1
|
Park R, Li J, Slebos RJC, Chaudhary R, Poole MI, Ferraris C, Farinhas J, Hernandez-Prera J, Kirtane K, Teer JK, Song X, Hall MS, Tasoulas J, Amelio AL, Chung CH. Phase Ib trial of IRX-2 plus durvalumab in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Oral Oncol 2024; 154:106866. [PMID: 38820888 DOI: 10.1016/j.oraloncology.2024.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/28/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
OBJECTIVES IRX-2 is a multi-cytokine immune-activating agent with anti-tumor activity in non-metastatic head and neck squamous cell carcinoma (HNSCC). Here, we evaluated combined IRX-2 and durvalumab in patients with recurrent and/or metastatic HNSCC. MATERIALS AND METHODS This was a phase Ib trial consisting of dose escalation and expansion. Primary endpoints were safety and biomarkers to assess the immune response in the tumor microenvironment including significant increases in PD-L1 expression and CD8 + tumor infiltrating lymphocytes (TIL) comparing pre- and on-treatment tumor biopsies. Secondary endpoints were objective response rates (ORR) and survival outcomes. RESULTS Sixteen patients were evaluable for response, and nine patients were evaluable for biomarkers. Thirteen patients (68 %) had exposure to prior anti-PD-1 therapy. No dose-limiting or grade ≥ 3 treatment-related adverse events were observed. On-treatment biopsies showed significantly increased PD-L1 (p = 0.005), CD3+ (p = 0.020), CD4+ (p = 0.022), and CD8 + T cells (p = 0.017) compared to pre-treatment. Median overall survival and progression-free survival (PFS) were 6.18 months (95 % CI, 2.66-8.61) and 2.53 months (95 % CI, 1.81-4.04), respectively. One patient had an objective response (ORR, 5.3 %) with an ongoing PFS of > 25 months. Disease control rate was 42 %. The responder harbored an ARID1A variant of unknown significance (VUS) that was predicted to bind her HLA-I alleles with a higher affinity than the reference peptide. CONCLUSIONS IRX-2 and durvalumab were safe and elicited the evidence of immune activation in the tumor microenvironment determined by increased PD-L1 expression and CD8+ TILs. CLINICAL TRIAL REGISTRATION NUMBER NCT03381183.
Collapse
Affiliation(s)
- Robin Park
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jiannong Li
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Robbert J C Slebos
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Ritu Chaudhary
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Maria I Poole
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Carina Ferraris
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA; Nova Southeastern University Medical School, Fort Lauderdale, FL, USA
| | - Joaquim Farinhas
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Kedar Kirtane
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Xiaofei Song
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - MacLean S Hall
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jason Tasoulas
- Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Antonio L Amelio
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA; Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Christine H Chung
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
2
|
Tan Y, Wang Z, Xu M, Li B, Huang Z, Qin S, Nice EC, Tang J, Huang C. Oral squamous cell carcinomas: state of the field and emerging directions. Int J Oral Sci 2023; 15:44. [PMID: 37736748 PMCID: PMC10517027 DOI: 10.1038/s41368-023-00249-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) develops on the mucosal epithelium of the oral cavity. It accounts for approximately 90% of oral malignancies and impairs appearance, pronunciation, swallowing, and flavor perception. In 2020, 377,713 OSCC cases were reported globally. According to the Global Cancer Observatory (GCO), the incidence of OSCC will rise by approximately 40% by 2040, accompanied by a growth in mortality. Persistent exposure to various risk factors, including tobacco, alcohol, betel quid (BQ), and human papillomavirus (HPV), will lead to the development of oral potentially malignant disorders (OPMDs), which are oral mucosal lesions with an increased risk of developing into OSCC. Complex and multifactorial, the oncogenesis process involves genetic alteration, epigenetic modification, and a dysregulated tumor microenvironment. Although various therapeutic interventions, such as chemotherapy, radiation, immunotherapy, and nanomedicine, have been proposed to prevent or treat OSCC and OPMDs, understanding the mechanism of malignancies will facilitate the identification of therapeutic and prognostic factors, thereby improving the efficacy of treatment for OSCC patients. This review summarizes the mechanisms involved in OSCC. Moreover, the current therapeutic interventions and prognostic methods for OSCC and OPMDs are discussed to facilitate comprehension and provide several prospective outlooks for the fields.
Collapse
Affiliation(s)
- Yunhan Tan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Mengtong Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jing Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
3
|
Marret G, Borcoman E, Le Tourneau C. Window-of-opportunity clinical trials for biomarker discovery in head and neck squamous cell carcinoma. Curr Opin Oncol 2023; 35:158-165. [PMID: 36966501 DOI: 10.1097/cco.0000000000000940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
PURPOSE OF REVIEW We review the window-of-opportunity clinical trials that have been reported in head and neck squamous cell carcinoma (HNSCC), and discuss their challenges. RECENT FINDINGS Limited treatment options exist in HNSCC. Cetuximab, an mAb targeting epidermal growth factor receptor, and the PD-1 inhibitors nivolumab and pembrolizumab, are the only drugs that improved overall survival in the recurrent and/or metastatic setting. Both cetuximab and nivolumab improve overall survival by less than 3 months, potentially because of the lack of predictive biomarkers. The only validated predictive biomarker to date is protein ligand PD-L1 expression that predicts the efficacy of pembrolizumab in first-line, nonplatinum refractory recurrent and/or metastatic HNSCC. The identification of biomarkers of efficacy of new drugs is key to avoid administering toxic drugs to patients who will not benefit from them, and to expect increased drug efficacy in the biomarker-positive group of patients. One way of identifying such biomarkers are the window-of-opportunity trials in which drugs are given for a short period of time before the definitive treatment, with the aim to collect samples for translational research. These trials differ from neoadjuvant strategies where efficacy is the primary endpoint. SUMMARY We show that these trials were safe and successful in identifying biomarkers.
Collapse
Affiliation(s)
- Grégoire Marret
- Department of Drug Development and Innovation (D3i), Institut Curie
| | - Edith Borcoman
- Department of Drug Development and Innovation (D3i), Institut Curie
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie
- INSERM U900, Institut Curie, Paris-Saclay University, Paris, France
| |
Collapse
|
4
|
Jiang Z, Wu C, Zhao Y, Zhan Q, Wang K, Li Y. Global research trends in immunotherapy for head and neck neoplasms: A scientometric study. Heliyon 2023; 9:e15309. [PMID: 37113789 PMCID: PMC10126860 DOI: 10.1016/j.heliyon.2023.e15309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
In recent decades, the traditional treatment of head and neck neoplasms has reached a bottleneck with limited improvement in overall survival. Nevertheless, the emerging field of immunotherapy has shown promise. Literature on research into immunotherapy for head and neck neoplasms was retrieved from WoSCC. Citespace was used as a scientometric analysis tool for text mining and visualization of the scientific literature. This analysis included 1915 documents. Recently, the annual number of publications and citations has been growing rapidly. 'Oncology' was the most popular research area. The most dominant institution and country were the University of Pittsburgh and the USA. Ferris RL was not only the most prolific but also the most cited author, demonstrating a strong influence and reputation. Of the ten core journals identified in this field, Cancer Research ranked first. 'Regulatory T cell', 'PD-1' and 'biomarker' were regarded as current hotspots, while 'recurrent' and 'nivolumab' were considered as trending keywords. The most cited reference was Ferris RL (2016). Notably, the front trends and future directions in the field may lie in the clinical practice of combination therapy of immunotherapy plus other therapies, the mechanism of impaired immune surveillance, and the improvement in resistance to immunotherapeutic agents. It is firmly believed that the present scientometric analysis has provided both a macroscopic and microscopic overview of research into immunotherapy for head and neck neoplasms, which will assist researchers and oncologists to better understand this discipline and thus promote further development and policies in this field.
Collapse
Affiliation(s)
| | | | | | | | | | - Yi Li
- Corresponding author. Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, No.14, The 3rd section of Renminnan Avenue, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
5
|
Lin YC, Hua CH, Lu HM, Huang SW, Chen Y, Tsai MH, Lin FY, Canoll P, Chiu SC, Huang WH, Cho DY, Jan CI. CAR-T cells targeting HLA-G as potent therapeutic strategy for EGFR-mutated and overexpressed oral cancer. iScience 2023; 26:106089. [PMID: 36876120 PMCID: PMC9978640 DOI: 10.1016/j.isci.2023.106089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/11/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignancy in the world. Recently, scientists have focused on therapeutic strategies to determine the regulation of tumors and design molecules for specific targets. Some studies have demonstrated the clinical significance of human leukocyte antigen G (HLA-G) in malignancy and NLR family pyrin domain-containing 3 (NLRP3) inflammasome in promoting tumorigenesis in OSCC. This is the first study to investigate whether aberrant epidermal growth factor receptor (EGFR) induces HLA-G expression through NLRP3 inflammasome-mediated IL-1β secretion in OSCC. Our results showed that the upregulation of NLRP3 inflammasome leads to abundant HLA-G in the cytoplasm and cell membrane of FaDu cells. In addition, we also generated anti-HLA-G chimeric antigen receptor (CAR)-T cells and provided evidence for their effects in EGFR-mutated and overexpressed oral cancer. Our results may be integrated with OSCC patient data to translate basic research into clinical significance and may lead to novel EGFR-aberrant OSCC treatment.
Collapse
Affiliation(s)
- Yu-Chuan Lin
- Drug Development Center, China Medical University, Taichung 404, Taiwan.,Translational Cell Therapy Center, China Medical University Hospital, No. 2, Yude Road, North District, Taichung 404, Taiwan
| | - Chun-Hung Hua
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung 404, Taiwan
| | - Hsin-Man Lu
- Department of Psychology, Asia University, Taichung 404, Taiwan
| | - Shi-Wei Huang
- Translational Cell Therapy Center, China Medical University Hospital, No. 2, Yude Road, North District, Taichung 404, Taiwan.,Institute of New Drug Development, China Medical University, Taichung 404, Taiwan
| | - Yeh Chen
- Institute of New Drug Development, China Medical University, Taichung 404, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Ming-Hsui Tsai
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung 404, Taiwan
| | - Fang-Yu Lin
- Translational Cell Therapy Center, China Medical University Hospital, No. 2, Yude Road, North District, Taichung 404, Taiwan
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Shao-Chih Chiu
- Drug Development Center, China Medical University, Taichung 404, Taiwan.,Translational Cell Therapy Center, China Medical University Hospital, No. 2, Yude Road, North District, Taichung 404, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Wei-Hua Huang
- Dr. Jean Landsborough Memorial Hospice Ward, Changhua Christian Hospital, Changhua 500, Taiwan.,Department of Nursing, Central Taiwan University of Science and Technology, Taichung 406, Taiwan
| | - Der-Yang Cho
- Drug Development Center, China Medical University, Taichung 404, Taiwan.,Translational Cell Therapy Center, China Medical University Hospital, No. 2, Yude Road, North District, Taichung 404, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.,Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan
| | - Chia-Ing Jan
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| |
Collapse
|
6
|
Effect of Radio-Chemotherapy on PD-L1 Immunohistochemical Expression in Head and Neck Squamous Cell Carcinoma. J Pers Med 2023; 13:jpm13020363. [PMID: 36836595 PMCID: PMC9965293 DOI: 10.3390/jpm13020363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Programmed death-ligand 1 (PD-L1) checkpoint inhibitors represent a mainstay of therapy in head and neck squamous cell cancer (HNSCC). However, little is known about the influence of combined therapy on PD-L1 expression. The study aims to gather evidence on this topic. METHODS A systematic search was carried out in electronic databases Pubmed-MEDLINE and Embase to retrieve studies on the comparison of PD-L1 expression before and after conventional therapy. Data were extracted and a quantitative analysis with pooled odds ratios (ORs) was performed when applicable. RESULTS Of 5688 items, 15 were finally included. Only a minority of studies assessed PD-L1 with the recommended combined positive score (CPS). The results are highly heterogeneous, with some studies reporting an increase in PD-L1 expression and others reporting a decrease. Three studies allowed for quantitative analysis and showed a pooled OR of 0.49 (CI 0.27-0.90). CONCLUSIONS From the present evidence, a clear conclusion towards an increase or decrease in PD-L1 expression after combined therapy cannot be drawn, but even with few studies available, a trend towards an increase in expression in tumor cells at a cutoff of 1% can be noted in patients undergoing platinum-based therapy. Future studies will provide more robust data on the effect of combined therapy on PD-L1 expression.
Collapse
|
7
|
Liu S, Bellile E, Nguyen A, Zarins K, Rozek L, Wolf GT, Sartor M. Characterization of the immune response in patients with cancer of the oral cavity after neoadjuvant immunotherapy with the IRX-2 regimen. Oral Oncol 2021; 123:105587. [PMID: 34717154 PMCID: PMC8982160 DOI: 10.1016/j.oraloncology.2021.105587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/26/2021] [Accepted: 10/15/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVE IRX-2 is a homologous cell-derived multi-cytokine biologic with multifaceted immune modulatory effects that has been shown to induce increased lymphocyte infiltration into primary tumors in oral cavity carcinoma. Our objective was to characterize tumor immune gene expression and epigenomic changes after neoadjuvant IRX-2 immunotherapy in patients with squamous cell carcinoma of the oral cavity. METHODS A randomized phase II trial was conducted of the IRX regimen 3 weeks prior to surgery for previously untreated patients with Stage II-IV oral cavity carcinoma. The treatment regimen consisted of low dose (300 mg/m2) cyclophosphamide (day 1) followed by 10 days of regional perilymphatic IRX-2 cytokine injections and daily oral indomethacin, zinc and omeprazole (Regimen 1) compared to the identical regimen without the IRX-2 cytokines (Regimen 2). The NanoString immune panel (730 genes) and Infinium MethylationEPIC BeadChip were performed to assess the gene expression and DNA methylation signatures, respectively, in pre- and post-immunotherapy tumor samples. RESULTS A total of 51 and 79 immune-related genes were found upregulated and downregulated, respectively, in the samples from Regimen 1 patients after treatment, while 51 and 56 were found upregulated and downregulated in the samples for Regimen 2. When comparing the changes between the two regimens, we identified 9 genes significantly different, including DMBT1, a potential tumor suppressor, functioning in tumor invasion of head and neck cancer. The exploration of DNA methylation showed slight overall hypermethylation after treatment in both regimens, especially for Regimen 1 immune responders, and methylation-based cell type deconvolution demonstrated high concordance with tumor infiltrating T lymphocyte cell counts. CONCLUSION While a consistent patient response after treatment was observed, most changes were similar between regimens, indicating a subtle, targeted, or patient-specific effect of IRX-2 cytokines. Change in DMBT1 expression was a unique finding that will require further study to better understand its significance.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily Bellile
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ariane Nguyen
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Katie Zarins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura Rozek
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA,Corresponding authors: To whom correspondence should be addressed: Laura Rozek, Address: 1415 Washington Heights, Ann Arbor, MI 48109; ; Gregory Wolf, Address: 1903 Taubman, Box 5312, Ann Arbor, MI 48109; ; Maureen Sartor, Address: 100 Washtenaw Ave, Ann Arbor, MI 48109;
| | - Gregory T. Wolf
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Ann Arbor, Michigan, USA,Corresponding authors: To whom correspondence should be addressed: Laura Rozek, Address: 1415 Washington Heights, Ann Arbor, MI 48109; ; Gregory Wolf, Address: 1903 Taubman, Box 5312, Ann Arbor, MI 48109; ; Maureen Sartor, Address: 100 Washtenaw Ave, Ann Arbor, MI 48109;
| | - Maureen Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA,Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA,Corresponding authors: To whom correspondence should be addressed: Laura Rozek, Address: 1415 Washington Heights, Ann Arbor, MI 48109; ; Gregory Wolf, Address: 1903 Taubman, Box 5312, Ann Arbor, MI 48109; ; Maureen Sartor, Address: 100 Washtenaw Ave, Ann Arbor, MI 48109;
| | | | | |
Collapse
|
8
|
Shetty SS, Padam KSR, Hunter KD, Kudva A, Radhakrishnan R. Biological implications of the immune factors in the tumour microenvironment of oral cancer. Arch Oral Biol 2021; 133:105294. [PMID: 34735925 DOI: 10.1016/j.archoralbio.2021.105294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The objective of this review is to decipher the biological implications of the immune factors in the tumour microenvironment in oral cancer. The restoration of balance between tumour tolerance and tumour eradication by the host immune cells is critical to provide effective therapeutic strategies. DESIGN The specific role of the stromal and the immune components in oral cancer was reviewed with a tailored search strategy using relevant keywords. The articles were retrieved from bibliometric databases indexed in PubMed, Scopus, and Embase. An in silico analysis was performed to identify potential drug candidates for immunotherapy, by accessing the Drug-Gene Interactions Database (DGIdb) using the rDGIdb package. RESULTS There is compelling evidence for the role of the cellular and extracellular components of the tumour microenvironment in inducing immunosuppression and progression of oral cancer. The druggable candidates specifically targeting the immune system are a viable option in the treatment of oral cancer as they can regulate the tumour microenvironment. CONCLUSION A complex interaction between the tumour and the immunological microenvironment influences the disease outcome in oral cancer. Targeting specific components of the immune system might be relevant, as immunotherapy may become the new standard of care for oral cancer.
Collapse
Affiliation(s)
- Smitha Sammith Shetty
- Department of Oral Pathology, Faculty of Dentistry, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Kanaka Sai Ram Padam
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Keith D Hunter
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Adarsh Kudva
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
9
|
Philips R, Han C, Swendseid B, Curry J, Argiris A, Luginbuhl A, Johnson J. Preoperative Immunotherapy in the Multidisciplinary Management of Oral Cavity Cancer. Front Oncol 2021; 11:682075. [PMID: 34277428 PMCID: PMC8281120 DOI: 10.3389/fonc.2021.682075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022] Open
Abstract
Despite advances in multimodal treatment for oral cavity squamous cell carcinoma, recurrence rates remain high, providing an opportunity for new therapeutic modalities that may improve oncologic outcomes. Much recent attention has been paid to the molecular interactions between the tumor cells with the adjacent peritumoral microenvironment, in which immunosuppressive molecular changes create a landscape that promotes tumor progression. The rationale for the introduction of immunotherapy is to reverse the balance of these immune interactions in a way that utilizes the host immune system to attack tumor cells. In the preoperative setting, immunotherapy has the advantage of priming the unresected tumor and the associated native immune infiltration, supercharging the adaptive anti-tumor immune response. It also provides the basis for scientific discovery where the molecular profile of responders can be interrogated to elucidate prognostic markers to aid in future patient selection. Preoperative immunotherapy is not without limitations. The risk of surgical delay due to immune adverse events must be carefully discussed by members of a multidisciplinary treatment team and patient selection will be critical. One day, the discovery of predictive biomarkers may allow for algorithms where pre-surgical immunotherapy decreases the size of surgical defect and impacts the intensity of adjuvant therapy leading to improved patient survival and decreased morbidity. With further study, immunotherapy could become a key component of future treatment algorithm.
Collapse
Affiliation(s)
- Ramez Philips
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chihun Han
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Brian Swendseid
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Joseph Curry
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Athanassios Argiris
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Adam Luginbuhl
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jennifer Johnson
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
10
|
Zhu Z, Gong J, Kong J, Qian Y, Lu K, Wang H, Yu M. Iroquois Homeobox 5 Negatively Regulated by miRNA-147 Promotes the Proliferation, Metastasis, and Invasion by Oral Squamous Cell Carcinoma. J Biomed Nanotechnol 2021; 17:1098-1108. [PMID: 34167624 DOI: 10.1166/jbn.2021.3085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common tumors worldwide and has one of the highest mortalities. The progression of OSCC is accompanied by changes in the levels of many genes. Iroquois homeobox 5 (IRX5), a novel protein involved in several embryonic developmental processes, has been found in recent years to play a significant role in regulating the growth of malignant tumors. However, its role and mechanism in OSCC are still unclear. In this study, we used nano-PCR to examine the levels of IRX5 in OSCC tissues. Through overexpression and knockdown experiments, we researched the role of IRX5 in regulating OSCC cell multiplication, metastasis, and epithelial-mesenchymal transition (EMT). The results demonstrated that IRX5 expression is higher in OSCC tissues in contrast to adjacent tissues. Overexpression of IRX5 promotes the multiplication, metastasis, invasion, and EMT of OSCC cells. Additional bioinformatics analysis showed that miRNA-147 can target the 3'UTR end of IRX5 and negatively regulate its expression, and overexpression of miRNA-147 can weaken the cancer-promoting effect of IRX5. In conclusion, this study found that IRX5 plays a role in promoting cancer in OSCC, and IRX5 is also negatively regulated by miRNA-147.
Collapse
Affiliation(s)
- Ziyu Zhu
- Department of Stomatology, The Stomatological Hospital Affiliated to Medical College of Zhejiang University, Hangzhou, 310006, Zhejiang, PR China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, PR China; School of Stomatology, Zhejiang University, Hangzhou, 310006, Zhejiang, PR China
| | - Jiaxing Gong
- Department of Stomatology, The Stomatological Hospital Affiliated to Medical College of Zhejiang University, Hangzhou, 310006, Zhejiang, PR China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, PR China; School of Stomatology, Zhejiang University, Hangzhou, 310006, Zhejiang, PR China
| | - Jianlu Kong
- Department of Stomatology, The Stomatological Hospital Affiliated to Medical College of Zhejiang University, Hangzhou, 310006, Zhejiang, PR China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, PR China; School of Stomatology, Zhejiang University, Hangzhou, 310006, Zhejiang, PR China
| | - Ying Qian
- Department of Stomatology, The Stomatological Hospital Affiliated to Medical College of Zhejiang University, Hangzhou, 310006, Zhejiang, PR China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, PR China; School of Stomatology, Zhejiang University, Hangzhou, 310006, Zhejiang, PR China
| | - Kejie Lu
- Department of Stomatology, The Stomatological Hospital Affiliated to Medical College of Zhejiang University, Hangzhou, 310006, Zhejiang, PR China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, PR China; School of Stomatology, Zhejiang University, Hangzhou, 310006, Zhejiang, PR China
| | - Huiming Wang
- Department of Stomatology, The Stomatological Hospital Affiliated to Medical College of Zhejiang University, Hangzhou, 310006, Zhejiang, PR China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, PR China; School of Stomatology, Zhejiang University, Hangzhou, 310006, Zhejiang, PR China
| | - Mengfei Yu
- Department of Stomatology, The Stomatological Hospital Affiliated to Medical College of Zhejiang University, Hangzhou, 310006, Zhejiang, PR China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, PR China; School of Stomatology, Zhejiang University, Hangzhou, 310006, Zhejiang, PR China
| |
Collapse
|