1
|
Cheng KL, Lu HJ, Shen CY, Lin CW, Wang HY, Chou YH, Tyan YS, Tsai PH. Intravoxel incoherent motion (IVIM) MRI-derived masseter muscle characteristics: a new diagnostic marker in head and neck cancer? BMC Cancer 2025; 25:184. [PMID: 39891104 PMCID: PMC11786376 DOI: 10.1186/s12885-025-13569-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND To use intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) to evaluate the masseter muscle and tumors in patients with head and neck cancer (HNC) and to compare them with those of normal controls. METHODS The study involved 16 normal controls and 54 patients with HNC (29 newly diagnosed and 25 posttreatment cases) examined using a 3.0T MRI with a 20-channel head and neck coil. IVIM scans, incorporating six b-values in three orthogonal directions, were conducted using a readout-segmented echo-planar sequence. The diffusion coefficient (D), perfusion fraction (f), and pseudodiffusion coefficient (D*) were derived to assess the diffusion and perfusion alterations in the masseter muscles and HNC lesions. RESULTS The masseter muscle f values significantly differed between the patients with newly diagnosed HNC and the normal controls (p < 0.05); no significant differences in remaining D, D*, and f values were observed between the three groups (p > 0.05). The masseter muscle volumes in the newly diagnosed HNC and posttreatment patients were significantly smaller than those in the normal controls (all p < 0.05). The D and f values of the bilateral masseter muscles in the patients with newly diagnosed HNC were significantly higher than those in the primary cancer lesions (p < 0.05). CONCLUSIONS Our study highlights the potential of IVIM parameters for the evaluation of masseter muscles in patients with HNC, with elevated f values on the ipsilateral side of primary tumors and bilaterally increased D and f values. The clinical implications and underlying mechanisms of these findings of distinct perfusion changes warrant further exploration.
Collapse
Affiliation(s)
- Kai-Lun Cheng
- Department of Medical Imaging, Chung Shan Medical University Hospital, No.110, Sec.1, Jianguo N. Rd, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsueh-Ju Lu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chao-Yu Shen
- Department of Medical Imaging, Chung Shan Medical University Hospital, No.110, Sec.1, Jianguo N. Rd, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Wei Lin
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N. Rd, Taichung, Taiwan
| | - Hui-Yu Wang
- Department of Medical Imaging, Chung Shan Medical University Hospital, No.110, Sec.1, Jianguo N. Rd, Taichung, Taiwan
| | - Ying-Hsiang Chou
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N. Rd, Taichung, Taiwan
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yeu-Sheng Tyan
- Department of Medical Imaging, Chung Shan Medical University Hospital, No.110, Sec.1, Jianguo N. Rd, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ping-Huei Tsai
- Department of Medical Imaging, Chung Shan Medical University Hospital, No.110, Sec.1, Jianguo N. Rd, Taichung, Taiwan.
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N. Rd, Taichung, Taiwan.
| |
Collapse
|
2
|
Chakrabarty N, Mahajan A, Agrawal A, Prabhash K, D’Cruz AK. Comprehensive review of post-treatment imaging in head and neck cancers: from expected to unexpected and beyond. Br J Radiol 2024; 97:1898-1914. [PMID: 39392414 PMCID: PMC11573130 DOI: 10.1093/bjr/tqae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 05/14/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
Head and neck cancer management requires multidisciplinary approach in which radical surgery with or without flap reconstructions and neck dissection, along with radiotherapy (RT)/chemoradiotherapy (CRT) serve as the key components. Neoadjuvant chemotherapy and immunotherapy are used in selected cases based on the institutional preference. Knowledge of expected post-treatment changes on imaging is essential to differentiate it from recurrence. In addition, awareness of various post-treatment complications is imperative for their early detection on imaging. Distorted anatomy after treatment poses diagnostic challenge, hence, proper choice of imaging modality and appropriate timing of scan is pertinent for accurate post-treatment evaluation. In this article, we have comprehensively reviewed expected post-treatment appearances and complications on imaging. We have discussed imaging appearances of recurrences at the primary and lymphnodal sites and discussed documentation of findings using Neck Imaging Reporting and Data Systems (NI-RADS). We have also delved into the patterns of recurrence in human papillomavirus (HPV) positive HNSCC. Furthermore, we have provided flowcharts and discussed recommendations on the site-specific and treatment-related imaging modalities to be used along with their appropriate timing, for adequate evaluation of HNSCC after treatment. In addition, we have also touched upon the role of advanced imaging techniques for post-treatment HNSCC evaluation.
Collapse
Affiliation(s)
- Nivedita Chakrabarty
- Department of Radiodiagnosis, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai 400 012, Maharashtra, India
| | - Abhishek Mahajan
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, Liverpool L69 3BX, United Kingdom
- Department of Imaging, The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool L7 8YA, United Kingdom
| | - Archi Agrawal
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai 400 012, Maharashtra, India
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai 400 012, Maharashtra, India
| | - Anil K D’Cruz
- Director, Department of Oncology, Apollo Hospitals, Navi Mumbai, Maharashtra 400614, India
| |
Collapse
|
3
|
Munoz C, Lim E, Ferreira PF, Pennell DJ, Nielles-Vallespin S, Scott AD. Simultaneous non-contrast assessment of cardiac microstructure and perfusion in vivo in the human heart. J Cardiovasc Magn Reson 2024; 27:101129. [PMID: 39622344 DOI: 10.1016/j.jocmr.2024.101129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/02/2024] [Accepted: 11/26/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Intravoxel incoherent motion (IVIM) imaging can provide information on cardiac microstructure and microvascular perfusion from a single examination. However, the spin echo-based approaches typically used for cardiac IVIM suffer from low sensitivity to changes in perfusion. The aim of this work was to develop a stimulated-echo (STEAM)-based method for IVIM and diffusion tensor cardiovascular magnetic resonance to simultaneously provide biomarkers of microstructure and perfusion in vivo in the human heart. METHODS Here we introduce a novel STEAM-IVIM sequence incorporating phase cycling to obtain true non-diffusion weighted images (b = 0 s/mm2). STEAM-IVIM imaging was performed at 20 b-values (0 to 1000 s/mm2) to enable accurate estimation of the IVIM parameters, and with six diffusion encoding directions to enable reconstruction of the diffusion tensor. 20 healthy subjects (8 female, median age 31 years) were imaged on a clinical 3T system with STEAM-IVIM. A simulation study was performed to investigate the optimal fitting algorithms for the IVIM parameters, which was subsequently used to create pixel-wise IVIM parameter maps for the in vivo acquisitions. RESULTS Good image quality across the myocardium was obtained for all b-values. Mean(±SD) IVIM parameter estimates were: diffusivity D = 0.83 ± 0.07 × 10-3 mm2/s, perfusion coefficient D* = 19.08 ± 6.48 × 10-3 mm2/s, perfusion fraction f = 19.72 ± 4.11%, and mean diffusion tensor parameters were: mean diffusivity = 0.88 ± 0.06 × 10-3 mm2/s, fractional anisotropy = 0.45 ± 0.04, absolute E2 angle = 55.29 ± 6.38º, helix angle gradient = -0.68 ± 0.18º/%. CONCLUSION Phase-cycled STEAM-IVIM enables fitting of cardiac diffusion tensor and perfusion parameters in healthy subjects and shows promise for the simultaneous detection of microstructural aberration and perfusion abnormalities in the presence of cardiac disease without the need for exogenous contrast agents.
Collapse
Affiliation(s)
- Camila Munoz
- National Heart and Lung Institute, Imperial College London, London, UK; Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - Eunji Lim
- National Heart and Lung Institute, Imperial College London, London, UK; Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Pedro F Ferreira
- National Heart and Lung Institute, Imperial College London, London, UK; Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Dudley J Pennell
- National Heart and Lung Institute, Imperial College London, London, UK; Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Sonia Nielles-Vallespin
- National Heart and Lung Institute, Imperial College London, London, UK; Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Andrew D Scott
- National Heart and Lung Institute, Imperial College London, London, UK; Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
4
|
Li XX, Liu B, Cui Y, Zhao YF, Jiang Y, Peng XG. Intravoxel incoherent motion diffusion-weighted imaging and dynamic contrast-enhanced MRI for predicting parametrial invasion in cervical cancer. Abdom Radiol (NY) 2024; 49:3232-3240. [PMID: 38753211 DOI: 10.1007/s00261-024-04339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 08/22/2024]
Abstract
PURPOSE This study aimed to assess the predictive efficacy of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in parametrial invasion (PMI) in cervical cancer patients. METHODS A total of 83 cervical cancer patients (32 PMI-positive and 51 PMI-negative) retrospectively underwent pretreatment IVIM-DWI and DCE-MRI scans. IVIM-DWI parameters included apparent diffusion coefficient (ADC), slow apparent diffusion coefficient (D), fast apparent diffusion coefficient (D*), and perfusion fraction (f). DCE-MRI parameters included volume transfer constant (Ktrans), flux rate constant (Kep), and fractional extravascular extracellular space volume (Ve). Logistic regression analyses were conducted to identify independent variables associated with PMI. Receiver operating characteristic curves were generated to assess the predictive performance of significant parameters. RESULTS Multivariable analysis revealed that the MRI parameters D (odds ratio [OR]: 7.05; 95% CI 1.78-27.88; P = 0.005), D* (OR 6.58; 95% CI 1.49-29.10; P = 0.01), f (OR 5.12; 95% CI 1.23-21.37; P = 0.03), Ktrans (OR 4.60; 95% CI 1.19-17.81; P = 0.03), and Kep (OR 4.90; 95% CI 1.25-19.18; P = 0.02) were independent predictors of PMI in cervical cancer patients. The combined parameter incorporating these parameters demonstrated the highest performance in predicting PMI, yielding an area under the curve of 0.906, sensitivity of 84.4%, and specificity of 86.3%. CONCLUSION The proposed combined parameter exhibited favorable performance in identifying PMI in cervical cancer patients.
Collapse
Affiliation(s)
- Xin-Xiang Li
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Bing Liu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Ying Cui
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yu-Fei Zhao
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yang Jiang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xin-Gui Peng
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
5
|
Parsaei M, Sanjari Moghaddam H, Mazaheri P. The clinical utility of diffusion-weighted imaging in diagnosing and predicting treatment response of laryngeal and hypopharyngeal carcinoma: A systematic review and meta-analysis. Eur J Radiol 2024; 177:111550. [PMID: 38878501 DOI: 10.1016/j.ejrad.2024.111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/24/2024] [Accepted: 06/02/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE Laryngeal and Hypopharyngeal Carcinomas (LC/HPC) constitute about 24 % of head and neck cancers, causing more than 90,000 annual deaths worldwide. Diffusion-Weighted Imaging (DWI), is currently widely studied in oncologic imaging and can aid in distinguishing cellular tumors from other tissues. Our objective was to review the effectiveness of DWI in three areas: diagnosing, predicting prognosis, and predicting treatment response in patients with LC/HPC. METHODS A systematic search was conducted in PubMed, Web of Science, and Embase. A meta-analysis by calculating Standardized Mean Difference (SMD) and 95 % Confidence Interval (CI) was conducted on diagnostic studies. RESULTS A total of 16 studies were included. All diagnostic studies (n = 9) were able to differentiate between the LC/HPC and other benign laryngeal/hypopharyngeal lesions. These studies found that LC/HPC had lower Apparent Diffusion Coefficient (ADC) values than non-cancerous lesions. Our meta-analysis of 7 diagnostic studies, that provided ADC values of malignant and non-malignant tissues, demonstrated significantly lower ADC values in LC/HPC compared to non-malignant lesions (SMD = -1.71, 95 %CI: [-2.00, -1.42], ADC cut-off = 1.2 × 103 mm2/s). Furthermore, among the studies predicting prognosis, 67 % (4/6) accurately predicted outcomes based on pretreatment ADC values. Similarly, among studies predicting treatment response, 50 % (2/4) successfully predicted outcomes based on pretreatment ADC values. Overall, the studies that looked at prognosis or treatment response in LC/HPC found a positive correlation between pretreatment ADC values in larynx/hypopharynx and favorable outcomes. CONCLUSION DWI aids significantly in the LC/HPC diagnosis. However, further research is needed to establish DWI's reliability in predicting prognosis and treatment response in patients with LC/HPC.
Collapse
Affiliation(s)
| | - Hossein Sanjari Moghaddam
- Psychiatry and Psychology Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Mazaheri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Aliotta E, Paudyal R, Diplas B, Han J, Hu YC, Hun Oh J, Hatzoglou V, Jensen N, Zhang P, Aristophanous M, Riaz N, Deasy JO, Lee NY, Shukla-Dave A. Multi-modality imaging parameters that predict rapid tumor regression in head and neck radiotherapy. Phys Imaging Radiat Oncol 2024; 31:100603. [PMID: 39040433 PMCID: PMC11261256 DOI: 10.1016/j.phro.2024.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Background and purpose Volume regression during radiotherapy can indicate patient-specific treatment response. We aimed to identify pre-treatment multimodality imaging (MMI) metrics from positron emission tomography (PET), magnetic resonance imaging (MRI), and computed tomography (CT) that predict rapid tumor regression during radiotherapy in human papilloma virus (HPV) associated oropharyngeal carcinoma. Materials and methods Pre-treatment FDG PET-CT, diffusion-weighted MRI (DW-MRI), and intra-treatment (at 1, 2, and 3 weeks) MRI were acquired in 72 patients undergoing chemoradiation therapy for HPV+ oropharyngeal carcinoma. Nodal gross tumor volumes were delineated on longitudinal images to measure intra-treatment volume changes. Pre-treatment PET standardized uptake value (SUV), CT Hounsfield Unit (HU), and non-gaussian intravoxel incoherent motion DW-MRI metrics were computed and correlated with volume changes. Intercorrelations between MMI metrics were also assessed using network analysis. Validation was carried out on a separate cohort (N = 64) for FDG PET-CT. Results Significant correlations with volume loss were observed for baseline FDG SUVmean (Spearman ρ = 0.46, p < 0.001), CT HUmean (ρ = 0.38, p = 0.001), and DW-MRI diffusion coefficient, Dmean (ρ = -0.39, p < 0.001). Network analysis revealed 41 intercorrelations between MMI and volume loss metrics, but SUVmean remained a statistically significant predictor of volume loss in multivariate linear regression (p = 0.01). Significant correlations were also observed for SUVmean in the validation cohort in both primary (ρ = 0.30, p = 0.02) and nodal (ρ = 0.31, p = 0.02) tumors. Conclusions Multiple pre-treatment imaging metrics were correlated with rapid nodal gross tumor volume loss during radiotherapy. FDG-PET SUV in particular exhibited significant correlations with volume regression across the two cohorts and in multivariate analysis.
Collapse
Affiliation(s)
- Eric Aliotta
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ramesh Paudyal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Bill Diplas
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - James Han
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yu-Chi Hu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vaios Hatzoglou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Naomi Jensen
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Peng Zhang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nancy Y. Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Amita Shukla-Dave
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
7
|
Ikeda H, Ohno Y, Yamamoto K, Murayama K, Ikedo M, Yui M, Kumazawa Y, Shimamura Y, Takagi Y, Nakagaki Y, Hanamatsu S, Obama Y, Ueda T, Nagata H, Ozawa Y, Iwase A, Toyama H. Deep Learning Reconstruction for DWIs by EPI and FASE Sequences for Head and Neck Tumors. Cancers (Basel) 2024; 16:1714. [PMID: 38730665 PMCID: PMC11083776 DOI: 10.3390/cancers16091714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Diffusion-weighted images (DWI) obtained by echo-planar imaging (EPI) are frequently degraded by susceptibility artifacts. It has been suggested that DWI obtained by fast advanced spin-echo (FASE) or reconstructed with deep learning reconstruction (DLR) could be useful for image quality improvements. The purpose of this investigation using in vitro and in vivo studies was to determine the influence of sequence difference and of DLR for DWI on image quality, apparent diffusion coefficient (ADC) evaluation, and differentiation of malignant from benign head and neck tumors. METHODS For the in vitro study, a DWI phantom was scanned by FASE and EPI sequences and reconstructed with and without DLR. Each ADC within the phantom for each DWI was then assessed and correlated for each measured ADC and standard value by Spearman's rank correlation analysis. For the in vivo study, DWIs obtained by EPI and FASE sequences were also obtained for head and neck tumor patients. Signal-to-noise ratio (SNR) and ADC were then determined based on ROI measurements, while SNR of tumors and ADC were compared between all DWI data sets by means of Tukey's Honest Significant Difference test. RESULTS For the in vitro study, all correlations between measured ADC and standard reference were significant and excellent (0.92 ≤ ρ ≤ 0.99, p < 0.0001). For the in vivo study, the SNR of FASE with DLR was significantly higher than that of FASE without DLR (p = 0.02), while ADC values for benign and malignant tumors showed significant differences between each sequence with and without DLR (p < 0.05). CONCLUSION In comparison with EPI sequence, FASE sequence and DLR can improve image quality and distortion of DWIs without significantly influencing ADC measurements or differentiation capability of malignant from benign head and neck tumors.
Collapse
Affiliation(s)
- Hirotaka Ikeda
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Kaori Yamamoto
- Canon Medical Systems Corporation, Otawara 324-8550, Tochigi, Japan
| | - Kazuhiro Murayama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Masato Ikedo
- Canon Medical Systems Corporation, Otawara 324-8550, Tochigi, Japan
| | - Masao Yui
- Canon Medical Systems Corporation, Otawara 324-8550, Tochigi, Japan
| | - Yunosuke Kumazawa
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yurika Shimamura
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yui Takagi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yuhei Nakagaki
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Satomu Hanamatsu
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yuki Obama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Takahiro Ueda
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yoshiyuki Ozawa
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Akiyoshi Iwase
- Department of Radiology, Fujita Health University Hospital, Toyoake 470-1192, Aichi, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| |
Collapse
|
8
|
Motger-Albertí A, de la Calle E, Giménez M, Blasco G, Biarnés C, Arnoriaga-Rodríguez M, Puig J, Coll-Martínez C, Contreras-Rodríguez O, Fernández-Real JM. Increased brain fractional perfusion in obesity using intravoxel incoherent motion (IVIM) MRI metrics. Obesity (Silver Spring) 2024; 32:756-767. [PMID: 38383843 DOI: 10.1002/oby.24001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/24/2023] [Accepted: 12/22/2023] [Indexed: 02/23/2024]
Abstract
OBJECTIVE This research seeks to shed light on the associations between brain perfusion, cognitive function, and mental health in individuals with and without obesity. METHODS In this study, we employed the noninvasive intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) technique to examine brain fractional perfusion (FP) in two groups: individuals with obesity (N = 72) and healthy controls (N = 66). Additionally, we investigated potential associations between FP, cognitive function, and depressive symptoms in the participants with and without obesity. Finally, artificial intelligence algorithms (Boruta analysis) were also used. RESULTS Participants with obesity exhibited increased FP within dopaminergic brain circuits, particularly involving prefrontal cortex areas, anterior and posterior sections of the cingulate cortex, the right striatum, and the midbrain. Additionally, these individuals demonstrated lower working memory and higher depressive symptoms compared to the control group. Notably, higher FP in the inferior temporal and occipital cortices correlated with greater depressive symptoms, whereas increased FP in the right ventral caudate and the midbrain was associated with better working memory performance. A link between inflammatory and metabolic variables, with a particular emphasis on monocytes, and FP in obesity was also evidenced by Boruta analysis. CONCLUSIONS Increased brain perfusion in individuals with obesity is associated with cognitive function and mental health through interaction with metabolic and inflammatory factors.
Collapse
Affiliation(s)
- Anna Motger-Albertí
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute, Josep Trueta University Hospital, Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Elena de la Calle
- Department of Radiology-Medical Imaging, Girona Biomedical Research Institute, Josep Trueta University Hospital, Girona, Spain
| | - Mònica Giménez
- Department of Radiology-Medical Imaging, Girona Biomedical Research Institute, Josep Trueta University Hospital, Girona, Spain
| | - Gerard Blasco
- Department of Radiology-Medical Imaging, Girona Biomedical Research Institute, Josep Trueta University Hospital, Girona, Spain
| | - Carles Biarnés
- Department of Radiology-Medical Imaging, Girona Biomedical Research Institute, Josep Trueta University Hospital, Girona, Spain
| | - María Arnoriaga-Rodríguez
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute, Josep Trueta University Hospital, Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain
| | - Josep Puig
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Department of Radiology-Medical Imaging, Girona Biomedical Research Institute, Josep Trueta University Hospital, Girona, Spain
| | - Clàudia Coll-Martínez
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Josep Trueta University Hospital, Girona, Spain
- Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute, Department of Medical Sciences, University of Girona, Girona, Spain
| | - Oren Contreras-Rodríguez
- Department of Psychiatry and Legal Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute, Josep Trueta University Hospital, Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| |
Collapse
|
9
|
Chen R, Ye H, Wu Z, Zhou Y, Lin H, Xu Y, He L, Liang C, Liu Z, Wang G. Using the non-distortion IVIM to reduce the need for contrast agents in nasopharyngeal MRI. Magn Reson Imaging 2023; 104:115-120. [PMID: 37844785 DOI: 10.1016/j.mri.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Patients with nasopharyngeal carcinoma (NPC) who undergo longitudinal follow-up contrast-enhanced MRI are at risk of developing gadolinium deposition in their neural tissue, which may potentially harm them. Therefore, for these patients, a non-contrast-enhanced method is potentially beneficial as an alternative approach to predict enhancement in T1-weighted imaging (CE-T1WI). The traditional intravoxel incoherent motion (IVIM) is one of the non-contrast-enhanced methods; however, the severe distortion and signal loss limit its application in patients with NPC. The present study aimed to investigate whether non-distortion IVIM could reduce the need of CE-T1WI in the follow-up of patients with NPC. METHODS The patients with NPC underwent Turbo Spin-echo MVXD diffusion-weighted imaging-based IVIM (non-distortion IVIM) from November 2021 to May 2022. Firstly, thirty patients with NPC were underwent both non-distortion IVIM and traditional IVIM. The distortion rate (DR) of the non-distortion IVIM was compared with the traditional IVIM. Then, twenty-one NPC patients with tumors (areas >50mm2) were included and correlation coefficient analysis was used to assess the relationship between their non-distortion IVIM and CE-T1WI. Linear regression analysis was performed to determine whether non-distortion IVIM predictors could predict CE-T1WI. RESULTS The correlation was observed between the parameter f of the non-distortion IVIM and the enhancement ratio of CE-T1WI (r = 0.543, P = 0.011). Moreover, the linear regression analysis revealed that f was an independent IVIM predictor of CE-T1WI in patients with NPC (P = 0.011). The DR of the non-distortion IVIM was significantly smaller than that of the traditional IVIM (0.12 ± 0.05 vs 0.48 ± 0.16, P < 0.001). CONCLUSIONS In patients with NPC, non-distortion IVIM showed potential clinical benefits to reduce the need for contrast agents, and it can independently predict the enhancement ratio.
Collapse
Affiliation(s)
- Rui Chen
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, China
| | - Huifen Ye
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, China
| | - Zhigang Wu
- MSC Clinical & Technical Solutions, Philips Healthcare, China
| | - Yifen Zhou
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, China
| | - Hui Lin
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yongzhou Xu
- MSC Clinical & Technical Solutions, Philips Healthcare, China
| | - Lan He
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, China
| | - Changhong Liang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, China.
| | - Guangyi Wang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, China.
| |
Collapse
|
10
|
Wen B, Zhang Z, Zhu J, Liu L, Liu Z, Ma X, Wang K, Xie L, Zhang Y, Cheng J. Synthetic MRI plus FSE-PROPELLER DWI for differentiating malignant from benign head and neck tumors: a preliminary study. Front Oncol 2023; 13:1225420. [PMID: 37829331 PMCID: PMC10565487 DOI: 10.3389/fonc.2023.1225420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
Background Preoperative classification of head and neck (HN) tumors remains challenging, especially distinguishing early cancerogenic masses from benign lesions. Synthetic MRI offers a new way for quantitative analysis of tumors. The present study investigated the application of synthetic MRI and stimulus and fast spin echo diffusion-weighted imaging with periodically rotated overlapping parallel lines with enhanced reconstruction (FSE-PROPELLER DWI) to differentiate malignant from benign HN tumors. Materials and methods Forty-eight patients with pathologically confirmed HN tumors were retrospectively recruited between August 2022 and October 2022. The patients were divided into malignant (n = 28) and benign (n = 20) groups. All patients were scanned using synthetic MRI and FSE-PROPELLER DWI. T1, T2, and proton density (PD) values were acquired on the synthetic MRI and ADC values on the FSE-PROPELLER DWI. Results Benign tumors (ADC: 2.03 ± 0.31 × 10-3 mm2/s, T1: 1741.13 ± 662.64 ms, T2: 157.43 ± 72.23 ms) showed higher ADC, T1, and T2 values compared to malignant tumors (ADC: 1.46 ± 0.37 × 10-3 mm2/s, T1: 1390.06 ± 241.09 ms, T2: 97.64 ± 14.91 ms) (all P<0.05), while no differences were seen for PD values. ROC analysis showed that T2+ADC (cut-off value, > 0.55; AUC, 0.950) had optimal diagnostic performance vs. T1 (cut-off value, ≤ 1675.84 ms; AUC, 0.698), T2 (cut-off value, ≤ 113.24 ms; AUC, 0.855) and PD (cut off value, > 80.67 pu; AUC, 0.568) alone in differentiating malignant from benign lesions (all P<0.05); yet, the difference in AUC between ADC and T2+ADC or T2 did not reach statistical significance. Conclusion Synthetic MRI and FSE-PROPELLER DWI can quantitatively differentiate malignant from benign HN tumors. T2 value is comparable to ADC value, and T2+ADC values could improve diagnostic efficacy., apparent diffusion coeffificient, head and neck tumors.
Collapse
Affiliation(s)
- Baohong Wen
- Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zanxia Zhang
- Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Zhu
- Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Liu
- Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zijun Liu
- Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyue Ma
- Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaiyu Wang
- MR Research China, GE Healthcare, Beijing, China
| | - Lizhi Xie
- MR Research China, GE Healthcare, Beijing, China
| | - Yong Zhang
- Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Zhang Z, Li S, Wang W, Zhang Y, Wang K, Cheng J, Wen B. Synthetic MRI for the quantitative and morphologic assessment of head and neck tumors: a preliminary study. Dentomaxillofac Radiol 2023; 52:20230103. [PMID: 37427697 PMCID: PMC10461255 DOI: 10.1259/dmfr.20230103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
OBJECTIVES To evaluate the feasibility of synthetic MRI for quantitative and morphologic assessment of head and neck tumors and compare the results with the conventional MRI approach. METHODS AND MATERIALS A total of 92 patients with different head and neck tumor histology who underwent conventional and synthetic MRI were retrospectively recruited. The quantitative T1, T2, proton density (PD), and apparent diffusion coefficient (ADC) values of 38 benign and 54 malignant tumors were measured and compared. Diagnostic efficacy for differentiating malignant and benign tumors was evaluated with receiver operating characteristic (ROC) analysis and integrated discrimination index. The image quality of conventional and synthetic T1W/T2W images on a 5-level Likert scale was also compared with Wilcoxon signed rank test. RESULTS T1, T2 and ADC values of malignant head and neck tumors were smaller than those of benign tumors (all p < 0.05). T2 and ADC values showed better diagnostic efficacy than T1 for distinguishing malignant tumors from benign tumors (both p < 0.05). Adding the T2 value to ADC increased the area under the curve from 0.839 to 0.886, with an integrated discrimination index of 4.28% (p < 0.05). In terms of overall image quality, synthetic T2W images were comparable to conventional T2W images, while synthetic T1W images were inferior to conventional T1W images. CONCLUSIONS Synthetic MRI can facilitate the characterization of head and neck tumors by providing quantitative relaxation parameters and synthetic T2W images. T2 values added to ADC values may further improve the differentiation of tumors.
Collapse
Affiliation(s)
- Zanxia Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shujian Li
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weijian Wang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaiyu Wang
- MR Research China, GE Healthcare, Beijing, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baohong Wen
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Scalco E, Rizzo G, Mastropietro A. The quantification of IntraVoxel incoherent motion - MRI maps cannot preserve texture information: An evaluation based on simulated and in-vivo images. Comput Biol Med 2023; 154:106495. [PMID: 36669333 DOI: 10.1016/j.compbiomed.2022.106495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Radiomics can be applied on parametric maps obtained from IntraVoxel Incoherent Motion (IVIM) MRI to characterize heterogeneity in diffusion and perfusion tissue properties. The purpose of this work is to assess the accuracy and reproducibility of radiomic features computed from IVIM maps using different fitting methods. METHODS 200 digitally simulated IVIM-MRI images with various SNR containing different combinations of texture patterns were generated from ground truth maps of true diffusion D, pseudo-diffusion D* and perfusion fraction f. Four different methods (segmented least-square LSQ, Bayesian, supervised and unsupervised deep learning DL) were adopted to quantify IVIM maps from simulations and from two real images of liver tumor. Radiomic features were computed from ground truth and estimated maps. Accuracy and reproducibility among quantification methods were assessed. RESULTS Almost 50% of radiomic features computed from D maps using DL approaches, 36% using Bayes and 27% using LSQ presented errors lower than 50%. Radiomic features from f and D* maps were accurate only if computed using DL methods from histogram. High reproducibility (ICC>0.8) was found only for D maps among DL and Bayes methods, whereas features from f and D* maps were less reproducible, with LSQ approach in lower agreement with the others. CONCLUSIONS Texture patterns were preserved and correctly estimated only on D maps, except for LSQ approach. We suggest limiting radiomic analysis only to histogram and some texture features from D maps, to histogram features from f maps, and to avoid it on D* maps.
Collapse
Affiliation(s)
- Elisa Scalco
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, MI, Italy.
| | - Giovanna Rizzo
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, MI, Italy
| | - Alfonso Mastropietro
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, MI, Italy
| |
Collapse
|
13
|
Utility of mono-exponential, bi-exponential, and stretched exponential signal models of intravoxel incoherent motion (IVIM) to predict prognosis and survival risk in laryngeal and hypopharyngeal squamous cell carcinoma (LHSCC) patients after chemoradiotherapy. Jpn J Radiol 2023:10.1007/s11604-023-01399-x. [PMID: 36847996 DOI: 10.1007/s11604-023-01399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/03/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE To investigate the predictive power of mono-exponential, bi-exponential, and stretched exponential signal models of intravoxel incoherent motion (IVIM) in prognosis and survival risk of laryngeal and hypopharyngeal squamous cell carcinoma (LHSCC) patients after chemoradiotherapy. MATERIALS AND METHODS Forty-five patients with laryngeal or hypopharyngeal squamous cell carcinoma were retrospectively enrolled. All patients had undergone pretreatment IVIM examination, subsequently, mean apparent diffusion coefficient (ADCmean), maximum ADC (ADCmax), minimum ADC (ADCmin) and ADCrange (ADCmax - ADCmean) by mono-exponential model, true diffusion coefficient (D), pseudo diffusion coefficient (D*), perfusion fraction (f) by bi-exponential model, distributed diffusion coefficient (DDC), and diffusion heterogeneity index (α) by stretched exponential model were measured. Survival data were collected for 5 years. RESULTS Thirty-one cases were in the treatment failure group and fourteen cases were in the local control group. Significantly lower ADCmean, ADCmax, ADCmin, D, f, and higher D* values were observed in the treatment failure group than in the local control group (p < 0.05). D* had the greatest AUC of 0.802, with sensitivity and specificity of 77.4 and 85.7% when D* was 38.85 × 10-3 mm2/s. Kaplan-Meier survival analysis showed that the curves of N stage, ADCmean, ADCmax, ADCmin, D, D*, f, DDC, and α values were significant. Multivariate Cox regression analysis showed ADCmean and D* were independently correlated with progression-free survival (PFS) (hazard ratio [HR] = 0.125, p = 0.001; HR = 1.008, p = 0.002, respectively). CONCLUSION The pretreatment parameters of mono-exponential and bi-exponential models were significantly correlated with prognosis of LHSCC, ADCmean and D* values were independent factors for survival risk prediction.
Collapse
|
14
|
Zhang R, King AD, Wong LM, Bhatia KS, Qamar S, Mo FKF, Vlantis AC, Ai QYH. Discriminating between benign and malignant salivary gland tumors using diffusion-weighted imaging and intravoxel incoherent motion at 3 Tesla. Diagn Interv Imaging 2023; 104:67-75. [PMID: 36096875 DOI: 10.1016/j.diii.2022.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE The purpose of this study was to retrospectively evaluate the diagnostic performances of diffusion-weighted imaging (DWI) and intravoxel incoherent motion (IVIM) for discriminating between benign and malignant salivary gland tumors (SGTs). MATERIALS AND METHODS Sixty-seven patients with 71 SGTs who underwent MRI examination at 3 Tesla were included. There were 34 men and 37 women with a mean age of 57 ± 17 (SD) years (age range: 20-90 years). SGTs included 21 malignant tumors (MTs) and 50 benign SGTs (33 pleomorphic adenomas [PAs] and 17 Warthin's tumors [WTs]). For each SGT, DWI and IVIM parameters, mean, skewness, and kurtosis of apparent diffusion coefficient (ADC), pure diffusion coefficient (D), pseudo-diffusion coefficient (D*) and perfusion volume fraction (f) were calculated and further compared between SGTs using univariable analysis. Areas under the curves (AUC) of receiver operating characteristic of significant parameters were compared using the Delong test. RESULTS Significant differences in ADCmean, Dmean and D*mean were found between SGTs (P < 0.001). The highest AUC values were obtained for ADCmean (0.949) for identifying PAs and D*mean (0.985) for identifying WTs and skewness and kurtosis did not outperform mean. To discriminate benign from malignant SGTs with thresholds set to maximize Youden index, IVIM and DWI produced accuracies of 85.9% (61/71; 95% CI: 75.6-93.0) and 77.5% (55/71; 95% CI: 66.0-86.5) but misdiagnosed MTs as benign in 28.6% (6/21) and 61.9% (13/21) of SGTs, respectively. After maximizing specificity to 100% for benign SGTs, the accuracies of IVIM and DWI decreased to 76.1% (54/71; 95% CI: 64.5-85.4) and 64.8% (46/71; 95% CI: 52.5-75.8) but no MTs were misdiagnosed as benign. IVIM and DWI correctly diagnosed 66.0% (33/50) and 50.0% (25/50) of benign SGTs and 46.5% (33/71) and 35.2% (25/71) of all SGTs, respectively. CONCLUSION IVIM is more accurate than DWI for discriminating between benign and malignant SGTs because of its advantage in detecting WTs. Thresholds set by maximizing specificity for benign SGTs may be advantageous in a clinical setting.
Collapse
Affiliation(s)
- Rongli Zhang
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Ann D King
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.
| | - Lun M Wong
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Kunwar S Bhatia
- Department of Imaging, St Mary's Hospital, Imperial College Healthcare, National Health Service Trust, London, UK
| | - Sahrish Qamar
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Frankie K F Mo
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Alexander C Vlantis
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Qi Yong H Ai
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; Department of Health Technology and Informatics, The Polytechnic University of Hong Kong, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
15
|
Shah D, Gehani A, Mahajan A, Chakrabarty N. Advanced Techniques in Head and Neck Cancer Imaging: Guide to Precision Cancer Management. Crit Rev Oncog 2023; 28:45-62. [PMID: 37830215 DOI: 10.1615/critrevoncog.2023047799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Precision treatment requires precision imaging. With the advent of various advanced techniques in head and neck cancer treatment, imaging has become an integral part of the multidisciplinary approach to head and neck cancer care from diagnosis to staging and also plays a vital role in response evaluation in various tumors. Conventional anatomic imaging (CT scan, MRI, ultrasound) remains basic and focuses on defining the anatomical extent of the disease and its spread. Accurate assessment of the biological behavior of tumors, including tumor cellularity, growth, and response evaluation, is evolving with recent advances in molecular, functional, and hybrid/multiplex imaging. Integration of these various advanced diagnostic imaging and nonimaging methods aids understanding of cancer pathophysiology and provides a more comprehensive evaluation in this era of precision treatment. Here we discuss the current status of various advanced imaging techniques and their applications in head and neck cancer imaging.
Collapse
Affiliation(s)
- Diva Shah
- Senior Consultant Radiologist, Department of Radiodiagnosis, HCG Cancer Centre, Ahmedabad, 380060, Gujarat, India
| | - Anisha Gehani
- Department of Radiology and Imaging Sciences, Tata Medical Centre, New Town, WB 700160, India
| | - Abhishek Mahajan
- Department of Radiology, The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, L7 8YA, United Kingdom
| | - Nivedita Chakrabarty
- Department of Radiodiagnosis, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), 400012, Mumbai, India
| |
Collapse
|
16
|
Liao L, Liu T, Wei B. Prediction of short-term treatment outcome of nasopharyngeal carcinoma based on voxel incoherent motion imaging and arterial spin labeling quantitative parameters. Eur J Radiol Open 2022; 10:100466. [PMID: 36590328 PMCID: PMC9794885 DOI: 10.1016/j.ejro.2022.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Purpose To evaluate the early response of chemoradiotherapy (CRT) in nasopharyngeal carcinoma (NPC) based on intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) and three-dimensional pseudo-continuous arterial spin labeling (3D pCASL). Materials and methods Forty patients diagnosed with NPC were recruited and divided into complete remission (CR) and partial remission (PR) group after CRT. All patients underwent IVIM and ASL and the related parameters was obtained. These parameters include pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction (f), average blood flow ( BFavg), minimum blood flow (BFmin), and maximum blood flow (BFmax). Student's t test was used to compare the difference in ASL and IVIM derived parameters between CR and PR. The Areas under curve (AUC) of the receiver operating characteristic (ROC) was used to analyze the diagnostic performance of each parameter of ASL and IVIM to the treatment outcome. Results the D value of IVIM in CR group was lower than that of the PR group ( P = 0.014),. Among the parameters of ASL, the BFavg and BFmax of the CR group were higher than those of the PR group(p = 0.004,0.013), but the BFmin had no statistical significance in the two groups(P = 0.54). AUC of D, BFavg, and BFmax is about 0.731, 0.753, and 0.724, respectively, all of their combined AUC diagnosis was 0.812. Conclusion The early response of NPC after CRT can predict by IVIM's diffusion parameters and ASL-related blood flow parameters.
Collapse
Key Words
- 3DpCASL, three-dimensional quasi-continuous arterial spin labeling
- ADC, apparent diffusion coefficient
- AUC, area under the curve
- Arterial spin labeling
- BFavg, average of blood flow
- BFmax, maximum blood flow
- BFmin, minimum blood flow
- CR, complete remission
- CRT, chemoradiotherapy
- Chemoradiotherapy
- D*, pseudo-diffusion coefficient
- D, pure diffusion coefficient
- DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging
- IVIM-DWI, intravoxel incoherent motion diffusion-weighted imaging
- Intravoxel incoherent motion diffusion-weighted imaging
- NPC, nasopharyngeal carcinoma
- Nasopharyngeal carcinoma
- PR, partial remission
- f, perfusion fraction
Collapse
Affiliation(s)
- Liping Liao
- Department of Radiology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, People's Republic of China,Department of Radiology, Guangxi Clinical Medical Research Center of Imaging Medicine, 71 Hedi Road, Nanning, Guangxi, People's Republic of China,Department of Radiology, Guangxi Key Clinical Specialties, 71 Hedi Road, Nanning, Guangxi, People's Republic of China,Department of Radiology, Guangxi Medical University Cancer Hospital Superiority Cultivation Discipline, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
| | - Teng Liu
- Department of Radiology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, People's Republic of China,Department of Radiology, Guangxi Clinical Medical Research Center of Imaging Medicine, 71 Hedi Road, Nanning, Guangxi, People's Republic of China,Department of Radiology, Guangxi Key Clinical Specialties, 71 Hedi Road, Nanning, Guangxi, People's Republic of China,Department of Radiology, Guangxi Medical University Cancer Hospital Superiority Cultivation Discipline, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
| | - Bo Wei
- Department of Radiology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, People's Republic of China,Department of Radiology, Guangxi Clinical Medical Research Center of Imaging Medicine, 71 Hedi Road, Nanning, Guangxi, People's Republic of China,Department of Radiology, Guangxi Key Clinical Specialties, 71 Hedi Road, Nanning, Guangxi, People's Republic of China,Department of Radiology, Guangxi Medical University Cancer Hospital Superiority Cultivation Discipline, 71 Hedi Road, Nanning, Guangxi, People's Republic of China,Corresponding author at: Department of Radiology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
17
|
Thomaides‐Brears H. Editorial for “Microvascular Dysfunction Associates With Outcomes in Hypertrophic Cardiomyopathy: Insights From the Intravoxel Incoherent Motion
MRI
”. J Magn Reson Imaging 2022; 57:1776-1777. [PMID: 36349891 DOI: 10.1002/jmri.28516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
|
18
|
Arterial spin labeling and diffusion-weighted imaging for identification of retropharyngeal lymph nodes in patients with nasopharyngeal carcinoma. Cancer Imaging 2022; 22:40. [PMID: 35978445 PMCID: PMC9387018 DOI: 10.1186/s40644-022-00480-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022] Open
Abstract
Background To evaluate the parameters derived from arterial spin labeling (ASL) and multi-b-value diffusion-weighted imaging (DWI) for differentiating retropharyngeal lymph nodes (RLNs) in patients with nasopharyngeal carcinoma (NPC). Methods This prospective study included 50 newly diagnosed NPC and 23 healthy control (HC) participants. RLNs of NPC were diagnosed according to the follow-up MRI after radiotherapy. Parameters derived from ASL and multi-b-value DWI, and RLNs axial size on pre-treatment MRI among groups were compared. Receiver operating characteristic curve (ROC) was used to analyze the diagnostic efficiency. Results A total of 133 RLNs were collected and divided into a metastatic group (n = 71) and two non-metastatic groups (n = 62, including 29 nodes from NPC and 33 nodes from HC). The axial size, blood flow (BF), and apparent diffusion coefficient (ADC) of RLNs were significantly different between the metastasis and the non-metastasis group. For NPC patients with a short axis < 5 mm or < 6 mm, or long axis < 7 mm, if BF > 54 mL/min/100 g or ADC ≤ 0.95 × 10−3 mm2/s, the RLNs were still considered metastatic. Compared with the index alone, a combination of size and functional parameters could improve the accuracy significantly, except the long axis combined with ADC; especially, combined size with BF exhibited better performance with an accuracy of 91.00–92.00%. Conclusions ASL and multi-b-value DWI could help determine the N stage of NPC, while the BF combination with RLNs size may significantly improve the diagnostic efficiency. Supplementary Information The online version contains supplementary material available at 10.1186/s40644-022-00480-4.
Collapse
|
19
|
Multifactorial Model Based on DWI-Radiomics to Determine HPV Status in Oropharyngeal Squamous Cell Carcinoma. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Background: Oropharyngeal squamous cell carcinoma (OPSCC) associated with human papillomavirus (HPV) has higher rates of locoregional control and a better prognosis than HPV-negative OPSCC. These differences are due to some unique biological characteristics that are also visible through advanced imaging modalities. We investigated the ability of a multifactorial model based on both clinical factors and diffusion-weighted imaging (DWI) to determine the HPV status in OPSCC. Methods: The apparent diffusion coefficient (ADC) and the perfusion-free tissue diffusion coefficient D were derived from DWI, both in the primary tumor (PT) and lymph node (LN). First- and second-order radiomic features were extracted from ADC and D maps. Different families of machine learning (ML) algorithms were trained on our dataset using five-fold cross-validation. Results: A cohort of 144 patients was evaluated retrospectively, which was divided into a training set (n = 95) and a validation set (n = 49). The 50th percentile of DPT, the inverse difference moment of ADCLN, smoke habits, and tumor subsite (tonsil versus base of the tongue) were the most relevant predictors. Conclusions: DWI-based radiomics, together with patient-related parameters, allowed us to obtain good diagnostic accuracies in differentiating HPV-positive from HPV-negative patients. A substantial decrease in predictive power was observed in the validation cohort, underscoring the need for further analyses on a larger sample size.
Collapse
|
20
|
Markiet K, Glinska A, Nowicki T, Szurowska E, Mikaszewski B. Feasibility of Intravoxel Incoherent Motion (IVIM) and Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) in Differentiation of Benign Parotid Gland Tumors. BIOLOGY 2022; 11:biology11030399. [PMID: 35336773 PMCID: PMC8945348 DOI: 10.3390/biology11030399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/18/2023]
Abstract
Aim: The aim of this prospective study is to identify quantitative intravoxel incoherent motion and dynamic contrast-enhanced magnetic resonance imaging parameters of the most frequent benign parotid tumors, compare their utility and diagnostic accuracy. Methods: The study group consisted of 52 patients with 64 histopathologically confirmed parotid focal lesions. Parametric maps representing apparent diffusion coefficient (ADC), pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction (FP) and transfer constant (Ktrans), reflux constant (Kep), extra-vascular extra-cellular volume fraction (Ve), and initial area under curve in 60 s (iAUC) have been obtained from multiparametric MRI. Results: Statistically significant (p < 0.001) inter-group differences were found between pleomorphic adenomas (PA) and Warthin tumors (WT) in all tested parameters but iAUC. Receiver operating characteristic curves were constructed to determine the optimal cut-off levels of the most significant parameters allowing differentiation between WT and PA. The Area Under the Curve (AUC) values and thresholds were for ADC: 0.931 and 1.05, D: 0.896 and 0.9, Kep: 0.964 and 1.1 and Ve: 0.939 and 0.299, respectively. Lesions presenting with a combination of ADC, D, and Ve values superior to the cut-off and Kep values inferior to the cut-off are classified as pleomorphic adenomas. Lesions presenting with combination of ADC, D, and Ve values inferior to the cut-off and Kep values superior to the cut-off are classified as Warthin tumors. Conclusions: DWI, IVIM and quantitative analysis of DCE-MRI derived parameters demonstrated distinctive features of PAs and WT and as such they seem feasible in differentiation of benign parotid gland tumors.
Collapse
Affiliation(s)
- Karolina Markiet
- 2nd Department of Radiology, Medical University of Gdansk, 80-214 Gdansk, Poland; (A.G.); (T.N.); (E.S.)
- Correspondence: ; Tel.: +48-58-349-36-80
| | - Anna Glinska
- 2nd Department of Radiology, Medical University of Gdansk, 80-214 Gdansk, Poland; (A.G.); (T.N.); (E.S.)
| | - Tomasz Nowicki
- 2nd Department of Radiology, Medical University of Gdansk, 80-214 Gdansk, Poland; (A.G.); (T.N.); (E.S.)
| | - Edyta Szurowska
- 2nd Department of Radiology, Medical University of Gdansk, 80-214 Gdansk, Poland; (A.G.); (T.N.); (E.S.)
| | - Boguslaw Mikaszewski
- Department of Otolaryngology, Medical University of Gdansk, 80-214 Gdansk, Poland;
| |
Collapse
|
21
|
A Clustering Approach to Improve IntraVoxel Incoherent Motion Maps from DW-MRI Using Conditional Auto-Regressive Bayesian Model. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Intra-Voxel Incoherent Motion (IVIM) model allows to estimate water diffusion and perfusion-related coefficients in biological tissues using diffusion weighted MR images. Among the available approaches to fit the IVIM bi-exponential decay, a segmented Bayesian algorithm with a Conditional Auto-Regressive (CAR) prior spatial regularization has been recently proposed to produce more reliable coefficient estimation. However, the CAR spatial regularization can generate inaccurate coefficient estimation, especially at the interfaces between different tissues. To overcome this problem, the segmented CAR model was coupled in this work with a k-means clustering approach, to separate different tissues and exclude voxels from other regions in the CAR prior specification. The proposed approach was compared with the original Bayesian CAR method without clustering and with a state-of-the-art Bayesian approach without CAR. The approaches were tested and compared on simulated images by calculating the estimation error and the coefficient of variation (CV). Furthermore, the proposed method was applied to some illustrative real images of oncologic patients. On simulated images, the proposed innovation reduced the average error of 47%, 21% and 58% for D, f and D*, respectively, compared to the state-of-the-art Bayesian approach, and of 48% and 34% for D and f, respectively, compared to the original CAR, while it achieved the same error for D*. The clustering approach was also able to consistently reduce the CV for each coefficient. On real images, the novel approach did not alter the IVIM maps obtained by the original CAR method, with the advantage of reducing their typical blotchy appearance at the boundaries. The proposed approach represents a valuable improvement over the state-of-the-art Bayesian CAR method and provides more reliable IVIM coefficient estimation, and is less sensitive to bias and inconsistency at tissue/tissue and tissue/background interfaces.
Collapse
|
22
|
Early Response Prediction of Multiparametric Functional MRI and 18F-FDG-PET in Patients with Head and Neck Squamous Cell Carcinoma Treated with (Chemo)Radiation. Cancers (Basel) 2022; 14:cancers14010216. [PMID: 35008380 PMCID: PMC8750157 DOI: 10.3390/cancers14010216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Patients with locally-advanced head and neck squamous cell carcinoma (HNSCC) have variable responses to (chemo)radiotherapy. A reliable early prediction of outcomes allows for enhancing treatment efficacy and follow-up monitoring. Early tumoral changes can be captured by functional imaging (DWI/IVIM/DCE/18F-FDG-PET-CT) parameters, which allow for the construction of accurate patient-specific prognostic models for locoregional recurrence-free survival, distant metastasis-free survival and overall survival. We also present clinical applicable risk stratification in high/medium/low risks for these patient outcomes. This can enable personalized treatment (adaptation) management early on during treatment, improve counseling and enhance patient-specific post-therapy monitoring. Abstract Background: Patients with locally-advanced head and neck squamous cell carcinoma (HNSCC) have variable responses to (chemo)radiotherapy. A reliable prediction of outcomes allows for enhancing treatment efficacy and follow-up monitoring. Methods: Fifty-seven histopathologically-proven HNSCC patients with curative (chemo)radiotherapy were prospectively included. All patients had an MRI (DW,-IVIM, DCE-MRI) and 18F-FDG-PET/CT before and 10 days after start-treatment (intratreatment). Primary tumor functional imaging parameters were extracted. Univariate and multivariate analysis were performed to construct prognostic models and risk stratification for 2 year locoregional recurrence-free survival (LRFFS), distant metastasis-free survival (DMFS) and overall survival (OS). Model performance was measured by the cross-validated area under the receiver operating characteristic curve (AUC). Results: The best LRFFS model contained the pretreatment imaging parameters ADC_kurtosis, Kep and SUV_peak, and intratreatment imaging parameters change (Δ) Δ-ADC_skewness, Δ-f, Δ-SUV_peak and Δ-total lesion glycolysis (TLG) (AUC = 0.81). Clinical parameters did not enhance LRFFS prediction. The best DMFS model contained pretreatment ADC_kurtosis and SUV_peak (AUC = 0.88). The best OS model contained gender, HPV-status, N-stage, pretreatment ADC_skewness, D, f, metabolic-active tumor volume (MATV), SUV_mean and SUV_peak (AUC = 0.82). Risk stratification in high/medium/low risk was significantly prognostic for LRFFS (p = 0.002), DMFS (p < 0.001) and OS (p = 0.003). Conclusions: Intratreatment functional imaging parameters capture early tumoral changes that only provide prognostic information regarding LRFFS. The best LRFFS model consisted of pretreatment, intratreatment and Δ functional imaging parameters; the DMFS model consisted of only pretreatment functional imaging parameters, and the OS model consisted ofHPV-status, gender and only pretreatment functional imaging parameters. Accurate clinically applicable risk stratification calculators can enable personalized treatment (adaptation) management, early on during treatment, improve counseling and enhance patient-specific post-therapy monitoring.
Collapse
|
23
|
Abdel Razek AAK, Saleh GA, Denever AT, Mukherji SK. Preimaging and Postimaging of Graft and Flap in Head and Neck Reconstruction. Magn Reson Imaging Clin N Am 2021; 30:121-133. [PMID: 34802575 DOI: 10.1016/j.mric.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Head and neck reconstructive surgical techniques are complex; now the microvascular free tissue transfer is the most frequently used. The postreconstruction imaging interpretation is challenging due to the altered anatomy and flap variability. We aim to improve radiologists' knowledge with diverse methods of flap reconstruction for an accurate appreciation of their expected cross-sectional imaging appearance and early detection of tumor recurrence and other complication.
Collapse
Affiliation(s)
| | - Gehad A Saleh
- Faculty of Medicine, Department of Diagnostic Radiology, Mansoura University, Elgomhoria Street, Mansoura 35512, Egypt
| | - Adel T Denever
- Faculty of Medicine, Department of Surgery, Mansoura University, Elgomhoria Street, Mansoura 35512, Egypt
| | - Suresh K Mukherji
- Marian University, Head and Neck Radiology, ProScan Imaging, Carmel, IN, USA.
| |
Collapse
|
24
|
Zhao DW, Fan WJ, Meng LL, Luo YR, Wei J, Liu K, Liu G, Li JF, Zang X, Li M, Zhang XX, Ma L. Comparison of the pre-treatment functional MRI metrics' efficacy in predicting Locoregionally advanced nasopharyngeal carcinoma response to induction chemotherapy. Cancer Imaging 2021; 21:59. [PMID: 34758876 PMCID: PMC8579637 DOI: 10.1186/s40644-021-00428-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Functional MRI (fMRI) parameters analysis has been proven to be a promising tool of predicting therapeutic response to induction chemotherapy (IC) in nasopharyngeal carcinoma (NPC). The study was designed to identify and compare the value of fMRI parameters in predicting early response to IC in patients with NPC. METHODS This prospective study enrolled fifty-six consecutively NPC patients treated with IC from January 2021 to May 2021. Conventional diffusion weighted imaging (DWI), diffusion kurtosis imaging (DKI), intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) protocols were performed before and after IC. Parameters maps (ADC, MD, MK, Dslow, Dfast, PF, Ktrans, Ve and Kep) of the primary tumor were calculated by the Functool post-processing software. The participants were classified as responding group (RG) and non-responding group (NRG) according to Response Evaluation Criteria in Solid Tumors 1.1. The fMRI parameters were compared before and after IC and between RG with NRG. Logistic regression analysis and ROC were performed to further identify and compare the efficacy of the parameters. RESULTS After IC, the mean values of ADC(p < 0.001), MD(p < 0.001), Dslow(p = 0.001), PF(p = 0.030) and Ve(p = 0.003) significantly increased, while MK(p < 0.001), Dfast(p = 0.009) and Kep(p = 0.003) values decreased dramatically, while no significant difference was detected in Ktrans(p = 0.130). Compared with NRG, ADC-pre(p < 0.001), MD-pre(p < 0.001) and Dslow-pre(p = 0.002) values in RG were lower, while MK-pre(p = 0.017) values were higher. The areas under the ROC curves for the ADC-pre, MD-pre, MK-pre, Dslow-pre and PRE were 0.885, 0.855, 0.809, 0.742 and 0.912, with the optimal cutoff value of 1210 × 10- 6 mm2/s, 1010 × 10- 6 mm2/s, 832 × 10- 6, 835 × 10- 6 mm2/s and 0.799 respectively. CONCLUSIONS The pretreatment conventional DWI (ADC), DKI (MD and MK), and IVIM (Dslow) values derived from fMRI showed a promising potential in predicting the response of the primary tumor to IC in NPC patients. TRIAL REGISTRATION This study was approved by ethics board of the Chinese PLA General Hospital, and registered on January 30, 2021, in Chinese Clinical Trial Registry ( ChiCTR2100042863 ).
Collapse
Affiliation(s)
- Da-Wei Zhao
- Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, China
- Department of Radiology, Pingjin Hospital, Characteristic Medical center of Chinese People's Armed Police Force, Tianjin, China
- Department of Radiation Oncology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wen-Jun Fan
- Department of Radiation Oncology, First Medical Center of Chinese PLA General Hospital, Beijing, China
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
- Armed Police Forces Corps Hospital of Henan Province, No.1 Kangfu Road, Zhengzhou, 450052, China
| | - Ling-Ling Meng
- Department of Radiation Oncology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan-Rong Luo
- Department of Radiation Oncology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jian Wei
- Department of Otolaryngology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Kun Liu
- Department of Otolaryngology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Gang Liu
- Department of Radiology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Feng Li
- Department of Radiology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao Zang
- Department of Radiology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Meng Li
- Department of Radiology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xin-Xin Zhang
- Department of Otolaryngology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lin Ma
- Department of Radiation Oncology, First Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
25
|
Bos P, van der Hulst HJ, van den Brekel MWM, Schats W, Jasperse B, Beets-Tan RGH, Castelijns JA. Prognostic functional MR imaging parameters in head and neck squamous cell carcinoma: A systematic review. Eur J Radiol 2021; 144:109952. [PMID: 34562743 DOI: 10.1016/j.ejrad.2021.109952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/10/2021] [Accepted: 08/31/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Functional MR imaging has demonstrated potential for predicting treatment response. This systematic review gives an extensive overview of the current level of evidence for pre-treatment MR-based perfusion and diffusion imaging parameters that are prognostic for treatment outcome in head and neck squamous cell carcinoma (HNSCC) (PROSPERO registrationCRD42020210689). MATERIALS AND METHODS According to the PRISMA statements, Medline, Embase and Scopus were queried for articles with a maximum date of October 19th, 2020. Studies investigating the predictive performance of pre-treatment MR-based perfusion and/or diffusion imaging parameters in HNSCC treatment response were included. All prognosticators were extracted from the primary tumor. Risk of bias was assessed using the QUIPS tool. Results were summarized in tables and forest plots. RESULTS 31 unique studies met the inclusion criteria; among them, 11 articles described perfusion (n = 529 patients) and 28 described diffusion (n = 1626 patients) MR-imaging, eight studies were included in both categories. Higher Ktrans and Kep were associated with better treatment response for OS and DFS, respectively. Study findings for Vp and Ve were inconsistent or not significant. High-level controversy was observed between studies examining the MR diffusion parameters mean and median ADC. CONCLUSION For HNSCC patients, the accurate and consistent results of pre-treatment MR-based perfusion parameters Ktrans and Kep are potential for clinical applicability predictive of OS and DFS and treatment decision guidance. Significant heterogeneity in study designs might affect high discrepancy in study results for parameters extracted from diffusion imaging. Furthermore, recommendations for future research were summarized.
Collapse
Affiliation(s)
- Paula Bos
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, the Netherlands; GROW School for Oncology and Developmental Biology - University of Maastricht, Maastricht, the Netherlands.
| | - Hedda J van der Hulst
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, the Netherlands; GROW School for Oncology and Developmental Biology - University of Maastricht, Maastricht, the Netherlands
| | - Michiel W M van den Brekel
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Oral and Maxillofacial Surgery, Amsterdam University Medical Center (AUMC), Amsterdam, the Netherlands
| | - Winnie Schats
- Scientific Information Service, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bas Jasperse
- Department of Radiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Regina G H Beets-Tan
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; GROW School for Oncology and Developmental Biology - University of Maastricht, Maastricht, the Netherlands; Department of Regional Health Research, University of Southern Denmark, Denmark
| | - Jonas A Castelijns
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
26
|
Xia N, Li Y, Xue Y, Li W, Zhang Z, Wen C, Li J, Ye Q. Intravoxel incoherent motion diffusion-weighted imaging in the characterization of Alzheimer's disease. Brain Imaging Behav 2021; 16:617-626. [PMID: 34480258 DOI: 10.1007/s11682-021-00538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Alzheimer's disease (AD) is the most common type of dementia, and characterizing brain changes in AD is important for clinical diagnosis and prognosis. This study was designed to evaluate the classification performance of intravoxel incoherent motion (IVIM) diffusion-weighted imaging in differentiating between AD patients and normal control (NC) subjects and to explore its potential effectiveness as a neuroimaging biomarker. METHODS Thirty-one patients with probable AD and twenty NC subjects were included in the prospective study. IVIM data were subjected to postprocessing, and parameters including the apparent diffusion coefficient (ADC), slow diffusion coefficient (Ds), fast diffusion coefficient (Df), perfusion fraction (fp) and Df*fp were calculated. The classification model was developed and confirmed with cross-validation (group A/B) using Support Vector Machine (SVM). Correlations between IVIM parameters and Mini-Mental State Examination (MMSE) scores in AD patients were investigated using partial correlation analysis. RESULTS Diffusion MRI revealed significant region-specific differences that aided in differentiating AD patients from controls. Among the analyzed regions and parameters, the Df of the right precuneus (PreR) (ρ = 0.515; P = 0.006) and the left cerebellum (CL) (ρ = 0.429; P = 0.026) demonstrated significant associations with the cognitive function of AD patients. An area under the receiver operating characteristics curve (AUC) of 0.84 (95% CI: 0.66, 0.99) was calculated for the validation in dataset B after the prediction model was trained on dataset A. When the datasets were reversed, an AUC of 0.90 (95% CI: 0.75, 1.00) was calculated for the validation in dataset A, after the prediction model trained in dataset B. CONCLUSION IVIM imaging is a promising method for the classification of AD and NC subjects, and IVIM parameters of precuneus and cerebellum might be effective biomarker for the diagnosis of AD.
Collapse
Affiliation(s)
- Nengzhi Xia
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yanxuan Li
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yingnan Xue
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Weikang Li
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhenhua Zhang
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Caiyun Wen
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jiance Li
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Qiong Ye
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China. .,High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China.
| |
Collapse
|
27
|
López F, Mäkitie A, de Bree R, Franchi A, de Graaf P, Hernández-Prera JC, Strojan P, Zidar N, Strojan Fležar M, Rodrigo JP, Rinaldo A, Centeno BA, Ferlito A. Qualitative and Quantitative Diagnosis in Head and Neck Cancer. Diagnostics (Basel) 2021; 11:diagnostics11091526. [PMID: 34573868 PMCID: PMC8466857 DOI: 10.3390/diagnostics11091526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/14/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
The diagnosis is the art of determining the nature of a disease, and an accurate diagnosis is the true cornerstone on which rational treatment should be built. Within the workflow in the management of head and neck tumours, there are different types of diagnosis. The purpose of this work is to point out the differences and the aims of the different types of diagnoses and to highlight their importance in the management of patients with head and neck tumours. Qualitative diagnosis is performed by a pathologist and is essential in determining the management and can provide guidance on prognosis. The evolution of immunohistochemistry and molecular biology techniques has made it possible to obtain more precise diagnoses and to identify prognostic markers and precision factors. Quantitative diagnosis is made by the radiologist and consists of identifying a mass lesion and the estimation of the tumour volume and extent using imaging techniques, such as CT, MRI, and PET. The distinction between the two types of diagnosis is clear, as the methodology is different. The accurate establishment of both diagnoses plays an essential role in treatment planning. Getting the right diagnosis is a key aspect of health care, and it provides an explanation of a patient’s health problem and informs subsequent decision. Deep learning and radiomics approaches hold promise for improving diagnosis.
Collapse
Affiliation(s)
- Fernando López
- Department of Otorhinolaryngology, Head and Neck Surgery, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo CIBERONC-ISCIII, 33011 Oviedo, Spain
- Correspondence:
| | - Antti Mäkitie
- Department of Otorhinolaryngology–Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland;
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands;
| | - Alessandro Franchi
- Department of Translational Research, School of Medicine, University of Pisa, 56124 Pisa, Italy;
| | - Pim de Graaf
- Cancer Center Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands;
| | | | - Primoz Strojan
- Department of Radiation Oncology, Institute of Oncology, 1000 Ljubljana, Slovenia;
| | - Nina Zidar
- Department of Head and Neck Pathology, Faculty of Medicine, Institute of Pathology, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Margareta Strojan Fležar
- Department of Cytopathology, Faculty of Medicine, Institute of Pathology, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Juan P. Rodrigo
- Department of Otorhinolaryngology, Head and Neck Surgery, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo CIBERONC-ISCIII, 33011 Oviedo, Spain
| | | | - Barbara A. Centeno
- Department of Pathology, Moffitt Cancer Center, Tampa, FL 33612, USA; (J.C.H.-P.); (B.A.C.)
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, 35100 Padua, Italy;
| |
Collapse
|
28
|
Wáng YXJ. Mutual constraining of slow component and fast component measures: some observations in liver IVIM imaging. Quant Imaging Med Surg 2021; 11:2879-2887. [PMID: 34079748 DOI: 10.21037/qims-21-187] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yì Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
29
|
Fujima N. Editorial for "Intra-voxel incoherent motion (IVIM) MRI for prediction of induction chemotherapy response in locally advanced hypopharyngeal carcinoma: comparison with model-free dynamic contrast-enhanced MRI". J Magn Reson Imaging 2021; 54:101-102. [PMID: 33779001 DOI: 10.1002/jmri.27621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
30
|
Guo B, Ouyang F, Ouyang L, Huang X, Guo T, Lin S, Liu Z, Zhang R, Yang SM, Chen H, Hu QG. Intravoxel Incoherent Motion Magnetic Resonance Imaging for Prediction of Induction Chemotherapy Response in Locally Advanced Hypopharyngeal Carcinoma: Comparison With Model-Free Dynamic Contrast-Enhanced Magnetic Resonance Imaging. J Magn Reson Imaging 2021; 54:91-100. [PMID: 33576125 DOI: 10.1002/jmri.27537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Multiparametric intravoxel incoherent motion (IVIM) provides diffusion and perfusion information for the treatment prediction of cancer. However, the superiority of IVIM over dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) in locally advanced hypopharyngeal carcinoma (LAHC) remains unclear. PURPOSE To compare the diagnostic performance of IVIM and model-free DCE in assessing induction chemotherapy (IC) response in patients with LAHC. STUDY TYPE Prospective. POPULATION Forty-two patients with LAHC. FIELD STRENGTH/SEQUENCE 3.0 T MRI, including IVIM (12 b values, 0-800 seconds/mm2 ) with a single-shot echo planar imaging sequence and DCE-MRI with a volumetric interpolated breath-hold examination sequence. IVIM MRI is a commercially available sequence and software for calculation and analysis from vendor. ASSESSMENT The IVIM-derived parameters (diffusion coefficient [D], pseudodiffusion coefficient [D*], and perfusion fraction [f]) and DCE-derived model-free parameters (Wash-in, time to maximum enhancement [Tmax], maximum enhancement [Emax], area under enhancement curve [AUC] over 60 seconds [AUC60 ], and whole area under enhancement curve [AUCw ]) were measured. At the end of IC, patients with complete or partial response were classified as responders according to the Response Evaluation Criteria in Solid Tumors. STATISTICAL TESTS The differences of parameters between responders and nonresponders were assessed using Mann-Whitney U tests. The performance of parameters for predicting IC response was evaluated by the receiver operating characteristic curves. RESULTS Twenty-three (54.8%) patients were classified as responders. Compared with nonresponders, the perfusion parameters D*, f, f × D*, and AUCw were significantly higher whereas Wash-in was lower in responders (all P-values <0.05). The f × D* outperformed other parameters, with an AUC of 0.84 (95% confidence interval [CI]: 0.69-0.93), sensitivity of 79.0% (95% CI: 54.4-93.9), and specificity of 82.6% (95% CI: 61.2-95.0). DATA CONCLUSION The IVIM MRI technique may noninvasively help predict the IC response before treatment in patients with LAHC. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Baoliang Guo
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| | - Fusheng Ouyang
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| | - Lizhu Ouyang
- Department of Ultrasound, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| | - Xiyi Huang
- Department of Clinical Laboratory, The Affiliated Shunde Hospital of Guangzhou, Medical University, Foshan, China
| | - Tiandi Guo
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| | - Shaojia Lin
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| | - Ziwei Liu
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| | - Rong Zhang
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| | - Shao-Min Yang
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| | - Haixiong Chen
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| | - Qiu-Gen Hu
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| |
Collapse
|
31
|
Koopman T, Martens R, Gurney‐Champion OJ, Yaqub M, Lavini C, de Graaf P, Castelijns J, Boellaard R, Marcus JT. Repeatability of IVIM biomarkers from diffusion-weighted MRI in head and neck: Bayesian probability versus neural network. Magn Reson Med 2021; 85:3394-3402. [PMID: 33501657 PMCID: PMC7986193 DOI: 10.1002/mrm.28671] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022]
Abstract
Purpose The intravoxel incoherent motion (IVIM) model for DWI might provide useful biomarkers for disease management in head and neck cancer. This study compared the repeatability of three IVIM fitting methods to the conventional nonlinear least‐squares regression: Bayesian probability estimation, a recently introduced neural network approach, IVIM‐NET, and a version of the neural network modified to increase consistency, IVIM‐NETmod. Methods Ten healthy volunteers underwent two imaging sessions of the neck, two weeks apart, with two DWI acquisitions per session. Model parameters (ADC, diffusion coefficient Dt, perfusion fraction fp, and pseudo‐diffusion coefficient Dp) from each fit method were determined in the tonsils and in the pterygoid muscles. Within‐subject coefficients of variation (wCV) were calculated to assess repeatability. Training of the neural network was repeated 100 times with random initialization to investigate consistency, quantified by the coefficient of variance. Results The Bayesian and neural network approaches outperformed nonlinear regression in terms of wCV. Intersession wCV of Dt in the tonsils was 23.4% for nonlinear regression, 9.7% for Bayesian estimation, 9.4% for IVIM‐NET, and 11.2% for IVIM‐NETmod. However, results from repeated training of the neural network on the same data set showed differences in parameter estimates: The coefficient of variances over the 100 repetitions for IVIM‐NET were 15% for both Dt and fp, and 94% for Dp; for IVIM‐NETmod, these values improved to 5%, 9%, and 62%, respectively. Conclusion Repeatabilities from the Bayesian and neural network approaches are superior to that of nonlinear regression for estimating IVIM parameters in the head and neck.
Collapse
Affiliation(s)
- Thomas Koopman
- Department of Radiology and Nuclear MedicineAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Roland Martens
- Department of Radiology and Nuclear MedicineAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | | | - Maqsood Yaqub
- Department of Radiology and Nuclear MedicineAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Cristina Lavini
- Department of RadiologyAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Pim de Graaf
- Department of Radiology and Nuclear MedicineAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Jonas Castelijns
- Department of Radiology and Nuclear MedicineAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamthe Netherlands
- Department of Radiologythe Netherlands Cancer Institute–Antoni van LeeuwenhoekAmsterdamthe Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear MedicineAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamthe Netherlands
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenGroningenthe Netherlands
| | - J. Tim Marcus
- Department of Radiology and Nuclear MedicineAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
32
|
Intravoxel incoherent motion as a tool to detect early microstructural changes in meningiomas treated with proton therapy. Neuroradiology 2021; 63:1053-1060. [PMID: 33392736 DOI: 10.1007/s00234-020-02630-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE To assess early microstructural changes of meningiomas treated with proton therapy through quantitative analysis of intravoxel incoherent motion (IVIM) and diffusion-weighted imaging (DWI) parameters. METHODS Seventeen subjects with meningiomas that were eligible for proton therapy treatment were retrospectively enrolled. Each subject underwent a magnetic resonance imaging (MRI) including DWI sequences and IVIM assessments at baseline, immediately before the 1st (t0), 10th (t10), 20th (t20), and 30th (t30) treatment fraction and at follow-up. Manual tumor contours were drawn on T2-weighted images by two expert neuroradiologists and then rigidly registered to DWI images. Median values of the apparent diffusion coefficient (ADC), true diffusion (D), pseudo-diffusion (D*), and perfusion fraction (f) were extracted at all timepoints. Statistical analysis was performed using the pairwise Wilcoxon test. RESULTS Statistically significant differences from baseline to follow-up were found for ADC, D, and D* values, with a progressive increase in ADC and D in conjunction with a progressive decrease in D*. MRI during treatment showed statistically significant differences in D values between t0 and t20 (p = 0.03) and t0 and t30 (p = 0.02), and for ADC values between t0 and t20 (p = 0.04), t10 and t20 (p = 0.02), and t10 and t30 (p = 0.035). Subjects that showed a volume reduction greater than 15% of the baseline tumor size at follow-up showed early D changes, whereas ADC changes were not statistically significant. CONCLUSION IVIM appears to be a useful tool for detecting early microstructural changes within meningiomas treated with proton therapy and may potentially be able to predict tumor response.
Collapse
|
33
|
Song Q, Li F, Chen X, Wang J, Liu H, Cheng Y. Early detection treatment response for head and neck carcinomas using intravoxel incoherent motion-magnetic resonance imaging: a meta-analysis. Dentomaxillofac Radiol 2021; 50:20190507. [PMID: 32286860 DOI: 10.1259/dmfr.20190507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To evaluate the diagnostic accuracy of intravoxel incoherent motion-MRI (IVIM-MRI) for predicting the treatment response in head and neck squamous cell carcinomas (HNSCC) patients. METHODS A comprehensive literature search was performed to identify original articles on diagnostic performance of IVIM in predicting treatment response in HNSCC patients receiving chemoradiotherapy. The IVIM parameters studied were diffusion coefficient (D), pseudodiffusion coefficient (D*), perfusion fraction (f), and apparent diffusion coefficient. Summary estimates of diagnostic accuracy were obtained by using a random-effects model. Of 65 studies screened, 8 studies with 347 patients were finally included. RESULTS The pooled sensitivities and specificities were 76% [95% confidence interval (CI) 69-82%] and 81% (95% CI 70-89%) for pre-treatment D, and 70% (95% CI 58-80%) and 82% (95% CI 66-92%) for △D, respectively. In addition, the sensitivities and specificities ranged from 41.7 to 94% and 67 to 100% for pre-treatment f, and from 55.7 to 76.5% and 72.2 to 93.3% for pre-treatment apparent diffusion coefficient, respectively. CONCLUSIONS The diffusion-related coefficients pre-treatment D and △D demonstrated good accuracy in predicting early treatment response in HNSCC patients. However, because of the variability in reference test and other limitations of included literature, further investigation is needed before implementing any IVIM strategy into clinical practice.
Collapse
Affiliation(s)
- Qingxu Song
- Department of Radiation Oncology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
| | - Fang Li
- Second Department of Internal Medicine, Laiwu People's Hospital, 79 Fengchengxi Street, Jinan, Shandong, 271100, P.R. China
| | - Xin Chen
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, 324 Jingwu Road, Jinan, Shandong, 250021, P.R. China
| | - Jianbo Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
| | - Hong Liu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, Shandong, 250012, P.R. China
| |
Collapse
|
34
|
Intravoxel incoherent motion magnetic resonance imaging: basic principles and clinical applications. Pol J Radiol 2020; 85:e624-e635. [PMID: 33376564 PMCID: PMC7757509 DOI: 10.5114/pjr.2020.101476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/03/2020] [Indexed: 12/26/2022] Open
Abstract
The purpose of this article was to show basic principles, acquisition, advantages, disadvantages, and clinical applications of intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI). IVIM MRI as a method was introduced in the late 1980s, but recently it started attracting more interest thanks to its applications in many fields, particularly in oncology and neuroradiology. This imaging technique has been developed with the objective of obtaining not only a functional analysis of different organs but also different types of lesions. Among many accessible tools in diagnostic imaging, IVIM MRI aroused the interest of many researchers in terms of studying its applicability in the evaluation of abdominal organs and diseases. The major conclusion of this article is that IVIM MRI seems to be a very auspicious method to investigate the human body, and that nowadays the most promising clinical application for IVIM perfusion MRI is oncology. However, due to lack of standardisation of image acquisition and analysis, further studies are needed to validate this method in clinical practice.
Collapse
|
35
|
Ai QYH, Chen W, So TY, Lam WKJ, Jiang B, Poon DMC, Qamar S, Mo FKF, Blu T, Chan Q, Ma BBY, Hui EP, Chan KCA, King AD. Quantitative T1ρ MRI of the Head and Neck Discriminates Carcinoma and Benign Hyperplasia in the Nasopharynx. AJNR Am J Neuroradiol 2020; 41:2339-2344. [PMID: 33122214 DOI: 10.3174/ajnr.a6828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE T1ρ imaging is a new quantitative MR imaging pulse sequence with the potential to discriminate between malignant and benign tissue. In this study, we evaluated the capability of T1ρ imaging to characterize tissue by applying T1ρ imaging to malignant and benign tissue in the nasopharynx and to normal tissue in the head and neck. MATERIALS AND METHODS Participants with undifferentiated nasopharyngeal carcinoma and benign hyperplasia of the nasopharynx prospectively underwent T1ρ imaging. T1ρ measurements obtained from the histogram analysis for nasopharyngeal carcinoma in 43 participants were compared with those for benign hyperplasia and for normal tissue (brain, muscle, and parotid glands) in 41 participants using the Mann-Whitney U test. The area under the curve of significant T1ρ measurements was calculated and compared using receiver operating characteristic analysis and the Delong test, respectively. A P < . 05 indicated statistical significance. RESULTS There were significant differences in T1ρ measurements between nasopharyngeal carcinoma and benign hyperplasia and between nasopharyngeal carcinoma and normal tissue (all, P < . 05). Compared with benign hyperplasia, nasopharyngeal carcinoma showed a lower T1ρ mean (62.14 versus 65.45 × ms), SD (12.60 versus 17.73 × ms), and skewness (0.61 versus 0.76) (all P < .05), but no difference in kurtosis (P = . 18). The T1ρ SD showed the highest area under the curve of 0.95 compared with the T1ρ mean (area under the curve = 0.72) and T1ρ skewness (area under the curve = 0.72) for discriminating nasopharyngeal carcinoma and benign hyperplasia (all, P < .05). CONCLUSIONS Quantitative T1ρ imaging has the potential to discriminate malignant from benign and normal tissue in the head and neck.
Collapse
Affiliation(s)
- Q Y H Ai
- From the Department of Imaging and Interventional Radiology (Q.Y.H.A., W.C., T.Y.S., B.J., S.Q., A.D.K.)
| | - W Chen
- From the Department of Imaging and Interventional Radiology (Q.Y.H.A., W.C., T.Y.S., B.J., S.Q., A.D.K.)
| | - T Y So
- From the Department of Imaging and Interventional Radiology (Q.Y.H.A., W.C., T.Y.S., B.J., S.Q., A.D.K.)
| | - W K J Lam
- Li Ka Shing Institute of Health Sciences (W.K.J.L., D.M.C.P., B.B.Y.M., E.P.H., K.C.A.C.).,State Key Laboratory of Translational Oncology (W.K.J.L., D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H., K.C.A.C.).,Department of Chemical Pathology (W.K.J.L., K.C.A.C.), State Key Laboratory in Oncology in South China, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR
| | - B Jiang
- From the Department of Imaging and Interventional Radiology (Q.Y.H.A., W.C., T.Y.S., B.J., S.Q., A.D.K.)
| | - D M C Poon
- Li Ka Shing Institute of Health Sciences (W.K.J.L., D.M.C.P., B.B.Y.M., E.P.H., K.C.A.C.).,Department of Clinical Oncology (D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H.), State Key Laboratory in Oncology in South China, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR.,State Key Laboratory of Translational Oncology (W.K.J.L., D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H., K.C.A.C.)
| | - S Qamar
- From the Department of Imaging and Interventional Radiology (Q.Y.H.A., W.C., T.Y.S., B.J., S.Q., A.D.K.)
| | - F K F Mo
- Department of Clinical Oncology (D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H.), State Key Laboratory in Oncology in South China, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR.,State Key Laboratory of Translational Oncology (W.K.J.L., D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H., K.C.A.C.)
| | - T Blu
- Department of Electrical Engineering (T.B.), The Chinese University of Hong Kong, Hong Kong, SAR
| | - Q Chan
- Philips Healthcare (Q.C.), Hong Kong, SAR
| | - B B Y Ma
- Li Ka Shing Institute of Health Sciences (W.K.J.L., D.M.C.P., B.B.Y.M., E.P.H., K.C.A.C.).,Department of Clinical Oncology (D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H.), State Key Laboratory in Oncology in South China, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR.,State Key Laboratory of Translational Oncology (W.K.J.L., D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H., K.C.A.C.)
| | - E P Hui
- Li Ka Shing Institute of Health Sciences (W.K.J.L., D.M.C.P., B.B.Y.M., E.P.H., K.C.A.C.).,Department of Clinical Oncology (D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H.), State Key Laboratory in Oncology in South China, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR.,State Key Laboratory of Translational Oncology (W.K.J.L., D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H., K.C.A.C.)
| | - K C A Chan
- Li Ka Shing Institute of Health Sciences (W.K.J.L., D.M.C.P., B.B.Y.M., E.P.H., K.C.A.C.).,State Key Laboratory of Translational Oncology (W.K.J.L., D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H., K.C.A.C.).,Department of Chemical Pathology (W.K.J.L., K.C.A.C.), State Key Laboratory in Oncology in South China, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR
| | - A D King
- From the Department of Imaging and Interventional Radiology (Q.Y.H.A., W.C., T.Y.S., B.J., S.Q., A.D.K.)
| |
Collapse
|
36
|
Differentiating atypical hemangiomas and vertebral metastases: a field-of-view (FOV) and FOCUS intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2020; 29:3187-3193. [PMID: 33078268 DOI: 10.1007/s00586-020-06632-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Some atypical vertebral hemangiomas (VHs) may mimic metastases on routine MRI and can result in misdiagnosis and ultimately to additional imaging, biopsy and unnecessary costs. The purpose of this study is to assess the utility of intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) on account of field-of-view optimized and constrained undistorted single shot (FOCUS) in distinguishing atypical VHs and vertebral metastases. METHODS A total of 25 patients with vertebral metastases and 25 patients with atypical VHs were confirmed by clinical follow-up or pathology. IVIM-DWI imaging was performed at different b values (0, 30, 50, 100, 150, 200, 400, 600, 800, 1000 mm2/s). IVIM parameters [the true diffusion coefficient (D), pseudodiffusion coefficient (D*), standard apparent diffusion coefficient (ADC), and perfusion fraction (f)] were calculated and compared between two groups by using Student's t test. A receiver operating characteristic analysis was performed. RESULTS Quantitative analysis of standard ADC and D parameters showed significantly lower values in vertebral metastases when compared to atypical hemangiomas [ADC value: (0.70 ± 0.12) × 10-3 mm2/s vs (1.14 ± 0.28) × 10-3 mm2/s; D value: (0.47 ± 0.07) × 10-3 mm2/s vs (0.76 ± 0.14) × 10-3 mm2/s, all P < 0.01]. The sensitivity and specificity of D value were 93.8% and 92.3%, respectively. CONCLUSION The standard ADC value and D value may be used as an indicator to distinguish vertebral metastases from atypical VHs. FOCUS IVIM-derived parameters provide potential value in the quantitatively differentiating vertebral metastases from vertebral atypical hemangiomas.
Collapse
|
37
|
Aulino JM, Kirsch CFE, Burns J, Busse PM, Chakraborty S, Choudhri AF, Conley DB, Jones CU, Lee RK, Luttrull MD, Moritani T, Policeni B, Ryan ME, Shah LM, Sharma A, Shih RY, Subramaniam RM, Symko SC, Bykowski J. ACR Appropriateness Criteria ® Neck Mass-Adenopathy. J Am Coll Radiol 2020; 16:S150-S160. [PMID: 31054741 DOI: 10.1016/j.jacr.2019.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/08/2019] [Indexed: 11/26/2022]
Abstract
A palpable neck mass may be the result of neoplastic, congenital, or inflammatory disease. Older age suggests neoplasia, and a congenital etiology is more prevalent in the pediatric population. The imaging approach is based on the patient age, mass location, and clinical pulsatility. Underlying human papillomavirus-related malignancy should be considered in all age groups. Although the imaging appearance of some processes in the head and neck overlap, choosing the appropriate imaging examination may allow a specific diagnosis, or a limited differential diagnosis. Tissue sampling is indicated to confirm suspected malignancy. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
| | | | - Claudia F E Kirsch
- Panel Chair, Northwell Health, Zucker Hofstra School of Medicine at Northwell, Manhasset, New York
| | | | - Paul M Busse
- Massachusetts General Hospital, Boston, Massachusetts
| | - Santanu Chakraborty
- Ottawa Hospital Research Institute and the Department of Radiology, The University of Ottawa, Ottawa, Ontario, Canada, Canadian Association of Radiologists
| | - Asim F Choudhri
- Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee
| | - David B Conley
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, American Academy of Otolaryngology-Head and Neck Surgery
| | | | - Ryan K Lee
- Einstein Healthcare Network, Philadelphia, Pennsylvania
| | | | | | - Bruno Policeni
- University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Maura E Ryan
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | | | - Aseem Sharma
- Mallinckrodt Institute of Radiology, Saint Louis, Missouri
| | - Robert Y Shih
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | | | | | - Julie Bykowski
- Specialty Chair, UC San Diego Health Center, San Diego, California
| |
Collapse
|
38
|
Sijtsema ND, Petit SF, Poot DHJ, Verduijn GM, van der Lugt A, Hoogeman MS, Hernandez-Tamames JA. An optimal acquisition and post-processing pipeline for hybrid IVIM-DKI in head and neck. Magn Reson Med 2020; 85:777-789. [PMID: 32869353 PMCID: PMC7693044 DOI: 10.1002/mrm.28461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/30/2022]
Abstract
Purpose To optimize the diffusion‐weighting b values and postprocessing pipeline for hybrid intravoxel incoherent motion diffusion kurtosis imaging in the head and neck region. Methods Optimized diffusion‐weighting b value sets ranging between 5 and 30 b values were constructed by optimizing the Cramér‐Rao lower bound of the hybrid intravoxel incoherent motion diffusion kurtosis imaging model. With this model, the perfusion fraction, pseudodiffusion coefficient, diffusion coefficient, and kurtosis were estimated. Sixteen volunteers were scanned with a reference b value set and 3 repeats of the optimized sets, of which 1 with volunteers swallowing on purpose. The effects of (1) b value optimization and number of b values, (2) registration type (none vs. intervolume vs. intra‐ and intervolume registration), and (3) manual swallowing artifact rejection on the parameter precision were assessed. Results The SD was higher in the reference set for perfusion fraction, diffusion coefficient, and kurtosis by a factor of 1.7, 1.5, and 2.3 compared to the optimized set, respectively. A smaller SD (factor 0.7) was seen in pseudodiffusion coefficient. The sets containing 15, 20, and 30 b values had comparable repeatability in all parameters, except pseudodiffusion coefficient, for which set size 30 was worse. Equal repeatability for the registration approaches was seen in all parameters of interest. Swallowing artifact rejection removed the bias when present. Conclusion To achieve optimal hybrid intravoxel incoherent motion diffusion kurtosis imaging in the head and neck region, b value optimization and swallowing artifact image rejection are beneficial. The optimized set of 15 b values yielded the optimal protocol efficiency, with a precision comparable to larger b value sets and a 50% reduction in scan time.
Collapse
Affiliation(s)
- Nienke D Sijtsema
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Steven F Petit
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Dirk H J Poot
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.,Department of Medical Informatics, Erasmus MC, Rotterdam, The Netherlands
| | - Gerda M Verduijn
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Mischa S Hoogeman
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.,Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands
| | | |
Collapse
|
39
|
Multiparametric functional MRI and 18F-FDG-PET for survival prediction in patients with head and neck squamous cell carcinoma treated with (chemo)radiation. Eur Radiol 2020; 31:616-628. [PMID: 32851444 PMCID: PMC7813703 DOI: 10.1007/s00330-020-07163-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/17/2020] [Accepted: 08/06/2020] [Indexed: 12/02/2022]
Abstract
Objectives To assess (I) correlations between diffusion-weighted (DWI), intravoxel incoherent motion (IVIM), dynamic contrast-enhanced (DCE) MRI, and 18F-FDG-PET/CT imaging parameters capturing tumor characteristics and (II) their predictive value of locoregional recurrence-free survival (LRFS) and overall survival (OS) in patients with head and neck squamous cell carcinoma (HNSCC) treated with (chemo)radiotherapy. Methods Between 2014 and 2018, patients with histopathologically proven HNSCC, planned for curative (chemo) radiotherapy, were prospectively included. Pretreatment clinical, anatomical, and functional imaging parameters (obtained by DWI/IVIM, DCE-MRI, and 18F-FDG-PET/CT) were extracted for primary tumors (PT) and lymph node metastases. Correlations and differences between parameters were assessed. The predictive value of LRFS and OS was assessed, performing univariable, multivariable Cox and CoxBoost regression analyses. Results In total, 70 patients were included. Significant correlations between 18F-FDG-PET parameters and DWI-/DCE volume parameters were found (r > 0.442, p < 0.002). The combination of HPV (HR = 0.903), intoxications (HR = 1.065), PT ADCGTV (HR = 1.252), Ktrans (HR = 1.223), and Ve (HR = 1.215) was predictive for LRFS (C-index = 0.546; p = 0.023). N-stage (HR = 1.058), HPV positivity (HR = 0.886), hypopharyngeal tumor location (HR = 1.111), ADCGTV (HR = 1.102), ADCmean (HR = 1.137), D* (HR = 0.862), Ktrans (HR = 1.106), Ve (HR = 1.195), SUVmax (HR = 1.094), and TLG (HR = 1.433) were predictive for OS (C-index = 0.664; p = 0.046). Conclusions Functional imaging parameters, performing DWI/IVIM, DCE-MRI, and 18F-FDG-PET/CT, yielded complementary value in capturing tumor characteristics. More specific, intoxications, HPV-negative status, large tumor volume-related parameters, high permeability (Ktrans), and high extravascular extracellular space (Ve) parameters were predictive for adverse locoregional recurrence-free survival and adverse overall survival. Low cellularity (high ADC) and high metabolism (high SUV) were additionally predictive for decreased overall survival. These different predictive factors added to estimated locoregional and overall survival. Key Points • Parameters of DWI/IVIM, DCE-MRI, and 18F-FDG-PET/CT were able to capture complementary tumor characteristics. • Multivariable analysis revealed that intoxications, HPV negativity, large tumor volume and high vascular permeability (Ktrans), and extravascular extracellular space (Ve) were complementary predictive for locoregional recurrence. • In addition to predictive parameters for locoregional recurrence, also high cellularity (low ADC) and high metabolism (high SUV) were complementary predictive for overall survival. Electronic supplementary material The online version of this article (10.1007/s00330-020-07163-3) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Intravoxel incoherent motion diffusion-weighted imaging for discrimination of benign and malignant retropharyngeal nodes. Neuroradiology 2020; 62:1667-1676. [PMID: 32676831 DOI: 10.1007/s00234-020-02494-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Anatomical imaging criteria for the diagnosis of malignant head and neck nodes may not always be reliable. This study aimed to evaluate the diagnostic value of conventional diffusion-weighted imaging (DWI) and intravoxel incoherent motion (IVIM) DWI in discriminating benign and malignant metastatic retropharyngeal nodes (RPNs). METHODS IVIM DWI using 14 b-values was performed on RPNs of 30 patients with newly diagnosed metastatic nasopharyngeal carcinoma (NPC) and 30 patients with elevated plasma Epstein-Barr virus (EBV)-DNA without NPC who were part of an EBV-based NPC screening program. Histogram measurements of the two groups were compared for pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion volume fraction (f) and apparent diffusion coefficient (ADC) using the Mann-Whitney U test. Area under the curves (AUCs) of significant measurements were calculated from receiver-operating characteristics analysis and compared using the DeLong test. RESULTS Compared with metastatic RPNs, benign RPNs had lower ADCmean (0.73 vs 0.82 × 10-3 mm2/s) and Dmean (0.60 vs 0.71 × 10-3 mm2/s) and a higher D*mean (35.21 vs 28.66 × 10-3 mm2/s) (all p < 0.05). There was no difference in the f measurements between the two groups (p = 0.204 to 0.301). Dmean achieved the highest AUC of 0.800, but this was not statistically better than the AUCs of the other parameters (p = 0.148 to 0.991). CONCLUSION Benign RPNs in patients with EBV-DNA showed greater restriction of diffusion compared with malignant metastatic RPNs from NPC. IVIM did not show a significant advantage over conventional DWI in discriminating benign and malignant nodes.
Collapse
|
41
|
Iima M. Perfusion-driven Intravoxel Incoherent Motion (IVIM) MRI in Oncology: Applications, Challenges, and Future Trends. Magn Reson Med Sci 2020; 20:125-138. [PMID: 32536681 PMCID: PMC8203481 DOI: 10.2463/mrms.rev.2019-0124] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent developments in MR hardware and software have allowed a surge of interest in intravoxel incoherent motion (IVIM) MRI in oncology. Beyond diffusion-weighted imaging (and the standard apparent diffusion coefficient mapping most commonly used clinically), IVIM provides information on tissue microcirculation without the need for contrast agents. In oncology, perfusion-driven IVIM MRI has already shown its potential for the differential diagnosis of malignant and benign tumors, as well as for detecting prognostic biomarkers and treatment monitoring. Current developments in IVIM data processing, and its use as a method of scanning patients who cannot receive contrast agents, are expected to increase further utilization. This paper reviews the current applications, challenges, and future trends of perfusion-driven IVIM in oncology.
Collapse
Affiliation(s)
- Mami Iima
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine.,Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital
| |
Collapse
|
42
|
Qamar S, King AD, Ai QYH, So TY, Mo FKF, Chen W, Poon DMC, Tong M, Ma BB, Hui EP, Yeung DKW, Wang YX, Yuan J. Pre-treatment intravoxel incoherent motion diffusion-weighted imaging predicts treatment outcome in nasopharyngeal carcinoma. Eur J Radiol 2020; 129:109127. [PMID: 32563165 DOI: 10.1016/j.ejrad.2020.109127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/28/2020] [Accepted: 06/07/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE To evaluate whether pre-treatment intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) can predict treatment outcome after 2 years in patients with nasopharyngeal carcinoma (NPC). METHOD One hundred and sixty-one patients with newly diagnosed NPC underwent pre-treatment IVIM-DWI. Univariate Cox regression analysis was performed to evaluate the correlation of the mean values of the pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction and apparent diffusion coefficient with local relapse-free survival (LRFS), regional relapse-free survival (RRFS), distant metastases-free survival (DMFS) and disease-free survival (DFS). Significant diffusion parameters, together with staging, age, gender and treatment as confounding factors, were added into a multivariate model. The area under the curves (AUCs) of significant parameters for disease relapse were compared using the Delong test. RESULTS Disease relapse occurred in 30 % of the patients at a median follow-up time of 52.1 months. The multivariate analysis showed that high D and T-staging were correlated with poor LRFS (p = 0.042 and 0.020, respectively) and poor DFS (p = 0.023 and 0.001, respectively); low D* and high T-staging with poor RRFS (p = 0.020 and 0.033, respectively); and high N-staging with poor DMFS (p = 0.006). D with the optimal threshold of ≥0.68 × 10-3 mm2/s and T-staging showed similar AUCs (AUC = 0.614 and 0.651, respectively; p = 0.493) for predicting disease relapse. CONCLUSION High D and low D* were predictors of poor locoregional outcome but none of the diffusion parameters predicted DMFS in NPC.
Collapse
Affiliation(s)
- Sahrish Qamar
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Ann D King
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| | - Qi-Yong H Ai
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Tiffany Y So
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Frankie Kwok Fai Mo
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Darren M C Poon
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Macy Tong
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Brigette B Ma
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Edwin P Hui
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - David Ka-Wai Yeung
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Yi-Xiang Wang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Jing Yuan
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| |
Collapse
|
43
|
Norris CD, Quick SE, Parker JG, Koontz NA. Diffusion MR Imaging in the Head and Neck: Principles and Applications. Neuroimaging Clin N Am 2020; 30:261-282. [PMID: 32600630 DOI: 10.1016/j.nic.2020.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diffusion imaging is a functional MR imaging tool that creates tissue contrast representative of the random, microscopic translational motion of water molecules within human body tissues. Long considered a cornerstone MR imaging sequence for brain imaging, diffusion-weighted imaging (DWI) increasingly is used for head and neck imaging. This review reports the current state of diffusion techniques for head and neck imaging, including conventional DWI, DWI trace with apparent diffusion coefficient map, diffusion tensor imaging, intravoxel incoherent motion, and diffusion kurtosis imaging. This article describes background physics, reports supportive evidence and potential pitfalls, highlights technical advances, and details practical clinical applications.
Collapse
Affiliation(s)
- Carrie D Norris
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 North University Boulevard, Room 0663, Indianapolis, IN 46202, USA. https://twitter.com/CarrieDNorrisMD
| | - Sandra E Quick
- Department of Radiology, Richard L. Roudebush VA Medical Center, 1481 West 10th Street, Indianapolis, IN 46202, USA
| | - Jason G Parker
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 North University Boulevard, Room 0663, Indianapolis, IN 46202, USA
| | - Nicholas A Koontz
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 North University Boulevard, Room 0663, Indianapolis, IN 46202, USA; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
44
|
Lanzarone E, Mastropietro A, Scalco E, Vidiri A, Rizzo G. A novel bayesian approach with conditional autoregressive specification for intravoxel incoherent motion diffusion-weighted MRI. NMR IN BIOMEDICINE 2020; 33:e4201. [PMID: 31884712 DOI: 10.1002/nbm.4201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/28/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
The Intra-Voxel Incoherent Motion (IVIM) model is largely adopted to estimate slow and fast diffusion coefficients of water molecules in biological tissues, which are used in cancer applications. The most reported fitting approach is a voxel-wise segmented non-linear least square, whereas Bayesian approaches with a direct fit, also considering spatial regularization, were proposed too. In this work a novel segmented Bayesian method was proposed, also in combination with a spatial regularization through a Conditional Autoregressive (CAR) prior specification. The two segmented Bayesian approaches, with and without CAR specification, were compared with two standard least-square and a direct Bayesian fitting methods. All approaches were tested on simulated images and real data of patients with head-and-neck and rectal cancer. Estimation accuracy and maps noisiness were quantified on simulated images, whereas the coefficient of variation and the goodness of fit were evaluated for real data. Both versions of the segmented Bayesian approach outperformed the standard methods on simulated images for pseudo-diffusion (D∗ ) and perfusion fraction (f), whilst the segmented least-square fitting remained the less biased for the diffusion coefficient (D). On real data, Bayesian approaches provided the less noisy maps, and the two Bayesian methods without CAR generally estimated lower values for f and D∗ coefficients with respect to the other approaches. The proposed segmented Bayesian approaches were superior, in terms of estimation accuracy and maps quality, to the direct Bayesian model and the least-square fittings. The CAR method improved the estimation accuracy, especially for D∗ .
Collapse
Affiliation(s)
- Ettore Lanzarone
- Institute for Applied Mathematics and Information Technologies (IMATI-CNR), Milan, Italy
| | - Alfonso Mastropietro
- Institute of Biomedical Technologies (ITB-CNR), Segrate (MI), Italy
- Institute of Molecular Bioimaging and Physiology (IBFM-CNR), Segrate (MI), Italy
| | - Elisa Scalco
- Institute of Biomedical Technologies (ITB-CNR), Segrate (MI), Italy
- Institute of Molecular Bioimaging and Physiology (IBFM-CNR), Segrate (MI), Italy
| | - Antonello Vidiri
- Radiology and Diagnostic Imaging Department, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanna Rizzo
- Institute of Biomedical Technologies (ITB-CNR), Segrate (MI), Italy
- Institute of Molecular Bioimaging and Physiology (IBFM-CNR), Segrate (MI), Italy
| |
Collapse
|
45
|
Xiao Z, Tang Z, Zheng C, Luo J, Zhao K, Zhang Z. Diffusion Kurtosis Imaging and Intravoxel Incoherent Motion in Differentiating Nasal Malignancies. Laryngoscope 2019; 130:E727-E735. [PMID: 31747056 DOI: 10.1002/lary.28424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/22/2019] [Accepted: 10/26/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES/HYPOTHESIS To evaluate the usefulness of diffusion kurtosis imaging (DKI) and intravoxel incoherent motion (IVIM) in the differentiation of sinonasal malignant tumors (SNMTs) with different histological types. STUDY DESIGN Retrospective observational and diagnostic study. METHODS Sixty-five patients with SNMTs who underwent DKI and IVIM were enrolled in this retrospective study, including 27 squamous cell carcinomas (SCCs), 13 olfactory neuroblastomas (ONBs), 14 malignant melanomas (MMs) and 11 lymphomas. The kurtosis (K) and diffusion coefficient (Dk) from DKI and the pure diffusion coefficient (D), pseudodiffusion coefficient (D*), perfusion fraction (f), and the product of D* and f (f∙D*) from IVIM were measured. Kruskal-Wallis and Dunn multiple comparison tests with Bonferroni correction, receiver operating characteristic curve, and logistic regression analyses were used for statistical analysis. RESULTS Lymphomas demonstrated the highest K values but lowest Dk, D, D*, f, and f∙D* values among these four malignant tumors. ONBs exhibited high K values and MMs had highest D*, f, and f∙D* values. The cutoff value of ≤0.887 × 10-3 mm2 /sec for f∙D* provided a sensitivity, specificity, and an accuracy of 100%, 98.1%, and 98.5%, respectively, for differentiating lymphomas from the other three entities. The combination of f∙D* and D values showed a sensitivity of 92.9% and a specificity of 92.5% for the discrimination of MMs from ONBs and SCCs. The K value was useful for differentiating ONBs from SCCs, with a threshold value of 0.942 (sensitivity, 84.6%; specificity, 63.0%). CONCLUSIONS The combined use of DKI and IVIM is helpful for differentiating among four histological types of SNMTs. LEVEL OF EVIDENCE 3 Laryngoscope, 2019.
Collapse
Affiliation(s)
- Zebin Xiao
- Department of Radiology, Eye and Ear, Nose, and Throat Hospital of Shanghai Medical School, Fudan University, Shanghai, China
| | - Zuohua Tang
- Department of Radiology, Eye and Ear, Nose, and Throat Hospital of Shanghai Medical School, Fudan University, Shanghai, China
| | - Chunquan Zheng
- Department of Otolaryngology, Eye and Ear, Nose, and Throat Hospital of Shanghai Medical School, Fudan University, Shanghai, China
| | - Jianfeng Luo
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Keqing Zhao
- Department of Otolaryngology, Eye and Ear, Nose, and Throat Hospital of Shanghai Medical School, Fudan University, Shanghai, China
| | - Zhongshuai Zhang
- Department of Diagnostic Imaging, Siemens Healthcare Ltd., Shanghai, China
| |
Collapse
|
46
|
Vidiri A, Marzi S, Gangemi E, Benevolo M, Rollo F, Farneti A, Marucci L, Spasiano F, Sperati F, Di Giuliano F, Pellini R, Sanguineti G. Intravoxel incoherent motion diffusion-weighted imaging for oropharyngeal squamous cell carcinoma: Correlation with human papillomavirus Status. Eur J Radiol 2019; 119:108640. [DOI: 10.1016/j.ejrad.2019.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/17/2019] [Accepted: 08/11/2019] [Indexed: 01/04/2023]
|
47
|
Fujima N, Shimizu Y, Yoshida D, Kano S, Mizumachi T, Homma A, Yasuda K, Onimaru R, Sakai O, Kudo K, Shirato H. Machine-Learning-Based Prediction of Treatment Outcomes Using MR Imaging-Derived Quantitative Tumor Information in Patients with Sinonasal Squamous Cell Carcinomas: A Preliminary Study. Cancers (Basel) 2019; 11:cancers11060800. [PMID: 31185611 PMCID: PMC6627127 DOI: 10.3390/cancers11060800] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/02/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was to determine the predictive power for treatment outcome of a machine-learning algorithm combining magnetic resonance imaging (MRI)-derived data in patients with sinonasal squamous cell carcinomas (SCCs). Thirty-six primary lesions in 36 patients were evaluated. Quantitative morphological parameters and intratumoral characteristics from T2-weighted images, tumor perfusion parameters from arterial spin labeling (ASL) and tumor diffusion parameters of five diffusion models from multi-b-value diffusion-weighted imaging (DWI) were obtained. Machine learning by a non-linear support vector machine (SVM) was used to construct the best diagnostic algorithm for the prediction of local control and failure. The diagnostic accuracy was evaluated using a 9-fold cross-validation scheme, dividing patients into training and validation sets. Classification criteria for the division of local control and failure in nine training sets could be constructed with a mean sensitivity of 0.98, specificity of 0.91, positive predictive value (PPV) of 0.94, negative predictive value (NPV) of 0.97, and accuracy of 0.96. The nine validation data sets showed a mean sensitivity of 1.0, specificity of 0.82, PPV of 0.86, NPV of 1.0, and accuracy of 0.92. In conclusion, a machine-learning algorithm using various MR imaging-derived data can be helpful for the prediction of treatment outcomes in patients with sinonasal SCCs.
Collapse
Affiliation(s)
- Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo 060-8638, Hokkaido, Japan.
| | - Yukie Shimizu
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo 060-8638, Hokkaido, Japan.
| | - Daisuke Yoshida
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo 060-8638, Hokkaido, Japan.
| | - Satoshi Kano
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Hokkaido, Japan.
| | - Takatsugu Mizumachi
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Hokkaido, Japan.
| | - Akihiro Homma
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Hokkaido, Japan.
| | - Koichi Yasuda
- Department of Radiation Medicine, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Hokkaido, Japan.
| | - Rikiya Onimaru
- Department of Radiation Medicine, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Hokkaido, Japan.
| | - Osamu Sakai
- Departments of Radiology, Otolaryngology-Head and Neck Surgery, and Radiation Oncology, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Kohsuke Kudo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo 060-8638, Hokkaido, Japan.
| | - Hiroki Shirato
- Department of Radiation Medicine, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Hokkaido, Japan.
- The Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Sapporo 060-0808, Hokkaido, Japan.
| |
Collapse
|
48
|
Técnicas avanzadas de resonancia magnética en patología tumoral de cabeza y cuello. RADIOLOGIA 2019; 61:191-203. [DOI: 10.1016/j.rx.2018.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022]
|
49
|
|
50
|
Ai QY, King AD, Chan JSM, Chen W, Chan KCA, Woo JKS, Zee BCY, Chan ATC, Poon DMC, Ma BBY, Hui EP, Ahuja AT, Vlantis AC, Yuan J. Distinguishing early-stage nasopharyngeal carcinoma from benign hyperplasia using intravoxel incoherent motion diffusion-weighted MRI. Eur Radiol 2019; 29:5627-5634. [DOI: 10.1007/s00330-019-06133-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/14/2019] [Accepted: 03/06/2019] [Indexed: 11/29/2022]
|