1
|
Mohanty S, Desai VM, Jain R, Agrawal M, Dubey SK, Singhvi G. Unveiling the potential of photodynamic therapy with nanocarriers as a compelling therapeutic approach for skin cancer treatment: current explorations and insights. RSC Adv 2024; 14:21915-21937. [PMID: 38989245 PMCID: PMC11234503 DOI: 10.1039/d4ra02564d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Skin carcinoma is one of the most prevalent types of carcinomas. Due to high incidence of side effects in conventional therapies (radiotherapy and chemotherapy), photodynamic therapy (PDT) has gained huge attention as an alternate treatment strategy. PDT involves the administration of photosensitizers (PS) to carcinoma cells which produce reactive oxygen species (ROS) on irradiation by specific wavelengths of light that result in cancer cells' death via apoptosis, autophagy, or necrosis. Topical delivery of PS to the skin cancer cells at the required concentration is a challenge due to the compounds' innate physicochemical characteristics. Nanocarriers have been observed to improve skin permeability and enhance the therapeutic efficiency of PDT. Polymeric nanoparticles (NPs), metallic NPs, and lipid nanocarriers have been reported to carry PS successfully with minimal side effects and high effectiveness in both melanoma and non-melanoma skin cancers. Advanced carriers such as quantum dots, microneedles, and cubosomes have also been addressed with reported studies to show their scope of use in PDT-assisted skin cancer treatment. In this review, nanocarrier-aided PDT in skin cancer therapies has been discussed with clinical trials and patents. Additionally, novel nanocarriers that are being investigated in PDT are also covered with their future prospects in skin carcinoma treatment.
Collapse
Affiliation(s)
- Shambo Mohanty
- Industrial Research Laboratory, Department of Pharmacy, FD-III, Birla Institute of Technology and Science, Pilani (BITS-PILANI) Pilani Campus, Vidya Vihar Pilani Rajasthan 333031 India
| | - Vaibhavi Meghraj Desai
- Industrial Research Laboratory, Department of Pharmacy, FD-III, Birla Institute of Technology and Science, Pilani (BITS-PILANI) Pilani Campus, Vidya Vihar Pilani Rajasthan 333031 India
| | - Rupesh Jain
- Industrial Research Laboratory, Department of Pharmacy, FD-III, Birla Institute of Technology and Science, Pilani (BITS-PILANI) Pilani Campus, Vidya Vihar Pilani Rajasthan 333031 India
| | - Mukta Agrawal
- School of Pharmacy & Technology Management, NMIMS Hyderabad India
| | | | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, FD-III, Birla Institute of Technology and Science, Pilani (BITS-PILANI) Pilani Campus, Vidya Vihar Pilani Rajasthan 333031 India
| |
Collapse
|
2
|
Conrad M, Dal Bello R, van Timmeren JE, Andratschke N, Wilke L, Guckenberger M, Tanadini-Lang S, Balermpas P. Effect of 0.35 T and 1.5 T magnetic fields on superficial dose in MR-guided radiotherapy of laryngeal cancer. Clin Transl Radiat Oncol 2023; 40:100624. [PMID: 37090848 PMCID: PMC10113768 DOI: 10.1016/j.ctro.2023.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Background Treatment of head and neck cancer on linear accelerators with on-board magnetic resonance imaging (MR-linac) might be beneficial to reduce side effects and increase accuracy. For many head and neck cancer patients, dose coverage of the often superficially located planning target volumes (PTVs) is required. This study examines the impact of the electron return effect (ERE) on the surface dose in MR-guided radiotherapy (MRgRT) compared to conventional radiotherapy. Materials and methods For this bicentric dosimetric study, 14 cases of laryngeal carcinomas with PTVs reaching up to the skin surface were included. For each patient, five different plans were compared, two VMAT plans (with and without a 5 mm bolus) and three IMRT MRgRT plans (0.35 T, 1.5 T and 0 T, each without bolus). Dose distributions were also validated with film measurements. Results A similar coverage on the most superficial 3-5 mm of the PTV was achieved in the VMAT plans with bolus and the MRgRT plans for both 0.35 T and 1.5 T. However, coverage on this region was usually not achieved for VMAT without bolus and the 0 T plans. The film measurements on phantoms confirmed the results with the relative error never exceeding the calculated differences between the plans. Conclusion The present study could demonstrate that the ERE for both commercially available MR-linac variants provides sufficient coverage of the superficial tissue layers in MRgRT-plans for laryngeal carcinoma.
Collapse
|
3
|
Hu W, Fang L, Ni R, Zhang H, Pan G. Changing trends in the disease burden of non-melanoma skin cancer globally from 1990 to 2019 and its predicted level in 25 years. BMC Cancer 2022; 22:836. [PMID: 35907848 PMCID: PMC9339183 DOI: 10.1186/s12885-022-09940-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background The disease burden of non-melanoma skin cancer (NMSC) has become a significant public health threat. We aimed to conduct a comprehensive analysis to mitigate the health hazards of NMSC. Methods This study had three objectives. First, we reported the NMSC-related disease burden globally and for different subgroups (sex, socio-demographic index (SDI), etiology, and countries) in 2019. Second, we examined the temporal trend of the disease burden from 1990 to 2019. Finally, we used the Bayesian age-period-cohort (BAPC) model integrated nested Laplacian approximation to predict the disease burden in the coming 25 years. The Norpred age-period-cohort (APC) model and the Autoregressive Integrated Moving Average (ARIMA) model were used for sensitivity analysis. Results The disease burden was significantly higher in males than in females in 2019. The results showed significant differences in disease burden in different SDI regions. The better the socio-economic development, the heavier the disease burden of NMSC. The number of new cases and the ASIR of basal cell carcinoma (BCC) were higher than that of squamous cell carcinoma (SCC) in 2019 globally. However, the number of DALYs and the age-standardized DALYs rate were the opposite. There were statistically significant differences among different countries. The age-standardized incidence rate (ASIR) of NMSC increased from 54.08/100,000 (95% uncertainty interval (UI): 46.97, 62.08) in 1990 to 79.10/100,000 (95% UI: 72.29, 86.63) in 2019, with an estimated annual percentage change (EAPC) of 1.78. Other indicators (the number of new cases, the number of deaths, the number of disability-adjusted life years (DALYs), the age-standardized mortality rate (ASMR), and the age-standardized DALYs rate) showed the same trend. Our predictions suggested that the number of new cases, deaths, and DALYs attributable to NMSC would increase by at least 1.5 times from 2020 to 2044. Conclusions The disease burden attributable to NMSC will continue to increase or remain stable at high levels. Therefore, relevant policies should be developed to manage NMSC, and measures should be taken to target risk factors and high-risk groups. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09940-3.
Collapse
Affiliation(s)
- Wan Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Lanlan Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ruyu Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hengchuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guixia Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
4
|
Fiber-Optic Based Laser Wakefield Accelerated Electron Beams and Potential Applications in Radiotherapy Cancer Treatments. PHOTONICS 2022. [DOI: 10.3390/photonics9060403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ultra-compact electron beam technology based on laser wakefield acceleration (LWFA) could have a significant impact on radiotherapy treatments. Recent developments in LWFA high-density regime (HD-LWFA) and low-intensity fiber optically transmitted laser beams could allow for cancer treatments with electron beams from a miniature electronic source. Moreover, an electron beam emitted from a tip of a fiber optic channel could lead to new endoscopy-based radiotherapy, which is not currently available. Low-energy (10 keV–1 MeV) LWFA electron beams can be produced by irradiating high-density nano-materials with a low-intensity laser in the range of ~1014 W/cm2. This energy range could be useful in radiotherapy and, specifically, brachytherapy for treating superficial, interstitial, intravascular, and intracavitary tumors. Furthermore, it could unveil the next generation of high-dose-rate brachytherapy systems that are not dependent on radioactive sources, do not require specially designed radiation-shielded rooms for treatment, could be portable, could provide a selection of treatment energies, and would significantly reduce operating costs to a radiation oncology clinic.
Collapse
|
5
|
Tang TY, Tang JY, Chu-Sung Hu S, Chiao-Li Ke K, Cheng ST. Electronic brachytherapy for non-melanoma skin cancer in Asians: Experience from a Taiwan medical center. J Formos Med Assoc 2022; 121:2317-2323. [DOI: 10.1016/j.jfma.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 10/31/2022] Open
|
6
|
Neganova M, Liu J, Aleksandrova Y, Klochkov S, Fan R. Therapeutic Influence on Important Targets Associated with Chronic Inflammation and Oxidative Stress in Cancer Treatment. Cancers (Basel) 2021; 13:6062. [PMID: 34885171 PMCID: PMC8657135 DOI: 10.3390/cancers13236062] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 01/17/2023] Open
Abstract
Chronic inflammation and oxidative stress are the interconnected pathological processes, which lead to cancer initiation and progression. The growing level of oxidative and inflammatory damage was shown to increase cancer severity and contribute to tumor spread. The overproduction of reactive oxygen species (ROS), which is associated with the reduced capacity of the endogenous cell defense mechanisms and/or metabolic imbalance, is the main contributor to oxidative stress. An abnormal level of ROS was defined as a predisposing factor for the cell transformation that could trigger pro-oncogenic signaling pathways, induce changes in gene expression, and facilitate accumulation of mutations, DNA damage, and genomic instability. Additionally, the activation of transcription factors caused by a prolonged oxidative stress, including NF-κB, p53, HIF1α, etc., leads to the expression of several genes responsible for inflammation. The resulting hyperactivation of inflammatory mediators, including TNFα, TGF-β, interleukins, and prostaglandins can contribute to the development of neoplasia. Pro-inflammatory cytokines were shown to trigger adaptive reactions and the acquisition of resistance by tumor cells to apoptosis, while promoting proliferation, invasion, and angiogenesis. Moreover, the chronic inflammatory response leads to the excessive production of free radicals, which further aggravate the initiated reactions. This review summarizes the recent data and progress in the discovery of mechanisms that associate oxidative stress and chronic inflammation with cancer onset and metastasis. In addition, the review provides insights for the development of therapeutic approaches and the discovery of natural substances that will be able to simultaneously inhibit several key oncological and inflammation-related targets.
Collapse
Affiliation(s)
- Margarita Neganova
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Sergey Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
7
|
Site-Specific Vesicular Drug Delivery System for Skin Cancer: A Novel Approach for Targeting. Gels 2021; 7:gels7040218. [PMID: 34842689 PMCID: PMC8628733 DOI: 10.3390/gels7040218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Skin cancer, one of the most prevalent cancers worldwide, has demonstrated an alarming increase in prevalence and mortality. Hence, it is a public health issue and a high burden of disease, contributing to the economic burden in its treatment. There are multiple treatment options available for skin cancer, ranging from chemotherapy to surgery. However, these conventional treatment modalities possess several limitations, urging the need for the development of an effective and safe treatment for skin cancer that could provide targeted drug delivery and site-specific tumor penetration and minimize unwanted systemic toxicity. Therefore, it is vital to understand the critical biological barriers involved in skin cancer therapeutics for the optimal development of the formulations. Various nanocarriers for targeted delivery of chemotherapeutic drugs have been developed and extensively studied to overcome the limitations faced by topical conventional dosage forms. A site-specific vesicular drug delivery system appears to be an attractive strategy in topical drug delivery for the treatment of skin malignancies. In this review, vesicular drug delivery systems, including liposomes, niosomes, ethosomes, and transfersomes in developing novel drug delivery for skin cancer therapeutics, are discussed. Firstly, the prevalence statistics, current treatments, and limitations of convention dosage form for skin cancer treatment are discussed. Then, the common type of nanocarriers involved in the research for skin cancer treatment are summarized. Lastly, the utilization of vesicular drug delivery systems in delivering chemotherapeutics is reviewed and discussed, along with their beneficial aspects over other nanocarriers, safety concerns, and clinical aspects against skin cancer treatment.
Collapse
|
8
|
McCallum S, Maresse S, Fearns P. Evaluating 3D-printed Bolus Compared to Conventional Bolus Types Used in External Beam Radiation Therapy. Curr Med Imaging 2021; 17:820-831. [PMID: 33530912 DOI: 10.2174/1573405617666210202114336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND When treating superficial tumors with external beam radiation therapy, bolus is often used. Bolus increases surface dose, reduces dose to underlying tissue, and improves dose homogeneity. INTRODUCTION The conventional bolus types used clinically in practice have some disadvantages. The use of Three-Dimensional (3D) printing has the potential to create more effective boluses. CT data is used for dosimetric calculations for these treatments and often to manufacture the customized 3D-printed bolus. PURPOSE The aim of this review is to evaluate the published studies that have compared 3D-printed bolus against conventional bolus types. METHODS AND RESULTS A systematic search of several databases and a further appraisal for relevance and eligibility resulted in the 14 articles used in this review. The 14 articles were analyzed based on their comparison of 3D-printed bolus and at least one conventional bolus type. CONCLUSION The findings of this review indicated that 3D-printed bolus has a number of advantages. Compared to conventional bolus types, 3D-printed bolus was found to have equivalent or improved dosimetric measures, positional accuracy, fit, and uniformity. 3D-printed bolus was also found to benefit workflow efficiency through both time and cost effectiveness. However, factors such as patient comfort and staff perspectives need to be further explored to support the use of 3Dprinted bolus in routine practice.
Collapse
Affiliation(s)
- Stephanie McCallum
- Medical Radiation Science, Faculty of Science and Engineering, Curtin University, Perth, Australia
| | - Sharon Maresse
- Medical Radiation Science, Faculty of Science and Engineering, Curtin University, Perth, Australia
| | - Peter Fearns
- Medical Radiation Science, Faculty of Science and Engineering, Curtin University, Perth, Australia
| |
Collapse
|
9
|
Renard S, Salleron J, Py JF, Cuenin M, Buchheit I, Marchesi V, Huger S, Meknaci E, Peiffert D. High-dose-rate brachytherapy for facial skin cancer: Outcome and toxicity assessment for 71 cases. Brachytherapy 2021; 20:624-630. [PMID: 33685816 DOI: 10.1016/j.brachy.2021.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE In France, the reference technique for skin cancer was low-dose-rate brachytherapy (BT) delivered via iridium wire. At the end of their commercialization in 2015 we have replaced them by high-dose-rate (HDR) BT via interstitial catheters. We assessed efficacy and tolerance as soon as this technique was implemented. METHODS AND MATERIALS Patients received 7 Gy on the first day, followed by 8 × 4 Gy over the next 4 days for exclusive BT and 9 × 4 Gy over 5 days for post-operative BT. RESULTS Sixty-six patients of median age 81 years received a total of 58 primary BT and 13 post-operative BT for non-melanoma facial skin cancers. Implantation was without difficulty. Median follow up was 15.3 months. Two patients died of intercurrent diseases before first follow up. For the others, 98.5% showed complete response and 3% local recurrence after a median of 20.5 months. Four patients had grade 3 acute dermatitis and three patients had grade 3 mucositis. All the Grade 3 toxicities were resolved within 3 months. A late significant hypopigmentation occurred in 4 patients. CONCLUSIONS HDR BT is efficient and well-tolerated with good cosmetic results. HDR catheters are similar with iridium wires in terms of technical difficulty.
Collapse
Affiliation(s)
- Sophie Renard
- Department of Brachytherapy, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France.
| | - Julia Salleron
- Department of Biostatistic, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Jean-François Py
- Department of Brachytherapy, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Mathilde Cuenin
- Department of Brachytherapy, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Isabelle Buchheit
- Department of Brachytherapy, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Vincent Marchesi
- Department of Brachytherapy, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Sandrine Huger
- Department of Brachytherapy, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Emilie Meknaci
- Department of Brachytherapy, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Didier Peiffert
- Department of Brachytherapy, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| |
Collapse
|
10
|
McDowell L, Yom SS. Locally advanced non-melanomatous skin cancer: Contemporary radiotherapeutic management. Oral Oncol 2019; 99:104443. [DOI: 10.1016/j.oraloncology.2019.104443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022]
|