1
|
Yu J, Li F, Liu M, Zhang M, Liu X. Application of Artificial Intelligence in the Diagnosis, Follow-Up and Prediction of Treatment of Ophthalmic Diseases. Semin Ophthalmol 2024:1-9. [PMID: 39435874 DOI: 10.1080/08820538.2024.2414353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
PURPOSE To describe the application of artificial intelligence (AI) in ophthalmic diseases and its possible future directions. METHODS A retrospective review of the literature from PubMed, Web of Science, and Embase databases (2019-2024). RESULTS AI assists in cataract diagnosis, classification, preoperative lens calculation, surgical risk, postoperative vision prediction, and follow-up. For glaucoma, AI enhances early diagnosis, progression prediction, and surgical risk assessment. It detects diabetic retinopathy early and predicts treatment effects for diabetic macular edema. AI analyzes fundus images for age-related macular degeneration (AMD) diagnosis and risk prediction. Additionally, AI quantifies and grades vitreous opacities in uveitis. For retinopathy of prematurity, AI facilitates disease classification, predicting disease occurrence and severity. Recently, AI also predicts systemic diseases by analyzing fundus vascular changes. CONCLUSIONS AI has been extensively used in diagnosing, following up, and predicting treatment outcomes for common blinding eye diseases. In addition, it also has a unique role in the prediction of systemic diseases.
Collapse
Affiliation(s)
- Jinwei Yu
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, P.R. China
| | - Fuqiang Li
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, P.R. China
| | - Mingzhu Liu
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, P.R. China
| | - Mengdi Zhang
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, P.R. China
| | - Xiaoli Liu
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, P.R. China
| |
Collapse
|
2
|
Martin E, Cook AG, Frost SM, Turner AW, Chen FK, McAllister IL, Nolde JM, Schlaich MP. Ocular biomarkers: useful incidental findings by deep learning algorithms in fundus photographs. Eye (Lond) 2024; 38:2581-2588. [PMID: 38734746 PMCID: PMC11385472 DOI: 10.1038/s41433-024-03085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND/OBJECTIVES Artificial intelligence can assist with ocular image analysis for screening and diagnosis, but it is not yet capable of autonomous full-spectrum screening. Hypothetically, false-positive results may have unrealized screening potential arising from signals persisting despite training and/or ambiguous signals such as from biomarker overlap or high comorbidity. The study aimed to explore the potential to detect clinically useful incidental ocular biomarkers by screening fundus photographs of hypertensive adults using diabetic deep learning algorithms. SUBJECTS/METHODS Patients referred for treatment-resistant hypertension were imaged at a hospital unit in Perth, Australia, between 2016 and 2022. The same 45° colour fundus photograph selected for each of the 433 participants imaged was processed by three deep learning algorithms. Two expert retinal specialists graded all false-positive results for diabetic retinopathy in non-diabetic participants. RESULTS Of the 29 non-diabetic participants misclassified as positive for diabetic retinopathy, 28 (97%) had clinically useful retinal biomarkers. The models designed to screen for fewer diseases captured more incidental disease. All three algorithms showed a positive correlation between severity of hypertensive retinopathy and misclassified diabetic retinopathy. CONCLUSIONS The results suggest that diabetic deep learning models may be responsive to hypertensive and other clinically useful retinal biomarkers within an at-risk, hypertensive cohort. Observing that models trained for fewer diseases captured more incidental pathology increases confidence in signalling hypotheses aligned with using self-supervised learning to develop autonomous comprehensive screening. Meanwhile, non-referable and false-positive outputs of other deep learning screening models could be explored for immediate clinical use in other populations.
Collapse
Affiliation(s)
- Eve Martin
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Kensington, WA, Australia.
- School of Population and Global Health, The University of Western Australia, Crawley, Australia.
- Dobney Hypertension Centre - Royal Perth Hospital Unit, Medical School, The University of Western Australia, Perth, Australia.
- Australian e-Health Research Centre, Floreat, WA, Australia.
| | - Angus G Cook
- School of Population and Global Health, The University of Western Australia, Crawley, Australia
| | - Shaun M Frost
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Kensington, WA, Australia
- Australian e-Health Research Centre, Floreat, WA, Australia
| | - Angus W Turner
- Lions Eye Institute, Nedlands, WA, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
| | - Fred K Chen
- Lions Eye Institute, Nedlands, WA, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
- Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, East Melbourne, VIC, Australia
- Ophthalmology Department, Royal Perth Hospital, Perth, Australia
| | - Ian L McAllister
- Lions Eye Institute, Nedlands, WA, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
| | - Janis M Nolde
- Dobney Hypertension Centre - Royal Perth Hospital Unit, Medical School, The University of Western Australia, Perth, Australia
- Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre - Royal Perth Hospital Unit, Medical School, The University of Western Australia, Perth, Australia
- Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
3
|
Chen Y, Zhang X, Yang J, Han G, Zhang H, Lai M, Zhao J. HDB-Net: hierarchical dual-branch network for retinal layer segmentation in diseased OCT images. BIOMEDICAL OPTICS EXPRESS 2024; 15:5359-5383. [PMID: 39296382 PMCID: PMC11407236 DOI: 10.1364/boe.530469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 09/21/2024]
Abstract
Optical coherence tomography (OCT) retinal layer segmentation is a critical procedure of the modern ophthalmic process, which can be used for diagnosis and treatment of diseases such as diabetic macular edema (DME) and multiple sclerosis (MS). Due to the difficulties of low OCT image quality, highly similar retinal interlayer morphology, and the uncertain presence, shape and size of lesions, the existing algorithms do not perform well. In this work, we design an HDB-Net network for retinal layer segmentation in diseased OCT images, which solves this problem by combining global and detailed features. First, the proposed network uses a Swin transformer and Res50 as a parallel backbone network, combined with the pyramid structure in UperNet, to extract global context and aggregate multi-scale information from images. Secondly, a feature aggregation module (FAM) is designed to extract global context information from the Swin transformer and local feature information from ResNet by introducing mixed attention mechanism. Finally, the boundary awareness and feature enhancement module (BA-FEM) is used to extract the retinal layer boundary information and topological order from the low-resolution features of the shallow layer. Our approach has been validated on two public datasets, and Dice scores were 87.61% and 92.44, respectively, both outperforming other state-of-the-art technologies.
Collapse
Affiliation(s)
- Yu Chen
- The School of Mechatronics Engineering, Harbin Institute of Technology , Harbin, Heilongjiang 150001, China
| | - XueHe Zhang
- The School of Mechatronics Engineering, Harbin Institute of Technology , Harbin, Heilongjiang 150001, China
| | - Jiahui Yang
- The School of Mechatronics Engineering, Harbin Institute of Technology , Harbin, Heilongjiang 150001, China
| | - Gang Han
- The School of Mechatronics Engineering, Harbin Institute of Technology , Harbin, Heilongjiang 150001, China
| | - He Zhang
- The School of Mechatronics Engineering, Harbin Institute of Technology , Harbin, Heilongjiang 150001, China
| | - MingZhu Lai
- The School of Mathematics and Statistics, Hainan Normal University, Haikou, Hainan 571158, China
| | - Jie Zhao
- The School of Mechatronics Engineering, Harbin Institute of Technology , Harbin, Heilongjiang 150001, China
| |
Collapse
|
4
|
Grzybowski A, Jin K, Zhou J, Pan X, Wang M, Ye J, Wong TY. Retina Fundus Photograph-Based Artificial Intelligence Algorithms in Medicine: A Systematic Review. Ophthalmol Ther 2024; 13:2125-2149. [PMID: 38913289 PMCID: PMC11246322 DOI: 10.1007/s40123-024-00981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/15/2024] [Indexed: 06/25/2024] Open
Abstract
We conducted a systematic review of research in artificial intelligence (AI) for retinal fundus photographic images. We highlighted the use of various AI algorithms, including deep learning (DL) models, for application in ophthalmic and non-ophthalmic (i.e., systemic) disorders. We found that the use of AI algorithms for the interpretation of retinal images, compared to clinical data and physician experts, represents an innovative solution with demonstrated superior accuracy in identifying many ophthalmic (e.g., diabetic retinopathy (DR), age-related macular degeneration (AMD), optic nerve disorders), and non-ophthalmic disorders (e.g., dementia, cardiovascular disease). There has been a significant amount of clinical and imaging data for this research, leading to the potential incorporation of AI and DL for automated analysis. AI has the potential to transform healthcare by improving accuracy, speed, and workflow, lowering cost, increasing access, reducing mistakes, and transforming healthcare worker education and training.
Collapse
Affiliation(s)
- Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznań , Poland.
| | - Kai Jin
- Eye Center, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingxin Zhou
- Eye Center, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangji Pan
- Eye Center, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Meizhu Wang
- Eye Center, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Juan Ye
- Eye Center, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Tien Y Wong
- School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, Beijing, China
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| |
Collapse
|
5
|
Chavan S, Choubey N. Self-supervised category selective attention classifier network for diabetic macular edema classification. Acta Diabetol 2024; 61:879-896. [PMID: 38521818 DOI: 10.1007/s00592-024-02257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/11/2024] [Indexed: 03/25/2024]
Abstract
AIMS This study aims to develop an advanced model for the classification of Diabetic Macular Edema (DME) using deep learning techniques. Specifically, the objective is to introduce a novel architecture, SSCSAC-Net, that leverages self-supervised learning and category-selective attention mechanisms to improve the precision of DME classification. METHODS The proposed SSCSAC-Net integrates self-supervised learning to effectively utilize unlabeled data for learning robust features related to DME. Additionally, it incorporates a category-specific attention mechanism and a domain-specific layer into the ResNet-152 base architecture. The model is trained using an ensemble of unsupervised and supervised learning techniques. Benchmark datasets are utilized for testing the model's performance, ensuring its robustness and generalizability across different data distributions. RESULTS Evaluation of the SSCSAC-Net on multiple datasets demonstrates its superior performance compared to existing techniques. The model achieves high accuracy, precision, and recall rates, with an accuracy of 98.7%, precision of 98.6%, and recall of 98.8%. Furthermore, the incorporation of self-supervised learning reduces the dependency on extensive labeled data, making the solution more scalable and cost-effective. CONCLUSIONS The proposed SSCSAC-Net represents a significant advancement in automated DME classification. By effectively using self-supervised learning and attention mechanisms, the model offers improved accuracy in identifying DME-related features within retinal images. Its robustness and generalizability across different datasets highlight its potential for clinical applications, providing a valuable tool for clinicians in diagnosing DME effectively.
Collapse
Affiliation(s)
- Sachin Chavan
- SVKM'S NMIMS, Mukesh Patel School of Technology Management and Engineering, Shirpur, Maharashtra, India.
| | - Nitin Choubey
- SVKM'S NMIMS, Mukesh Patel School of Technology Management and Engineering, Shirpur, Maharashtra, India
| |
Collapse
|
6
|
Sorrentino FS, Gardini L, Fontana L, Musa M, Gabai A, Maniaci A, Lavalle S, D’Esposito F, Russo A, Longo A, Surico PL, Gagliano C, Zeppieri M. Novel Approaches for Early Detection of Retinal Diseases Using Artificial Intelligence. J Pers Med 2024; 14:690. [PMID: 39063944 PMCID: PMC11278069 DOI: 10.3390/jpm14070690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND An increasing amount of people are globally affected by retinal diseases, such as diabetes, vascular occlusions, maculopathy, alterations of systemic circulation, and metabolic syndrome. AIM This review will discuss novel technologies in and potential approaches to the detection and diagnosis of retinal diseases with the support of cutting-edge machines and artificial intelligence (AI). METHODS The demand for retinal diagnostic imaging exams has increased, but the number of eye physicians or technicians is too little to meet the request. Thus, algorithms based on AI have been used, representing valid support for early detection and helping doctors to give diagnoses and make differential diagnosis. AI helps patients living far from hub centers to have tests and quick initial diagnosis, allowing them not to waste time in movements and waiting time for medical reply. RESULTS Highly automated systems for screening, early diagnosis, grading and tailored therapy will facilitate the care of people, even in remote lands or countries. CONCLUSION A potential massive and extensive use of AI might optimize the automated detection of tiny retinal alterations, allowing eye doctors to perform their best clinical assistance and to set the best options for the treatment of retinal diseases.
Collapse
Affiliation(s)
| | - Lorenzo Gardini
- Unit of Ophthalmology, Department of Surgical Sciences, Ospedale Maggiore, 40100 Bologna, Italy; (F.S.S.)
| | - Luigi Fontana
- Ophthalmology Unit, Department of Surgical Sciences, Alma Mater Studiorum University of Bologna, IRCCS Azienda Ospedaliero-Universitaria Bologna, 40100 Bologna, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Edo State, Nigeria
| | - Andrea Gabai
- Department of Ophthalmology, Humanitas-San Pio X, 20159 Milan, Italy
| | - Antonino Maniaci
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
| | - Salvatore Lavalle
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
| | - Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, 153-173 Marylebone Rd, London NW15QH, UK
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Catania, 95123 Catania, Italy
| | - Antonio Longo
- Department of Ophthalmology, University of Catania, 95123 Catania, Italy
| | - Pier Luigi Surico
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University, San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
7
|
Chia MA, Hersch F, Sayres R, Bavishi P, Tiwari R, Keane PA, Turner AW. Validation of a deep learning system for the detection of diabetic retinopathy in Indigenous Australians. Br J Ophthalmol 2024; 108:268-273. [PMID: 36746615 PMCID: PMC10850716 DOI: 10.1136/bjo-2022-322237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/31/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIMS Deep learning systems (DLSs) for diabetic retinopathy (DR) detection show promising results but can underperform in racial and ethnic minority groups, therefore external validation within these populations is critical for health equity. This study evaluates the performance of a DLS for DR detection among Indigenous Australians, an understudied ethnic group who suffer disproportionately from DR-related blindness. METHODS We performed a retrospective external validation study comparing the performance of a DLS against a retinal specialist for the detection of more-than-mild DR (mtmDR), vision-threatening DR (vtDR) and all-cause referable DR. The validation set consisted of 1682 consecutive, single-field, macula-centred retinal photographs from 864 patients with diabetes (mean age 54.9 years, 52.4% women) at an Indigenous primary care service in Perth, Australia. Three-person adjudication by a panel of specialists served as the reference standard. RESULTS For mtmDR detection, sensitivity of the DLS was superior to the retina specialist (98.0% (95% CI, 96.5 to 99.4) vs 87.1% (95% CI, 83.6 to 90.6), McNemar's test p<0.001) with a small reduction in specificity (95.1% (95% CI, 93.6 to 96.4) vs 97.0% (95% CI, 95.9 to 98.0), p=0.006). For vtDR, the DLS's sensitivity was again superior to the human grader (96.2% (95% CI, 93.4 to 98.6) vs 84.4% (95% CI, 79.7 to 89.2), p<0.001) with a slight drop in specificity (95.8% (95% CI, 94.6 to 96.9) vs 97.8% (95% CI, 96.9 to 98.6), p=0.002). For all-cause referable DR, there was a substantial increase in sensitivity (93.7% (95% CI, 91.8 to 95.5) vs 74.4% (95% CI, 71.1 to 77.5), p<0.001) and a smaller reduction in specificity (91.7% (95% CI, 90.0 to 93.3) vs 96.3% (95% CI, 95.2 to 97.4), p<0.001). CONCLUSION The DLS showed improved sensitivity and similar specificity compared with a retina specialist for DR detection. This demonstrates its potential to support DR screening among Indigenous Australians, an underserved population with a high burden of diabetic eye disease.
Collapse
Affiliation(s)
- Mark A Chia
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Lions Outback Vision, Lions Eye Institute, Nedlands, Western Australia, Australia
| | | | | | | | | | - Pearse A Keane
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Angus W Turner
- Lions Outback Vision, Lions Eye Institute, Nedlands, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
8
|
Cleland CR, Rwiza J, Evans JR, Gordon I, MacLeod D, Burton MJ, Bascaran C. Artificial intelligence for diabetic retinopathy in low-income and middle-income countries: a scoping review. BMJ Open Diabetes Res Care 2023; 11:e003424. [PMID: 37532460 PMCID: PMC10401245 DOI: 10.1136/bmjdrc-2023-003424] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness globally. There is growing evidence to support the use of artificial intelligence (AI) in diabetic eye care, particularly for screening populations at risk of sight loss from DR in low-income and middle-income countries (LMICs) where resources are most stretched. However, implementation into clinical practice remains limited. We conducted a scoping review to identify what AI tools have been used for DR in LMICs and to report their performance and relevant characteristics. 81 articles were included. The reported sensitivities and specificities were generally high providing evidence to support use in clinical practice. However, the majority of studies focused on sensitivity and specificity only and there was limited information on cost, regulatory approvals and whether the use of AI improved health outcomes. Further research that goes beyond reporting sensitivities and specificities is needed prior to wider implementation.
Collapse
Affiliation(s)
- Charles R Cleland
- International Centre for Eye Health, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Eye Department, Kilimanjaro Christian Medical Centre, Moshi, United Republic of Tanzania
| | - Justus Rwiza
- Eye Department, Kilimanjaro Christian Medical Centre, Moshi, United Republic of Tanzania
| | - Jennifer R Evans
- International Centre for Eye Health, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Iris Gordon
- International Centre for Eye Health, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - David MacLeod
- Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Matthew J Burton
- International Centre for Eye Health, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- National Institute for Health Research Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Covadonga Bascaran
- International Centre for Eye Health, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
9
|
Li Z, Wang L, Wu X, Jiang J, Qiang W, Xie H, Zhou H, Wu S, Shao Y, Chen W. Artificial intelligence in ophthalmology: The path to the real-world clinic. Cell Rep Med 2023:101095. [PMID: 37385253 PMCID: PMC10394169 DOI: 10.1016/j.xcrm.2023.101095] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/17/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
Artificial intelligence (AI) has great potential to transform healthcare by enhancing the workflow and productivity of clinicians, enabling existing staff to serve more patients, improving patient outcomes, and reducing health disparities. In the field of ophthalmology, AI systems have shown performance comparable with or even better than experienced ophthalmologists in tasks such as diabetic retinopathy detection and grading. However, despite these quite good results, very few AI systems have been deployed in real-world clinical settings, challenging the true value of these systems. This review provides an overview of the current main AI applications in ophthalmology, describes the challenges that need to be overcome prior to clinical implementation of the AI systems, and discusses the strategies that may pave the way to the clinical translation of these systems.
Collapse
Affiliation(s)
- Zhongwen Li
- Ningbo Eye Hospital, Wenzhou Medical University, Ningbo 315000, China; School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Lei Wang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xuefang Wu
- Guizhou Provincial People's Hospital, Guizhou University, Guiyang 550002, China
| | - Jiewei Jiang
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Wei Qiang
- Ningbo Eye Hospital, Wenzhou Medical University, Ningbo 315000, China
| | - He Xie
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hongjian Zhou
- Department of Computer Science, University of Oxford, Oxford, Oxfordshire OX1 2JD, UK
| | - Shanjun Wu
- Ningbo Eye Hospital, Wenzhou Medical University, Ningbo 315000, China
| | - Yi Shao
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Wei Chen
- Ningbo Eye Hospital, Wenzhou Medical University, Ningbo 315000, China; School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
10
|
Azizi S, Culp L, Freyberg J, Mustafa B, Baur S, Kornblith S, Chen T, Tomasev N, Mitrović J, Strachan P, Mahdavi SS, Wulczyn E, Babenko B, Walker M, Loh A, Chen PHC, Liu Y, Bavishi P, McKinney SM, Winkens J, Roy AG, Beaver Z, Ryan F, Krogue J, Etemadi M, Telang U, Liu Y, Peng L, Corrado GS, Webster DR, Fleet D, Hinton G, Houlsby N, Karthikesalingam A, Norouzi M, Natarajan V. Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging. Nat Biomed Eng 2023:10.1038/s41551-023-01049-7. [PMID: 37291435 DOI: 10.1038/s41551-023-01049-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 05/02/2023] [Indexed: 06/10/2023]
Abstract
Machine-learning models for medical tasks can match or surpass the performance of clinical experts. However, in settings differing from those of the training dataset, the performance of a model can deteriorate substantially. Here we report a representation-learning strategy for machine-learning models applied to medical-imaging tasks that mitigates such 'out of distribution' performance problem and that improves model robustness and training efficiency. The strategy, which we named REMEDIS (for 'Robust and Efficient Medical Imaging with Self-supervision'), combines large-scale supervised transfer learning on natural images and intermediate contrastive self-supervised learning on medical images and requires minimal task-specific customization. We show the utility of REMEDIS in a range of diagnostic-imaging tasks covering six imaging domains and 15 test datasets, and by simulating three realistic out-of-distribution scenarios. REMEDIS improved in-distribution diagnostic accuracies up to 11.5% with respect to strong supervised baseline models, and in out-of-distribution settings required only 1-33% of the data for retraining to match the performance of supervised models retrained using all available data. REMEDIS may accelerate the development lifecycle of machine-learning models for medical imaging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ting Chen
- Google Research, Mountain View, CA, USA
| | | | | | | | | | | | | | | | - Aaron Loh
- Google Research, Mountain View, CA, USA
| | | | - Yuan Liu
- Google Research, Mountain View, CA, USA
| | | | | | | | | | | | - Fiona Ryan
- Georgia Institute of Technology, Computer Science, Atlanta, GA, USA
| | | | - Mozziyar Etemadi
- School of Medicine/School of Engineering, Northwestern University, Chicago, IL, USA
| | | | - Yun Liu
- Google Research, Mountain View, CA, USA
| | - Lily Peng
- Google Research, Mountain View, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Widner K, Virmani S, Krause J, Nayar J, Tiwari R, Pedersen ER, Jeji D, Hammel N, Matias Y, Corrado GS, Liu Y, Peng L, Webster DR. Lessons learned from translating AI from development to deployment in healthcare. Nat Med 2023:10.1038/s41591-023-02293-9. [PMID: 37248297 DOI: 10.1038/s41591-023-02293-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yun Liu
- Google Health, Palo Alto, CA, USA.
| | - Lily Peng
- Google Health, Palo Alto, CA, USA
- Verily, South San Francisco, CA, USA
| | | |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Assistive (nonautonomous) artificial intelligence (AI) models designed to support (rather than function independently of) clinicians have received increasing attention in medicine. This review aims to highlight several recent developments in these models over the past year and their ophthalmic implications. RECENT FINDINGS Artificial intelligence models with a diverse range of applications in ophthalmology have been reported in the literature over the past year. Many of these systems have reported high performance in detection, classification, prognostication, and/or monitoring of retinal, glaucomatous, anterior segment, and other ocular pathologies. SUMMARY Over the past year, developments in AI have been made that have implications affecting ophthalmic surgical training and refractive outcomes after cataract surgery, therapeutic monitoring of disease, disease classification, and prognostication. Many of these recently developed models have obtained encouraging results and have the potential to serve as powerful clinical decision-making tools pending further external validation and evaluation of their generalizability.
Collapse
Affiliation(s)
- Donald C Hubbard
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Parker Cox
- Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Travis K Redd
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
13
|
Manikandan S, Raman R, Rajalakshmi R, Tamilselvi S, Surya RJ. Deep learning-based detection of diabetic macular edema using optical coherence tomography and fundus images: A meta-analysis. Indian J Ophthalmol 2023; 71:1783-1796. [PMID: 37203031 PMCID: PMC10391382 DOI: 10.4103/ijo.ijo_2614_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Diabetic macular edema (DME) is an important cause of visual impairment in the working-age group. Deep learning methods have been developed to detect DME from two-dimensional retinal images and also from optical coherence tomography (OCT) images. The performances of these algorithms vary and often create doubt regarding their clinical utility. In resource-constrained health-care systems, these algorithms may play an important role in determining referral and treatment. The survey provides a diversified overview of macular edema detection methods, including cutting-edge research, with the objective of providing pertinent information to research groups, health-care professionals, and diabetic patients about the applications of deep learning in retinal image detection and classification process. Electronic databases such as PubMed, IEEE Explore, BioMed, and Google Scholar were searched from inception to March 31, 2022, and the reference lists of published papers were also searched. The study followed the preferred reporting items for systematic review and meta-analysis (PRISMA) reporting guidelines. Examination of various deep learning models and their exhibition regarding precision, epochs, their capacity to detect anomalies for less training data, concepts, and challenges that go deep into the applications were analyzed. A total of 53 studies were included that evaluated the performance of deep learning models in a total of 1,414,169°CT volumes, B-scans, patients, and 472,328 fundus images. The overall area under the receiver operating characteristic curve (AUROC) was 0.9727. The overall sensitivity for detecting DME using OCT images was 96% (95% confidence interval [CI]: 0.94-0.98). The overall sensitivity for detecting DME using fundus images was 94% (95% CI: 0.90-0.96).
Collapse
Affiliation(s)
- Suchetha Manikandan
- Professor & Deputy Director, Centre for Healthcare Advancement, Innovation ! Research, Vellore Institute of Technology, Chennai, Tamil Nadu, India
| | - Rajiv Raman
- Senior Consultant, Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Ramachandran Rajalakshmi
- Head Medical Retina, Dr. Mohan's Diabetes Specialties Centre and Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - S Tamilselvi
- Junior Research Fellow, Centre for Healthcare Advancement, Innovation & Research, Vellore Institute of Technology, Chennai, Tamil Nadu, India
| | - R Janani Surya
- Research Associate, Vision Research Foundation, Chennai, Tamil Nadu, India
| |
Collapse
|
14
|
Shahriari MH, Sabbaghi H, Asadi F, Hosseini A, Khorrami Z. Artificial intelligence in screening, diagnosis, and classification of diabetic macular edema: A systematic review. Surv Ophthalmol 2023; 68:42-53. [PMID: 35970233 DOI: 10.1016/j.survophthal.2022.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 02/01/2023]
Abstract
We review the application of artificial intelligence (AI) techniques in the screening, diagnosis, and classification of diabetic macular edema (DME) by searching six databases- PubMed, Scopus, Web of Science, Science Direct, IEEE, and ACM- from January 1, 2005 to July 4, 2021. A total of 879 articles were extracted, and by applying inclusion and exclusion criteria, 38 articles were selected for more evaluation. The methodological quality of included studies was evaluated using the Quality Assessment for Diagnostic Accuracy Studies (QUADAS-2). We provide an overview of the current state of various AI techniques for DME screening, diagnosis, and classification using retinal imaging modalities such as optical coherence tomography (OCT) and color fundus photography (CFP). Based on our findings, deep learning models have an extraordinary capacity to provide an accurate and efficient system for DME screening and diagnosis. Using these in the processing of modalities leads to a significant increase in sensitivity and specificity values. The use of decision support systems and applications based on AI in processing retinal images provided by OCT and CFP increases the sensitivity and specificity in DME screening and detection.
Collapse
Affiliation(s)
- Mohammad Hasan Shahriari
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Sabbaghi
- Ophthalmic Epidemiology Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Optometry, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Asadi
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Azamosadat Hosseini
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Khorrami
- Ophthalmic Epidemiology Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Pavithra K, Kumar P, Geetha M, Bhandary SV. Computer aided diagnosis of diabetic macular edema in retinal fundus and OCT images: A review. Biocybern Biomed Eng 2023. [DOI: 10.1016/j.bbe.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Alexopoulos P, Madu C, Wollstein G, Schuman JS. The Development and Clinical Application of Innovative Optical Ophthalmic Imaging Techniques. Front Med (Lausanne) 2022; 9:891369. [PMID: 35847772 PMCID: PMC9279625 DOI: 10.3389/fmed.2022.891369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
The field of ophthalmic imaging has grown substantially over the last years. Massive improvements in image processing and computer hardware have allowed the emergence of multiple imaging techniques of the eye that can transform patient care. The purpose of this review is to describe the most recent advances in eye imaging and explain how new technologies and imaging methods can be utilized in a clinical setting. The introduction of optical coherence tomography (OCT) was a revolution in eye imaging and has since become the standard of care for a plethora of conditions. Its most recent iterations, OCT angiography, and visible light OCT, as well as imaging modalities, such as fluorescent lifetime imaging ophthalmoscopy, would allow a more thorough evaluation of patients and provide additional information on disease processes. Toward that goal, the application of adaptive optics (AO) and full-field scanning to a variety of eye imaging techniques has further allowed the histologic study of single cells in the retina and anterior segment. Toward the goal of remote eye care and more accessible eye imaging, methods such as handheld OCT devices and imaging through smartphones, have emerged. Finally, incorporating artificial intelligence (AI) in eye images has the potential to become a new milestone for eye imaging while also contributing in social aspects of eye care.
Collapse
Affiliation(s)
- Palaiologos Alexopoulos
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Chisom Madu
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Center for Neural Science, College of Arts & Science, New York University, New York, NY, United States
| | - Joel S. Schuman
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Center for Neural Science, College of Arts & Science, New York University, New York, NY, United States
- Department of Electrical and Computer Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
| |
Collapse
|
17
|
Recent Advanced Deep Learning Architectures for Retinal Fluid Segmentation on Optical Coherence Tomography Images. SENSORS 2022; 22:s22083055. [PMID: 35459040 PMCID: PMC9029682 DOI: 10.3390/s22083055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
With non-invasive and high-resolution properties, optical coherence tomography (OCT) has been widely used as a retinal imaging modality for the effective diagnosis of ophthalmic diseases. The retinal fluid is often segmented by medical experts as a pivotal biomarker to assist in the clinical diagnosis of age-related macular diseases, diabetic macular edema, and retinal vein occlusion. In recent years, the advanced machine learning methods, such as deep learning paradigms, have attracted more and more attention from academia in the retinal fluid segmentation applications. The automatic retinal fluid segmentation based on deep learning can improve the semantic segmentation accuracy and efficiency of macular change analysis, which has potential clinical implications for ophthalmic pathology detection. This article summarizes several different deep learning paradigms reported in the up-to-date literature for the retinal fluid segmentation in OCT images. The deep learning architectures include the backbone of convolutional neural network (CNN), fully convolutional network (FCN), U-shape network (U-Net), and the other hybrid computational methods. The article also provides a survey on the prevailing OCT image datasets used in recent retinal segmentation investigations. The future perspectives and some potential retinal segmentation directions are discussed in the concluding context.
Collapse
|
18
|
Chia MA, Turner AW. Benefits of Integrating Telemedicine and Artificial Intelligence Into Outreach Eye Care: Stepwise Approach and Future Directions. Front Med (Lausanne) 2022; 9:835804. [PMID: 35391876 PMCID: PMC8982071 DOI: 10.3389/fmed.2022.835804] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Telemedicine has traditionally been applied within remote settings to overcome geographical barriers to healthcare access, providing an alternate means of connecting patients to specialist services. The coronavirus 2019 pandemic has rapidly expanded the use of telemedicine into metropolitan areas and enhanced global telemedicine capabilities. Through our experience of delivering real-time telemedicine over the past decade within a large outreach eye service, we have identified key themes for successful implementation which may be relevant to services facing common challenges. We present our journey toward establishing a comprehensive teleophthalmology model built on the principles of collaborative care, with a focus on delivering practical lessons for service design. Artificial intelligence is an emerging technology that has shown potential to further address resource limitations. We explore the applications of artificial intelligence and the need for targeted research within underserved settings in order to meet growing healthcare demands. Based on our rural telemedicine experience, we make the case that similar models may be adapted to urban settings with the aim of reducing surgical waitlists and improving efficiency.
Collapse
Affiliation(s)
- Mark A. Chia
- Lions Outback Vision, Lions Eye Institute, Nedlands, WA, Australia
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Angus W. Turner
- Lions Outback Vision, Lions Eye Institute, Nedlands, WA, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|