitumor activity, C2 (10, 30 and 100 mg/kg, po) dose-dependently inhibited the tumor growth in H1975 xenograft model with the tumor inhibition rate of 46.3%, 59.3% and 61.2% respectively, suggesting that C2 is a potential oral anticancer agent deserving further investigation.
Collapse
Affiliation(s)
- Huan Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Yongguang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Dan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Suhong Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Li Wan
- School of Pharmacy, Chengdu University of TCM, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, PR China
| | - Kai Chen
- School of Chemical Engineering, Sichuan University, Chengdu, 610041, PR China
| | - Zhuowei Liu
- Guang dong Zhongsheng Pharmaceutical Co., Ltd, Dongguan, Guangdong, 523325, PR China
| | - Linlin Xue
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Aihua Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Haoyu Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China; School of Pharmacy, Chengdu University of TCM, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, PR China.
| |
Collapse
|
15
|
Li X, Yang H, Ke J, Liu B, Lv X, Li X, Zhang Y. Smad4 re-expression increases the sensitivity to parthenolide in colorectal cancer. Oncol Rep 2017; 38:2317-2324. [PMID: 28902368 DOI: 10.3892/or.2017.5929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/08/2017] [Indexed: 11/06/2022] Open
Abstract
Parthenolide (PT), a sesquiterpene lactone extracted from the plant feverfew, has been demonstrated to have anti-inflammatory and anticancer properties. Although PT has been revealed to markedly inhibit colorectal cancer cell proliferation, the inhibitory effects decrease with administration time. These findings revealed that colorectal cancer cells develop resistance to PT. However, the underlying mechanism is unclear. In the present study we observed significantly low expression of Smad4 in 3 PT-resistant cell lines (HCT‑116/PT, HT-29/PT and Caco-2/PT), which were obtained using in vitro concentration gradient-increased induction, but not in their parental cells. In the present study we used the lentiviral‑mediated transfection method to upregulate Smad4 in resistant colorectal cancer cell lines. Flow cytometry assay was used to assess cell apoptosis. Cell migration was detected using a QCM™ 24-well Fluorimetric Cell Migration Assay kit. Our study showed that Smad4 overexpression notably decreased the half maximal inhibitory concentration (IC50) values for PT in the 3 PT-resistant cell lines, and improved the inhibitory effects of PT on cell migration and enhanced apoptosis in vitro as well as suppressed xenografted tumors in a PT-resistant colorectal cancer mouse model. Further study by western blotting into the underlying mechanism demonstrated that Smad4 overexpression suppressed the expression of MDR1 in the resistant cells, and resulted in the accumulation of PT, which in turn promoted the expession of caspase-3 and Bax and inhibited the expression of Bcl-2 and the phosphorylation of NF-κB p65. In short, Smad4 re-expression may be crucial for enhancing the sensitivity and reversing the resistance to PT in PT-resistant colorectal cancer cells.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Anatomy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Huike Yang
- Department of Anatomy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jia Ke
- Department of Anatomy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Baoquan Liu
- Department of Anatomy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xiaohong Lv
- Department of Anatomy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xinlei Li
- Department of Anatomy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yafang Zhang
- Department of Anatomy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
16
|
Parthenolide attenuates 7,12-dimethylbenz[a]anthracene induced hamster buccal pouch carcinogenesis. Mol Cell Biochem 2017; 440:11-22. [PMID: 28801714 DOI: 10.1007/s11010-017-3151-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 08/05/2017] [Indexed: 01/01/2023]
Abstract
Over the decades, the survival rates for oral cancer have not improved despite development in novel diagnostic and therapeutic strategies. Therefore, the present study is aimed at investigating the chemopreventive potential of parthenolide in DMBA-induced hamster buccal pouch carcinogenesis. The hamsters were divided into 4 groups (n = 6/group). Group I was treated as control. Groups II and III were painted with a solution of 0.5% DMBA three times per week for 14 weeks on the left buccal pouches. In addition, group III were orally administrated with parthenolide 2 mg/kg b.w on days alternate to the DMBA application. Group IV received only parthenolide. At the end of 14th week all hamsters were sacrificed. Buccal tissues from all hamsters were evaluated for histopathology. Biochemical studies were carried out using plasma, liver, and buccal mucosa of control and experimental hamsters. Gene and protein expression studies of apoptotic markers p53, Bcl-2, and Bax were performed. The results showed 100% tumor formation and marked alterations in histopathology, status of detoxification enzymes, lipid peroxidation, and antioxidant profile in group II hamsters. Oral administration of parthenolide completely prevented tumor formation and significantly reduced the severity of histopathological changes in group III hamsters. The status of detoxification enzymes, lipid peroxidation, and antioxidants were significantly restored in parthenolide treated group compared to group II hamsters. The apoptotic gene p53 and antiapoptotic gene Bcl-2 were significantly down regulated; whereas, pro-apoptotic gene Bax was up regulated in group III hamsters compared to group II. The results of the present study suggest that parthenolide have potent chemopreventive, antioxidant, and apoptotic effect in DMBA-induced oral carcinogenesis.
Collapse
|
17
|
Seca AM, Silva AM, Pinto DC. Parthenolide and Parthenolide-Like Sesquiterpene Lactones as Multiple Targets Drugs. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63931-8.00009-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Antiproliferative Effects of Cynara cardunculus L. var. altilis (DC) Lipophilic Extracts. Int J Mol Sci 2016; 18:ijms18010063. [PMID: 28036090 PMCID: PMC5297698 DOI: 10.3390/ijms18010063] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 11/17/2022] Open
Abstract
Besides being traditionally used to relieve hepatobiliary disorders, Cynara cardunculus L. has evidenced anticancer potential on triple-negative breast cancer (TNBC). This study highlights the antiproliferative effects of lipophilic extracts from C. cardunculus L. var. altilis (DC) leaves and florets, and of their major compounds, namely cynaropicrin and taraxasteryl acetate, against MDA-MB-231 cells. Our results demonstrated that MDA-MB-231 cells were much less resistant to leaves extract (IC50 10.39 µg/mL) than to florets extract (IC50 315.22 µg/mL), during 48 h. Moreover, leaves extract and cynaropicrin (IC50 6.19 µg/mL) suppressed MDA-MB-231 cells colonies formation, via an anchorage-independent growth assay. Leaves extract and cynaropicrin were also assessed regarding their regulation on caspase-3 activity, by using a spectrophotometric assay, and expression levels of G2/mitosis checkpoint and Akt signaling pathway proteins, by Western blotting. Leaves extract increased caspase-3 activity, while cynaropicrin did not affect it. Additionally, they caused p21Waf1/Cip1 upregulation, as well as cyclin B1 and phospho(Tyr15)-CDK1 accumulation, which may be related to G2 cell cycle arrest. They also downregulated phospho(Ser473)-Akt, without changing total Akt1 level. Cynaropicrin probably contributed to leaves extract antiproliferative action. These promising insights suggest that cultivated cardoon leaves lipophilic extract and cynaropicrin may be considered toward a natural-based therapeutic approach on TNBC.
Collapse
|
19
|
Rahman NA, Yazan LS, Wibowo A, Ahmat N, Foo JB, Tor YS, Yeap SK, Razali ZA, Ong YS, Fakurazi S. Induction of apoptosis and G2/M arrest by ampelopsin E from Dryobalanops towards triple negative breast cancer cells, MDA-MB-231. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:354. [PMID: 27609190 PMCID: PMC5017001 DOI: 10.1186/s12906-016-1328-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 08/26/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Several compounds isolated from Dryobalanops have been reported to exhibit cytotoxic effects to several cancer cell lines. This study investigated the cytotoxic effects, cell cycle arrest and mode of cell death in ampelopsin E-treated triple negative cells, MDA-MB-231. METHODS Cytotoxicity of ampelopsin E, ampelopsin F, flexuosol A, laevifonol, Malaysianol A, Malaysianol D and nepalensinol E isolated from Dryobalanops towards human colon cancer HT-29, breast cancer MDA-MB-231 and MCF-7, alveolar carcinoma HeLa and mouse embryonic fibroblast NIH/3 T3 cells were determined by MTT assay. The cells were treated with the compounds (0.94-30 μM) for 72 h. The mode of cell death was evaluated by using an inverted light microscope and annexin V/PI analysis. Cell cycle analysis was performed by using a flow cytometer. RESULTS Data showed that ampelopsin E was most cytotoxic toward MDA-MB-231 with the IC50 (50 % inhibition of cell viability compared to control) of 14.5 ± 0.71 μM at 72 h. Cell shrinkage, membrane blebbing and formation apoptotic bodies characteristic of apoptosis were observed following treatment with ampelopsin E. The annexin V/PI flow cytometric analysis further confirmed that ampelopsin E induced apoptosis in MDA-MB-231 cells. Cell cycle analysis revealed that ampelopsin E induced G2/M phase cell cycle arrest in the cells. CONCLUSION Ampelopsin E induced apoptosis and cell cycle arrest in MDA-MB-231 cells. Therefore, ampelopsin E has the potential to be developed into an anticancer agent for treatment of triple negative breast cancer.
Collapse
|
20
|
Lee HE, Shin JA, Jeong JH, Jeon JG, Lee MH, Cho SD. Anticancer activity of Ashwagandha against human head and neck cancer cell lines. J Oral Pathol Med 2015; 45:193-201. [PMID: 26332363 DOI: 10.1111/jop.12353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND The aim of this study was to determine the apoptotic activity of methanol extract of Ashwagandha (MEAG) and in human head and neck squamous cell carcinoma (HNSCC) cells and to investigate the underlying mechanisms. METHODS We investigated the effects of MEAG on programmed cell death in HNSCC cells using a Live/Dead assay, detection of nuclear morphologic changes, Mitotracker, siRNA knockdown, and RT-PCR. RESULTS Treatment with MEAG showed dose-dependent growth-inhibitory activity that attribute to caspase-dependent apoptosis. Loss of mitochondrial membrane potential, release of cytochrome c, and activation of caspase 9 suggested that MEAG leads to activation of mitochondria-mediated apoptosis. MEAG selectively upregulated the expression of Bim protein at the transcriptional level and induced the translocation of Bim into the mitochondria. Knockdown of Bim by siRNA partially blocked MEAG-mediated apoptosis. MEAG also caused an increase in truncated Bid (t-Bid), cleaved caspase-8, and death receptor 5 (DR5). Interestingly, withaferin A (WA), a bioactive component of MEAG, clearly induced apoptosis accompanied by upregulation of Bim, t-Bid, caspase-8, and DR5 similar to the effects of MEAG. CONCLUSIONS These suggest that MEAG and WA may be potential natural materials for the treatment of HNSCC.
Collapse
Affiliation(s)
- Haeng-Eun Lee
- Department of Oral Pathology, School of Dentistry and Institute of Biodegradable Material, Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeon-ju, Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry and Institute of Biodegradable Material, Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeon-ju, Korea
| | - Joseph H Jeong
- Department of Dermatology and Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jae-Gyu Jeon
- Department of Preventive Dentistry, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Korea
| | - Min-Ho Lee
- Department of Dental Biomaterials and Institute of Biodegradable Material, Institute of Oral Bioscience and BK21 Plus Project, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Institute of Biodegradable Material, Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeon-ju, Korea
| |
Collapse
|