1
|
Ramezani P, De Smedt SC, Sauvage F. Supramolecular dye nanoassemblies for advanced diagnostics and therapies. Bioeng Transl Med 2024; 9:e10652. [PMID: 39036081 PMCID: PMC11256156 DOI: 10.1002/btm2.10652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 07/23/2024] Open
Abstract
Dyes have conventionally been used in medicine for staining cells, tissues, and organelles. Since these compounds are also known as photosensitizers (PSs) which exhibit photoresponsivity upon photon illumination, there is a high desire towards formulating these molecules into nanoparticles (NPs) to achieve improved delivery efficiency and enhanced stability for novel imaging and therapeutic applications. Furthermore, it has been shown that some of the photophysical properties of these molecules can be altered upon NP formation thereby playing a major role in the outcome of their application. In this review, we primarily focus on introducing dye categories, their formulation strategies and how these strategies affect their photophysical properties in the context of photothermal and non-photothermal applications. More specifically, the most recent progress showing the potential of dye supramolecular assemblies in modalities such as photoacoustic and fluorescence imaging, photothermal and photodynamic therapies as well as their employment in photoablation as a novel modality will be outlined. Aside from their photophysical activity, we delve shortly into the emerging application of dyes as drug stabilizing agents where these molecules are used together with aggregator molecules to form stable nanoparticles.
Collapse
Affiliation(s)
- Pouria Ramezani
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium
| | - Félix Sauvage
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium
| |
Collapse
|
2
|
Fakhoury JW, Lara JB, Manwar R, Zafar M, Xu Q, Engel R, Tsoukas MM, Daveluy S, Mehregan D, Avanaki K. Photoacoustic imaging for cutaneous melanoma assessment: a comprehensive review. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11518. [PMID: 38223680 PMCID: PMC10785699 DOI: 10.1117/1.jbo.29.s1.s11518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Significance Cutaneous melanoma (CM) has a high morbidity and mortality rate, but it can be cured if the primary lesion is detected and treated at an early stage. Imaging techniques such as photoacoustic (PA) imaging (PAI) have been studied and implemented to aid in the detection and diagnosis of CM. Aim Provide an overview of different PAI systems and applications for the study of CM, including the determination of tumor depth/thickness, cancer-related angiogenesis, metastases to lymph nodes, circulating tumor cells (CTCs), virtual histology, and studies using exogenous contrast agents. Approach A systematic review and classification of different PAI configurations was conducted based on their specific applications for melanoma detection. This review encompasses animal and preclinical studies, offering insights into the future potential of PAI in melanoma diagnosis in the clinic. Results PAI holds great clinical potential as a noninvasive technique for melanoma detection and disease management. PA microscopy has predominantly been used to image and study angiogenesis surrounding tumors and provide information on tumor characteristics. Additionally, PA tomography, with its increased penetration depth, has demonstrated its ability to assess melanoma thickness. Both modalities have shown promise in detecting metastases to lymph nodes and CTCs, and an all-optical implementation has been developed to perform virtual histology analyses. Animal and human studies have successfully shown the capability of PAI to detect, visualize, classify, and stage CM. Conclusions PAI is a promising technique for assessing the status of the skin without a surgical procedure. The capability of the modality to image microvasculature, visualize tumor boundaries, detect metastases in lymph nodes, perform fast and label-free histology, and identify CTCs could aid in the early diagnosis and classification of CM, including determination of metastatic status. In addition, it could be useful for monitoring treatment efficacy noninvasively.
Collapse
Affiliation(s)
- Joseph W. Fakhoury
- Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Juliana Benavides Lara
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, Chicago, Illinois, United States
| | - Rayyan Manwar
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, Chicago, Illinois, United States
| | - Mohsin Zafar
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, Chicago, Illinois, United States
| | - Qiuyun Xu
- Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States
| | - Ricardo Engel
- Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Maria M. Tsoukas
- University of Illinois at Chicago, Department of Dermatology, Chicago, Illinois, United States
| | - Steven Daveluy
- Wayne State University School of Medicine, Department of Dermatology, Detroit, Michigan, United States
| | - Darius Mehregan
- Wayne State University School of Medicine, Department of Dermatology, Detroit, Michigan, United States
| | - Kamran Avanaki
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, Chicago, Illinois, United States
- University of Illinois at Chicago, Department of Dermatology, Chicago, Illinois, United States
| |
Collapse
|
3
|
Grishin OV, Shushunova NA, Bratashov DN, Prikhozhdenko ES, Verkhovskii RA, Kozlova AA, Abdurashitov AS, Sindeeva OA, Karavaev AS, Kulminskiy DD, Shashkov EV, Inozemtseva OA, Tuchin VV. Effect of pulsed laser parameters on photoacoustic flow cytometry efficiency in vitro and in vivo. Cytometry A 2023; 103:868-880. [PMID: 37455600 DOI: 10.1002/cyto.a.24778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Photoacoustic flow cytometry is one of the most effective approaches to detect "alien" objects in the bloodstream, including circulating tumor cells, blood clots, parasites, and emboli. However, the possibility of detecting high-amplitude signals from these objects against the background of blood depends on the parameters of the laser pulse. So, the dependencies of photoacoustic signals amplitude and number on laser pulse energy (5-150 μJ), pulse length (1, 2, 5 ns), and pulse repetition rate (2, 5, 10 kHz) for the melanoma cells were investigated. First, the PA responses of a melanoma cell suspension in vitro were measured to directly assess the efficiency of converting laser light into an acoustic signal. After it, the same dependence with the developed murine model based on constant rate melanoma cell injection into the animal blood flow was tested. Both in vivo and in vitro experiments show that signal generation efficiency increases with laser pulse energy above 15 μJ. Shorter pulses, especially 1 ns, provide more efficient signal generation as well as higher pulse rates. A higher pulse rate also provides more efficient signal generation, but also leads to overheating of the skin. The results show the limits where the photoacoustic flow cytometry system can be effectively used for the detection of circulating tumor cells in undiluted blood both for in vitro experiments and for in vivo murine models.
Collapse
Affiliation(s)
- Oleg V Grishin
- Science Medical Center, Saratov State University, Saratov, Russia
| | | | | | | | | | | | - Arkady S Abdurashitov
- A.V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Olga A Sindeeva
- A.V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Anatoly S Karavaev
- Science Medical Center, Saratov State University, Saratov, Russia
- Laboratory of Nonlinear Dynamics Modeling, Saratov Branch of the Institute of Radio-Engineering and Electronics of Russian Academy of Sciences, Saratov, Russia
- Department of Innovative Cardiological Information Technology, Institute of Cardiological Research, Saratov State Medical University, Saratov, Russia
| | - Danil D Kulminskiy
- Laboratory of Nonlinear Dynamics Modeling, Saratov Branch of the Institute of Radio-Engineering and Electronics of Russian Academy of Sciences, Saratov, Russia
- Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, Sochi, Russia
| | - Evgeny V Shashkov
- Pico-Femtoseconds Laser Laboratory, Photoelectronics Department, Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | | | - Valery V Tuchin
- Science Medical Center, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Institute of Precision Mechanics and Control, FRC "Saratov Scientific Centre of the Russian Academy of Sciences", Saratov, Russia
- Bach Institute of Biochemistry, FRC "Fundamentals of Biotechnology of the Russian Academy of Sciences", Moscow, Russia
| |
Collapse
|
4
|
Haddad M, Frickenstein A, Wilhelm S. High-Throughput Single-Cell Analysis of Nanoparticle-Cell Interactions. Trends Analyt Chem 2023; 166:117172. [PMID: 37520860 PMCID: PMC10373476 DOI: 10.1016/j.trac.2023.117172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Understanding nanoparticle-cell interactions at single-nanoparticle and single-cell resolutions is crucial to improving the design of next-generation nanoparticles for safer, more effective, and more efficient applications in nanomedicine. This review focuses on recent advances in the continuous high-throughput analysis of nanoparticle-cell interactions at the single-cell level. We highlight and discuss the current trends in continual flow high-throughput methods for analyzing single cells, such as advanced flow cytometry techniques and inductively coupled plasma mass spectrometry methods, as well as their intersection in the form of mass cytometry. This review further discusses the challenges and opportunities with current single-cell analysis approaches and provides proposed directions for innovation in the high-throughput analysis of nanoparticle-cell interactions.
Collapse
Affiliation(s)
- Majood Haddad
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alex Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma, Norman, Oklahoma, 73019, USA
| |
Collapse
|
5
|
Ashley BK, Hassan U. Digital filtering dissemination for optimizing impedance cytometry signal quality and counting accuracy. Biomed Microdevices 2022; 24:36. [PMID: 36305954 PMCID: PMC9635870 DOI: 10.1007/s10544-022-00636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/29/2022]
Abstract
Improving biosensor performance which utilize impedance cytometry is a highly interested research topic for many clinical and diagnostic settings. During development, a sensor's design and external factors are rigorously optimized, but improvements in signal quality and interpretation are usually still necessary to produce a sensitive and accurate product. A common solution involves digital signal processing after sample analysis, but these methods frequently fall short in providing meaningful signal outcome changes. This shortcoming may arise from a lack of investigative research into selecting and using signal processing functions, as many choices in current sensors are based on either theoretical results or estimated hypotheses. While a ubiquitous condition set is improbable across diverse impedance cytometry designs, there lies a need for a streamlined and rapid analytical method for discovering those conditions for unique sensors. Herein, we present a comprehensive dissemination of digital filtering parameters applied on experimental impedance cytometry data for determining the limits of signal processing on signal quality improvements. Various filter orders, cutoff frequencies, and filter types are applied after data collection for highest achievable noise reduction. After designing and fabricating a microfluidic impedance cytometer, 9 µm polystyrene particles were measured under flow and signal quality improved by 6.09 dB when implementing digital filtering. This approached was then translated to isolated human neutrophils, where similarly, signal quality improved by 7.50 dB compared to its unfiltered original data. By sweeping all filtering conditions and devising a system to evaluate filtering performance both by signal quality and object counting accuracy, this may serve as a framework for future systems to determine their appropriately optimized filtering configuration.
Collapse
Affiliation(s)
- Brandon K Ashley
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Umer Hassan
- Department of Electrical Engineering, Department of Biomedical Engineering, and Global Health Institute Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
6
|
Zheng Z, Bindra AK, Jin H, Sun Q, Liu S, Zheng Y. Morphology-dependent resonance enhanced nonlinear photoacoustic effect in nanoparticle suspension: a temporal-spatial model. BIOMEDICAL OPTICS EXPRESS 2021; 12:7280-7296. [PMID: 35003833 PMCID: PMC8713686 DOI: 10.1364/boe.434207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/21/2021] [Accepted: 09/07/2021] [Indexed: 06/14/2023]
Abstract
The morphology-dependent resonances (MDRs) hotspot, ubiquity formed between the pairs of nanoparticles in close vicinity, has garnered considerable recent attention. By extending this phenomenon to pulse-laser irradiated nanoparticle suspension, we demonstrate that such collective optical/thermal enhancement can give rise to the nonlinear photoacoustic (PA) generation. In this study, a temporal-spatial analytical expression is derived to quantitatively describe the nonlinear PA signal generation from nanoparticles, incorporating the Grüneisen increase at the microscopic individual particle level and MRDs enhancement at the macroscopic suspension level. The dependence of PA nonlinearity on the critical contributors, including the laser pulse width, the particle size, and the statistical interparticle spacing, is quantitatively discussed. The theory is well validated with the finite element method (FEM) and experimentally proved with semiconducting polymer nanoparticles (SPN) suspension. This work may pave a new direction towards effective MDR based nonlinear PA contract agent design.
Collapse
Affiliation(s)
- Zesheng Zheng
- Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore 639798, Singapore
| | - Anivind Kaur Bindra
- Nanyang Technological University, School of Physical and Mathematical Sciences, Singapore 637371, Singapore
| | - Haoran Jin
- Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore 639798, Singapore
| | - Quqin Sun
- Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore 639798, Singapore
| | - Siyu Liu
- Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore 639798, Singapore
| | - Yuanjin Zheng
- Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore 639798, Singapore
| |
Collapse
|
7
|
Kim U, Kwon M, Jung G, Kim Y, Lee Y, Im S, Cense B, Lee H, Ohm WS, Joo C. Optical dosimeter for selective retinal therapy based on multi-port fiber-optic interferometry. BIOMEDICAL OPTICS EXPRESS 2021; 12:4920-4933. [PMID: 34513233 PMCID: PMC8407823 DOI: 10.1364/boe.434812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Selective retinal therapy (SRT) employs a micro-second short-pulse lasers to induce localized destruction of the targeted retinal structures with a pulse duration and power aimed at minimal damage to other healthy retinal cells. SRT has demonstrated a great promise in the treatment of retinal diseases, but pulse energy thresholds for effective SRT procedures should be determined precisely and in real time, as the thresholds could vary with disease status and patients. In this study, we present the use of a multi-port fiber-based interferometer (MFI) for highly sensitive real-time SRT monitoring. We exploit distinct phase differences among the fiber ports in the MFI to quantitatively measure localized fluctuations of complex-valued information during the SRT procedure. We evaluate several metrics that can be computed from the full complex-valued information and demonstrate that the complex contour integration is highly sensitive and most correlative to pulse energies, acoustic outputs, and cell deaths. The validity of our method was demonstrated on excised porcine retinas, with a sensitivity and specificity of 0.92 and 0.88, respectively, as compared with the results from a cell viability assay.
Collapse
Affiliation(s)
- Uihan Kim
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- These authors contributed equally to this work
| | - Minsung Kwon
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- These authors contributed equally to this work
| | - Gyeongyeon Jung
- Department of Research, Lutronic Corporation, 219 Sowon-ro, Goyang, 10534, Republic of Korea
| | - Youngnam Kim
- Department of Research, Lutronic Corporation, 219 Sowon-ro, Goyang, 10534, Republic of Korea
| | - Yunam Lee
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seonghun Im
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Barry Cense
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Optical and Biomedical Engineering Laboratory, Department of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Hyungsuk Lee
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Won-Suk Ohm
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chulmin Joo
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
8
|
Xiong R, Xu RX, Huang C, De Smedt S, Braeckmans K. Stimuli-responsive nanobubbles for biomedical applications. Chem Soc Rev 2021; 50:5746-5776. [PMID: 33972972 DOI: 10.1039/c9cs00839j] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stimuli-responsive nanobubbles have received increased attention for their application in spatial and temporal resolution of diagnostic techniques and therapies, particularly in multiple imaging methods, and they thus have significant potential for applications in the field of biomedicine. This review presents an overview of the recent advances in the development of stimuli-responsive nanobubbles and their novel applications. Properties of both internal- and external-stimuli responsive nanobubbles are highlighted and discussed considering the potential features required for biomedical applications. Furthermore, the methods used for synthesis and characterization of nanobubbles are outlined. Finally, novel biomedical applications are proposed alongside the advantages and shortcomings inherent to stimuli-responsive nanobubbles.
Collapse
Affiliation(s)
- Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China. and Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Ronald X Xu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230022, P. R. China and Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China.
| | - Stefaan De Smedt
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China. and Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium. and Centre for Advanced Light Microscopy, Ghent University, 9000, Ghent, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium. and Centre for Advanced Light Microscopy, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
9
|
Gao R, Xu Z, Ren Y, Song L, Liu C. Nonlinear mechanisms in photoacoustics-Powerful tools in photoacoustic imaging. PHOTOACOUSTICS 2021; 22:100243. [PMID: 33643841 PMCID: PMC7893487 DOI: 10.1016/j.pacs.2021.100243] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 05/03/2023]
Abstract
Many nonlinear effects have been discovered and developed in photoacoustic imaging. These nonlinear mechanisms have been explored for different utilizations, such as enhancing imaging contrast, measuring tissue temperature, achieving super-resolution imaging, enabling functional imaging, and extracting important physical parameters. This review aims to introduce different nonlinear mechanisms in photoacoustics, underline the fundamental principles, highlight their representative applications, and outline the occurrence conditions and applicable range of each nonlinear mechanism. Furthermore, this review thoroughly discusses the nonlinearity rule concerning how the mathematical structure of the nonlinear dependence is correlated to its practical applications. This summarization is useful for identifying and guiding the potential applications of nonlinearity based on their mathematical expressions, and is helpful for new nonlinear mechanism discovery or implementation in the future, which facilitates further breakthroughs in nonlinear photoacoustics.
Collapse
Affiliation(s)
- Rongkang Gao
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiqiang Xu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yaguang Ren
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
10
|
Gao R, Xu Z, Ren Y, Song L, Liu C. Nonlinear mechanisms in photoacoustics-Powerful tools in photoacoustic imaging. PHOTOACOUSTICS 2021; 22:100243. [PMID: 33643841 DOI: 10.1016/j.pacs.(2021).100243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 05/21/2023]
Abstract
Many nonlinear effects have been discovered and developed in photoacoustic imaging. These nonlinear mechanisms have been explored for different utilizations, such as enhancing imaging contrast, measuring tissue temperature, achieving super-resolution imaging, enabling functional imaging, and extracting important physical parameters. This review aims to introduce different nonlinear mechanisms in photoacoustics, underline the fundamental principles, highlight their representative applications, and outline the occurrence conditions and applicable range of each nonlinear mechanism. Furthermore, this review thoroughly discusses the nonlinearity rule concerning how the mathematical structure of the nonlinear dependence is correlated to its practical applications. This summarization is useful for identifying and guiding the potential applications of nonlinearity based on their mathematical expressions, and is helpful for new nonlinear mechanism discovery or implementation in the future, which facilitates further breakthroughs in nonlinear photoacoustics.
Collapse
Affiliation(s)
- Rongkang Gao
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiqiang Xu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yaguang Ren
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
11
|
Kim H, Lee H, Kim H, Chang JH. Elimination of Nontargeted Photoacoustic Signals for Combined Photoacoustic and Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1593-1604. [PMID: 33259296 DOI: 10.1109/tuffc.2020.3041634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a molecular imaging modality, photoacoustic (PA) imaging has been in the spotlight because it can provide an optical contrast image of physiological information and a relatively deep imaging depth. However, its sensitivity is limited despite the use of exogenous contrast agents due to the background PA signals generated from nontargeted absorbers, such as blood and boundaries between different biological tissues. In addition, clutter artifacts generated in both in-plane and out-of-plane imaging region degrade the sensitivity of PA imaging. We propose a method to eliminate the nontargeted PA signals. For this study, we used a dual-modal ultrasound (US)-PA contrast agent that is capable of generating both the backscattered US and PA signals in response to the transmitted US and irradiated light, respectively. The US images of the contrast agents are used to construct a masking image that contains the location information about the target site and is applied to the PA image acquired after contrast agent injection. In vitro and in vivo experimental results demonstrated that the masking image constructed using the US images makes it possible to completely remove nontargeted PA signals. The proposed method can be used to enhance the clear visualization of the target area in PA images.
Collapse
|
12
|
Vu T, Razansky D, Yao J. Listening to tissues with new light: recent technological advances in photoacoustic imaging. JOURNAL OF OPTICS (2010) 2019; 21:10.1088/2040-8986/ab3b1a. [PMID: 32051756 PMCID: PMC7015182 DOI: 10.1088/2040-8986/ab3b1a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Photoacoustic tomography (PAT), or optoacoustic tomography, has achieved remarkable progress in the past decade, benefiting from the joint developments in optics, acoustics, chemistry, computing and mathematics. Unlike pure optical or ultrasound imaging, PAT can provide unique optical absorption contrast as well as widely scalable spatial resolution, penetration depth and imaging speed. Moreover, PAT has inherent sensitivity to tissue's functional, molecular, and metabolic state. With these merits, PAT has been applied in a wide range of life science disciplines, and has enabled biomedical research unattainable by other imaging methods. This Review article aims at introducing state-of-the-art PAT technologies and their representative applications. The focus is on recent technological breakthroughs in structural, functional, molecular PAT, including super-resolution imaging, real-time small-animal whole-body imaging, and high-sensitivity functional/molecular imaging. We also discuss the remaining challenges in PAT and envisioned opportunities.
Collapse
Affiliation(s)
- Tri Vu
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Daniel Razansky
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Junjie Yao
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
13
|
Galanzha EI, Menyaev YA, Yadem AC, Sarimollaoglu M, Juratli MA, Nedosekin DA, Foster SR, Jamshidi-Parsian A, Siegel ER, Makhoul I, Hutchins LF, Suen JY, Zharov VP. In vivo liquid biopsy using Cytophone platform for photoacoustic detection of circulating tumor cells in patients with melanoma. Sci Transl Med 2019; 11:11/496/eaat5857. [PMID: 31189720 DOI: 10.1126/scitranslmed.aat5857] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/01/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022]
Abstract
Most cancer deaths arise from metastases as a result of circulating tumor cells (CTCs) spreading from the primary tumor to vital organs. Despite progress in cancer prognosis, the role of CTCs in early disease diagnosis is unclear because of the low sensitivity of CTC assays. We demonstrate the high sensitivity of the Cytophone technology using an in vivo photoacoustic flow cytometry platform with a high pulse rate laser and focused ultrasound transducers for label-free detection of melanin-bearing CTCs in patients with melanoma. The transcutaneous delivery of laser pulses via intact skin to a blood vessel results in the generation of acoustic waves from CTCs, which are amplified by vapor nanobubbles around intrinsic melanin nanoclusters. The time-resolved detection of acoustic waves using fast signal processing algorithms makes photoacoustic data tolerant to skin pigmentation and motion. No CTC-associated signals within established thresholds were identified in 19 healthy volunteers, but 27 of 28 patients with melanoma displayed signals consistent with single, clustered, and likely rolling CTCs. The detection limit ranged down to 1 CTC/liter of blood, which is ~1000 times better than in preexisting assays. The Cytophone could detect individual CTCs at a concentration of ≥1 CTC/ml in 20 s and could also identify clots and CTC-clot emboli. The in vivo results were verified with six ex vivo methods. These data suggest the potential of in vivo blood testing with the Cytophone for early melanoma screening, assessment of disease recurrence, and monitoring of the physical destruction of CTCs through real-time CTC counting.
Collapse
Affiliation(s)
- Ekaterina I Galanzha
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya Street, Saratov, 410012, Russia
| | - Yulian A Menyaev
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Aayire C Yadem
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
- Department of Applied Science (Physics), University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| | - Mustafa Sarimollaoglu
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya Street, Saratov, 410012, Russia
| | - Mazen A Juratli
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
- Department of General and Visceral Surgery, University Hospital of Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Dmitry A Nedosekin
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Stephen R Foster
- Institute of Aging, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Azemat Jamshidi-Parsian
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Eric R Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Issam Makhoul
- Division of Hematology Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Laura F Hutchins
- Division of Hematology Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - James Y Suen
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Vladimir P Zharov
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya Street, Saratov, 410012, Russia
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| |
Collapse
|
14
|
Borg RE, Rochford J. Molecular Photoacoustic Contrast Agents: Design Principles & Applications. Photochem Photobiol 2018; 94:1175-1209. [PMID: 29953628 PMCID: PMC6252265 DOI: 10.1111/php.12967] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/10/2018] [Indexed: 12/24/2022]
Abstract
Photoacoustic imaging (PAI) is a rapidly growing field which offers high spatial resolution and high contrast for deep-tissue imaging in vivo. PAI is nonionizing and noninvasive and combines the optical resolution of fluorescence imaging with the spatial resolution of ultrasound imaging. In particular, the development of exogenous PA contrast agents has gained significant momentum of late with a vastly expanding complexity of dye materials under investigation ranging from small molecules to macromolecular proteins, polymeric and inorganic nanoparticles. The goal of this review is to survey the current state of the art in molecular photoacoustic contrast agents (MPACs) for applications in biomedical imaging. The fundamental design principles of MPACs are presented and a review of prior reports spanning from early-to-current literature is put forth.
Collapse
Affiliation(s)
| | - Jonathan Rochford
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125
| |
Collapse
|
15
|
Nagaoka R, Tabata T, Yoshizawa S, Umemura SI, Saijo Y. Visualization of murine lymph vessels using photoacoustic imaging with contrast agents. PHOTOACOUSTICS 2018; 9:39-48. [PMID: 29707478 PMCID: PMC5914200 DOI: 10.1016/j.pacs.2018.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 12/22/2017] [Accepted: 01/15/2018] [Indexed: 05/07/2023]
Abstract
Metastasis frequently occurs even in the early stage of breast cancer. This research studied the feasibility of using photoacoustic (PA) imaging for identifying metastasis in the lymph vessels of mice. The photoacoustic efficiency of various contrast agents was investigated, and the influence of scattered light was evaluated by using a lymph vessel phantom. The lymph vessels of mice were then visualized using the selected contrast agents: indocyanine green (ICG) and gold nanorods (AuNR). The attenuation of the PA imaging was -1.90 dB/mm, whereas that of the fluorescence imaging was -4.45 dB/mm. The results indicate the potential of identifying sentinel lymph nodes by using PA imaging with these contrast agents.
Collapse
Affiliation(s)
- Ryo Nagaoka
- Biomedical Imaging Laboratory, Graduate School of Biomedical Engineering, Tohoku University, 6-6-05 Aramaki Aza Aoba, Aobaku, Sendai 980-8579, Japan
| | - Takuya Tabata
- Biomedical Imaging Laboratory, Graduate School of Biomedical Engineering, Tohoku University, 6-6-05 Aramaki Aza Aoba, Aobaku, Sendai 980-8579, Japan
| | - Shin Yoshizawa
- Ultrasound Enhanced Nanomedicine Laboratory, Graduate School of Biomedical Engineering, Tohoku University, 6-6-05 Aramaki Aza Aoba, Aobaku, Sendai 980-8579, Japan
| | - Shin-ichiro Umemura
- Ultrasound Enhanced Nanomedicine Laboratory, Graduate School of Biomedical Engineering, Tohoku University, 6-6-05 Aramaki Aza Aoba, Aobaku, Sendai 980-8579, Japan
| | - Yoshifumi Saijo
- Biomedical Imaging Laboratory, Graduate School of Biomedical Engineering, Tohoku University, 6-6-05 Aramaki Aza Aoba, Aobaku, Sendai 980-8579, Japan
| |
Collapse
|
16
|
Malekzadeh-Najafabadi J, Prakash J, Ntziachristos V. Nonlinear optoacoustic readings from diffusive media at near-infrared wavelengths. JOURNAL OF BIOPHOTONICS 2018; 11:e201600310. [PMID: 28787111 DOI: 10.1002/jbio.201600310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
Optoacoustic (photoacoustic) imaging assumes that the detected signal varies linearly with laser energy. However, nonlinear intensity responses as a function of light fluence have been suggested in optoacoustic microscopy, that is, within the first millimeter of tissue. In this study, we explore the presence of nonlinearity deeper in tissue (~4 mm), as it relates to optoacoustic mesoscopy, and investigate the fluence required to delineate a switch from linear to nonlinear behavior. Optoacoustic signal nonlinearity is studied for different materials, different wavelengths and as a function of changes in the scattering and absorption coefficient of the medium imaged. We observe fluence thresholds in the mJ/cm2 range and preliminary find that different materials may exhibit different nonlinearity patterns. We discuss the implications of nonlinearity in relation to image accuracy and quantification in optoacoustic tomography.
Collapse
Affiliation(s)
| | - Jaya Prakash
- Chair of Biological Imaging, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
17
|
Gao F, Kishor R, Feng X, Liu S, Ding R, Zhang R, Zheng Y. An analytical study of photoacoustic and thermoacoustic generation efficiency towards contrast agent and film design optimization. PHOTOACOUSTICS 2017; 7:1-11. [PMID: 28603690 PMCID: PMC5451189 DOI: 10.1016/j.pacs.2017.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/03/2017] [Accepted: 05/02/2017] [Indexed: 05/29/2023]
Abstract
Photoacoustic (PA) and thermoacoustic (TA) effects have been explored in many applications, such as bio-imaging, laser-induced ultrasound generator, and sensitive electromagnetic (EM) wave film sensor. In this paper, we propose a compact analytical PA/TA generation model to incorporate EM, thermal and mechanical parameters, etc. From the derived analytical model, both intuitive predictions and quantitative simulations are performed. It shows that beyond the EM absorption improvement, there are many other physical parameters that deserve careful consideration when designing contrast agents or film composites, followed by simulation study. Lastly, several sets of experimental results are presented to prove the feasibility of the proposed analytical model. Overall, the proposed compact model could work as a clear guidance and predication for improved PA/TA contrast agents and film generator/sensor designs in the domain area.
Collapse
Affiliation(s)
- Fei Gao
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Rahul Kishor
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Xiaohua Feng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Siyu Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Ran Ding
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Ruochong Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Yuanjin Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
18
|
Abstract
Understanding cell biology greatly benefits from the development of advanced diagnostic probes. Here we introduce a 22-nm spaser (plasmonic nanolaser) with the ability to serve as a super-bright, water-soluble, biocompatible probe capable of generating stimulated emission directly inside living cells and animal tissues. We have demonstrated a lasing regime associated with the formation of a dynamic vapour nanobubble around the spaser that leads to giant spasing with emission intensity and spectral width >100 times brighter and 30-fold narrower, respectively, than for quantum dots. The absorption losses in the spaser enhance its multifunctionality, allowing for nanobubble-amplified photothermal and photoacoustic imaging and therapy. Furthermore, the silica spaser surface has been covalently functionalized with folic acid for molecular targeting of cancer cells. All these properties make a nanobubble spaser a promising multimodal, super-contrast, ultrafast cellular probe with a single-pulse nanosecond excitation for a variety of in vitro and in vivo biomedical applications. Advanced diagnostic probes are required for monitoring disease progression. Here Galanzha et al. demonstrate a 22 nm plasmonic nanolaser to serve as a super-bright, biocompatible probe capable of generating stimulated emission directly inside living cells and animal tissue, while targeting cancer cells.
Collapse
|
19
|
Nedosekin DA, Nolan J, Cai C, Bourdo SE, Nima Z, Biris AS, Zharov VP. In vivo noninvasive analysis of graphene nanomaterial pharmacokinetics using photoacoustic flow cytometry. J Appl Toxicol 2017; 37:1297-1304. [PMID: 28524252 DOI: 10.1002/jat.3467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 01/01/2023]
Abstract
Graphene-based nanomaterials (GBNs) are quickly revolutionizing modern electronics, energy generation and storage, clothing and biomedical devices. Due to GBN's variety of physical and chemical parameters that define their toxicity and their aggregation in suspension, interpreting its toxicology without accurate information on graphene's distribution and behavior in live organisms is challenging. In this work, we present a laser-based optical detection methodology for noninvasive detection and pharmacokinetics analysis of GBNs directly in blood flow in mice using in vivo photoacoustic (PA) flow cytometry (PAFC). PAFC provides unique insight on how chemical modifications of GBNs affect their distribution in blood circulation and how quickly they are eliminated from the flow. Overall, PAFC provided unique data crucial for understanding GBN toxicity through real-time detection of GBNs using their intrinsic light absorption contrast. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Dmitry A Nedosekin
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Jacqueline Nolan
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Chengzhong Cai
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.,National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72132, USA
| | - Shawn E Bourdo
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, Arkansas, 72204, USA
| | - Zeid Nima
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, Arkansas, 72204, USA
| | - Alexandru S Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, Arkansas, 72204, USA
| | - Vladimir P Zharov
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| |
Collapse
|
20
|
Zhang HK, Yan P, Kang J, Abou DS, Le HND, Jha AK, Thorek DLJ, Kang JU, Rahmim A, Wong DF, Boctor EM, Loew LM. Listening to membrane potential: photoacoustic voltage-sensitive dye recording. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:45006. [PMID: 28394000 PMCID: PMC5385389 DOI: 10.1117/1.jbo.22.4.045006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/17/2017] [Indexed: 05/18/2023]
Abstract
Voltage-sensitive dyes (VSDs) are designed to monitor membrane potential by detecting fluorescence changes in response to neuronal or muscle electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. By contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near-infrared light excitation and ultrasound detection. Here, we show that voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. We synthesized a near-infrared photoacoustic VSD (PA-VSD), whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. A theoretical model accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate PA voltage sensing but also emphasize the interplay of both fluorescence and absorbance properties in the design of optimized PA probes. Together, our results demonstrate PA sensing as a potential new modality for recording and external imaging of electrophysiological and neurochemical events in the brain.
Collapse
Affiliation(s)
- Haichong K. Zhang
- Johns Hopkins University, Department of Computer Science, Baltimore, Maryland, United States
| | - Ping Yan
- University of Connecticut School of Medicine, R. D. Berlin Center for Cell Analysis and Modeling, Farmington, Connecticut, United States
| | - Jeeun Kang
- Johns Hopkins University, Department of Computer Science, Baltimore, Maryland, United States
| | - Diane S. Abou
- Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology, Baltimore, Maryland, United States
| | - Hanh N. D. Le
- Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
| | - Abhinav K. Jha
- Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology, Baltimore, Maryland, United States
| | - Daniel L. J. Thorek
- Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology, Baltimore, Maryland, United States
- Johns Hopkins University School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Baltimore, Maryland, United States
| | - Jin U. Kang
- Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
| | - Arman Rahmim
- Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology, Baltimore, Maryland, United States
- Johns Hopkins University School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Baltimore, Maryland, United States
| | - Dean F. Wong
- Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology, Baltimore, Maryland, United States
- Johns Hopkins University, Department of Neuroscience, Baltimore, Maryland, United States
- Johns Hopkins University, Department of Psychiatry and Behavioral Sciences, Baltimore, Maryland, United States
- Johns Hopkins University, Department of Neurology, Baltimore, Maryland, United States
| | - Emad M. Boctor
- Johns Hopkins University, Department of Computer Science, Baltimore, Maryland, United States
- Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology, Baltimore, Maryland, United States
- Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
- Address all correspondence to: Emad M. Boctor, E-mail: ; Leslie M. Loew, E-mail:
| | - Leslie M. Loew
- University of Connecticut School of Medicine, R. D. Berlin Center for Cell Analysis and Modeling, Farmington, Connecticut, United States
- Address all correspondence to: Emad M. Boctor, E-mail: ; Leslie M. Loew, E-mail:
| |
Collapse
|
21
|
Tzang O, Piestun R. Lock-in detection of photoacoustic feedback signal for focusing through scattering media using wave-front shaping. OPTICS EXPRESS 2016; 24:28122-28130. [PMID: 27906377 DOI: 10.1364/oe.24.028122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Wave-front shaping techniques enable focusing and imaging through scattering media. Unfortunately, most approaches require invasive feedback inside or behind the sample, or use of spatial correlations (memory effect) limiting the application to specific types of samples. Recent approaches overcome these limitations by taking advantage of acoustic waves via the photoacoustic (PA) effect or via photon tagging. We present a fully analog signal processing lock-in scheme for PA detection to improve focusing through scattering media and to efficiently extract nonlinear photoacoustic signals towards wave-front optimization. Our implementation improves PA feedback performance in terms of SNR, speed, and resolution.
Collapse
|
22
|
Photoacoustic Flow Cytometry for Single Sickle Cell Detection In Vitro and In Vivo. Anal Cell Pathol (Amst) 2016; 2016:2642361. [PMID: 27699143 PMCID: PMC5028878 DOI: 10.1155/2016/2642361] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/03/2016] [Indexed: 01/18/2023] Open
Abstract
Control of sickle cell disease (SCD) stage and treatment efficiency are still time-consuming which makes well-timed prevention of SCD crisis difficult. We show here that in vivo photoacoustic (PA) flow cytometry (PAFC) has a potential for real-time monitoring of circulating sickled cells in mouse model. In vivo data were verified by in vitro PAFC and photothermal (PT) and PA spectral imaging of sickle red blood cells (sRBCs) expressing SCD-associated hemoglobin (HbS) compared to normal red blood cells (nRBCs). We discovered that PT and PA signal amplitudes from sRBCs in linear mode were 2–4-fold lower than those from nRBCs. PT and PA imaging revealed more profound spatial hemoglobin heterogeneity in sRBCs than in nRBCs, which can be associated with the presence of HbS clusters with high local absorption. This hypothesis was confirmed in nonlinear mode through nanobubble formation around overheated HbS clusters accompanied by spatially selective signal amplification. More profound differences in absorption of sRBCs than in nRBCs led to notable increase in PA signal fluctuation (fluctuation PAFC mode) as an indicator of SCD. The obtained data suggest that noninvasive label-free fluctuation PAFC has a potential for real-time enumeration of sRBCs both in vitro and in vivo.
Collapse
|
23
|
Menyaev YA, Carey KA, Nedosekin DA, Sarimollaoglu M, Galanzha EI, Stumhofer JS, Zharov VP. Preclinical photoacoustic models: application for ultrasensitive single cell malaria diagnosis in large vein and artery. BIOMEDICAL OPTICS EXPRESS 2016; 7:3643-3658. [PMID: 27699126 PMCID: PMC5030038 DOI: 10.1364/boe.7.003643] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 05/06/2023]
Abstract
In vivo photoacoustic flow cytometry (PAFC) has demonstrated potential for early diagnosis of deadly diseases through detection of rare circulating tumor cells, pathogens, and clots in nearly the entire blood volume. Before clinical application, this promising diagnostic platform requires verification and optimization using adequate preclinical models. We show here that this can be addressed by examination of large mouse blood vessels which are similar in size, depth and flow velocity to human vessels used in PAFC. Using this model, we verified the capability of PAFC for ultrasensitive, noninvasive, label-free, rapid malaria diagnosis. The time-resolved detection of delayed PA signals from deep vessels provided complete elimination of background from strongly pigmented skin. We discovered that PAFC's sensitivity is higher during examination of infected cells in arteries compared to veins at similar flow rate. Our advanced PAFC platform integrating a 1060 nm laser with tunable pulse rate and width, a wearable probe with a focused transducer, and linear and nonlinear nanobubble-amplified signal processing demonstrated detection of parasitemia at the unprecedented level of 0.00000001% within 20 seconds and the potential to further improve the sensitivity 100-fold in humans, that is approximately 106 times better than in existing malaria tests.
Collapse
Affiliation(s)
- Yulian A Menyaev
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, 72205, USA; Equal contribution
| | - Kai A Carey
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, 72205, USA; Equal contribution
| | - Dmitry A Nedosekin
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, 72205, USA
| | - Mustafa Sarimollaoglu
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, 72205, USA
| | - Ekaterina I Galanzha
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, 72205, USA
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, 72205, USA
| | - Vladimir P Zharov
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, 72205, USA;
| |
Collapse
|
24
|
Ju KY, Kang J, Pyo J, Lim J, Chang JH, Lee JK. pH-Induced aggregated melanin nanoparticles for photoacoustic signal amplification. NANOSCALE 2016; 8:14448-56. [PMID: 27406260 DOI: 10.1039/c6nr02294d] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We present a new melanin-like nanoparticle (MelNP) and its performance evaluation results. This particle is proposed as an exogenous contrast agent for photoacoustic (PA) imaging. Conventional PA contrast agents are based on non-biological materials. In contrast, the MelNPs are organic nanoparticles inspired by natural melanin. Melanin is an endogenous chromophore that has the ability to produce a PA signal in vivo. The developed MelNPs are capable of aggregating with one another under mildly acidic conditions after introducing hydrolysis-susceptible citraconic amide on the surface of bare MelNPs. We ascertained that the physical aggregation of the MelNPs resulted in an increased PA signal strength in the near-infrared window of biological tissue (i.e., 700 nm) without absorption tuning. This phenomenon is likely because of the overlapping thermal fields of the developed MelNPs. The PA signal produced from the developed MelNPs, after exposure to mildly acidic conditions (i.e., pH 6), is 8.1 times stronger than under neutral conditions. This unique characteristic found in this study can be utilized in a practical strategy for highly sensitive in vivo cancer target imaging in response to its acidic microenvironment. This approach to amplify the PA response of MelNPs in clusters could accelerate the use of MelNPs as an alternative to non-biological nanoprobes, so that MelNPs may be applicable in PA imaging and functional PA imaging such as stimuli sensitive, multimodal, and theranostic imaging.
Collapse
Affiliation(s)
- Kuk-Youn Ju
- Department of Chemistry, Seoul National University, Seoul 151-747, Korea
| | | | | | | | | | | |
Collapse
|
25
|
Liopo A, Su R, Tsyboulski DA, Oraevsky AA. Optical clearing of skin enhanced with hyaluronic acid for increased contrast of optoacoustic imaging. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:081208. [PMID: 27232721 PMCID: PMC4882400 DOI: 10.1117/1.jbo.21.8.081208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/18/2016] [Indexed: 05/06/2023]
Abstract
Enhanced delivery of optical clearing agents (OCA) through skin may improve sensitivity of optical and optoacoustic (OA) methods of imaging, sensing, and monitoring. This report describes a two-step method for enhancement of light penetration through skin. Here, we demonstrate that topical application of hyaluronic acid (HA) improves skin penetration of hydrophilic and lipophilic OCA and thus enhances their performance. We examined the OC effect of 100% polyethylene and polypropylene glycols (PPGs) and their mixture after pretreatment by HA, and demonstrated significant increase in efficiency of light penetration through skin. Increased light transmission resulted in a significant increase of OA image contrast in vitro. Topical pretreatment of skin for about 30 min with 0.5% HA in aqueous solution offers effective delivery of low molecular weight OCA such as a mixture of PPG-425 and polyethylene glycol (PEG)-400. The developed approach of pretreatment by HA prior to application of clearing agents (PEG and PPG) resulted in a ∼ 47-fold increase in transmission of red and near-infrared light and significantly enhanced contrast of OA images.
Collapse
Affiliation(s)
- Anton Liopo
- TomoWave Laboratories, 6550 Mapleridge Street Suite 124, Houston, Texas 77081, United States
| | - Richard Su
- TomoWave Laboratories, 6550 Mapleridge Street Suite 124, Houston, Texas 77081, United States
- University of Houston, Department of Biomedical Engineering, 3600 Calhoun Road, Houston, Texas 77004, United States
| | - Dmitri A. Tsyboulski
- TomoWave Laboratories, 6550 Mapleridge Street Suite 124, Houston, Texas 77081, United States
| | - Alexander A. Oraevsky
- TomoWave Laboratories, 6550 Mapleridge Street Suite 124, Houston, Texas 77081, United States
- University of Houston, Department of Biomedical Engineering, 3600 Calhoun Road, Houston, Texas 77004, United States
- Address all correspondence to: Alexander A. Oraevsky, E-mail:
| |
Collapse
|
26
|
Real-Time Label-Free Embolus Detection Using In Vivo Photoacoustic Flow Cytometry. PLoS One 2016; 11:e0156269. [PMID: 27227413 PMCID: PMC4881933 DOI: 10.1371/journal.pone.0156269] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 05/11/2016] [Indexed: 11/19/2022] Open
Abstract
Thromboembolic events are one of the world's leading causes of death among patients. Embolus or clot formations have several etiologies including paraneoplastic, post-surgery, cauterization, transplantation, or extracorporeal circuits. Despite its medical significance, little progress has been made in early embolus detection, screening and control. The aim of our study is to test the utility of the in vivo photoacoustic (PA) flow cytometry (PAFC) technique for non-invasive embolus detection in real-time. Using in vivo PAFC, emboli were non-invasively monitored in the bloodstream of two different mouse models. The tumor-free mouse model consisted of two groups, one in which the limbs were clamped to produce vessel stasis (7 procedures), and one where the mice underwent surgery (7 procedures). The melanoma-bearing mouse model also consisted of two groups, one in which the implanted tumor underwent compression (8 procedures), and one where a surgical excision of the implanted tumor was performed (8 procedures). We demonstrated that the PAFC can detect a single embolus, and has the ability to distinguish between erythrocyte-rich (red) and leukocyte/platelet-rich (white) emboli in small vessels. We show that, in tumor-bearing mice, the level of circulating emboli was increased compared to tumor-free mice (p = 0.0013). The number of circulating emboli temporarily increased in the tumor-free control mice during vessel stasis (p = 0.033) and after surgical excisions (signed-rank p = 0.031). Similar observations were noted during tumor compression (p = 0.013) and after tumor excisions (p = 0.012). For the first time, it was possible to detect unlabeled emboli in vivo non-invasively, and to confirm the presence of pigmented tumor cells within circulating emboli. The insight on embolus dynamics during cancer progression and medical procedures highlight the clinical potential of PAFC for early detection of cancer and surgery-induced emboli to prevent the fatal thromboembolic complications by well-timed therapy.
Collapse
|
27
|
Cai C, Carey KA, Nedosekin DA, Menyaev YA, Sarimollaoglu M, Galanzha EI, Stumhofer JS, Zharov VP. In vivo photoacoustic flow cytometry for early malaria diagnosis. Cytometry A 2016; 89:531-42. [PMID: 27078044 DOI: 10.1002/cyto.a.22854] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/08/2016] [Accepted: 03/17/2016] [Indexed: 12/26/2022]
Abstract
In vivo photoacoustic (PA) flow cytometry (PAFC) has already demonstrated a great potential for the diagnosis of deadly diseases through ultrasensitive detection of rare disease-associated circulating markers in whole blood volume. Here, we demonstrate the first application of this powerful technique for early diagnosis of malaria through label-free detection of malaria parasite-produced hemozoin in infected red blood cells (iRBCs) as high-contrast PA agent. The existing malaria tests using blood smears can detect the disease at 0.001-0.1% of parasitemia. On the contrary, linear PAFC showed a potential for noninvasive malaria diagnosis at an extremely low level of parasitemia of 0.0000001%, which is ∼10(3) times better than the existing tests. Multicolor time-of-flight PAFC with high-pulse repetition rate lasers at wavelengths of 532, 671, and 820 nm demonstrated rapid spectral and spatial identification and quantitative enumeration of individual iRBCs. Integration of PAFC with fluorescence flow cytometry (FFC) provided real-time simultaneous detection of single iRBCs and parasites expressing green fluorescence proteins, respectively. A combination of linear and nonlinear nanobubble-based multicolor PAFC showed capability to real-time control therapy efficiency by counting of iRBCs before, during, and after treatment. Our results suggest that high-sensitivity, high-resolution ultrafast PAFC-FFC platform represents a powerful research tool to provide the insight on malaria progression through dynamic study of parasite-cell interactions directly in bloodstream, whereas portable hand-worn PAFC device could be broadly used in humans for early malaria diagnosis. © 2016 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Chengzhong Cai
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205.,Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, 72079
| | - Kai A Carey
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Dmitry A Nedosekin
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Yulian A Menyaev
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Mustafa Sarimollaoglu
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Ekaterina I Galanzha
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Vladimir P Zharov
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| |
Collapse
|
28
|
Effects of physicochemical properties of particles and medium on acoustic pressure pulses from laser-irradiated suspensions. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.09.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Arterial Blood, Rather Than Venous Blood, is a Better Source for Circulating Melanoma Cells. EBioMedicine 2015; 2:1821-6. [PMID: 26870807 PMCID: PMC4740300 DOI: 10.1016/j.ebiom.2015.09.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/07/2015] [Accepted: 09/11/2015] [Indexed: 12/21/2022] Open
Abstract
Background CTCs provide prognostic information and their application is under investigation in multiple tumor types. Of the multiple variables inherent in any such process, none is more important to outcome than the appropriateness of the sample source. To address this question, we investigated CTCs in paired peripheral venous and arterial blood specimens obtained from stage IV uveal melanoma patients. Methods Blood specimens were obtained from both common femoral arteries and antecubital veins in 17 uveal melanoma patients with multiple hepatic metastases for CTC measurements. Finding CTCs were detectable with greater frequency (100%) and in larger numbers (median 5, range 1 to 168) in all arterial blood specimens than in venous samples (52.9%; median 1, range 0 to 8). Patients with hepatic as well as extra-hepatic metastasis showed higher number of arterial CTCs, compared to patients with liver-only metastasis (p = 0.003). There was no significant association between the number of arterial CTCs and the tumor burden within the liver in patients who had liver-only metastases. Interpretation Our data indicate that arterial blood specimens might be a better source of circulating uveal melanoma cells. Although less conveniently processed, perhaps arterial blood should be evaluated as sample source for measurement of CTCs. CTCs were detectable in 100% of arterial blood obtained from metastatic uveal melanoma patients, while only 53% of venous blood was positive for CTCs.
CTCs have been investigated to provide prognostic information in multiple tumor types. Of the multiple variables, none is more important than the appropriateness of the sample source. Blood specimens were obtained from both femoral arteries and antecubital veins in 17 uveal melanoma patients with multiple hepatic metastases. CTCs were detectable with greater frequency (100%) and in larger numbers in all arterial blood specimens than in venous samples (52.9%). Our data indicate that arterial blood specimens might be a better source of circulating uveal melanoma cells. Although less convenient, arterial blood should be evaluated as sample source for measurement of CTCs.
Collapse
Key Words
- AKTi, AKT inhibitor
- Ab, antibody
- Arterial venous
- BCNU, bischlorethylnitrosourea
- CTC count
- Circulating tumor cells
- DEBDOX, drug-eluting beads with doxorubicin
- EDTA, ethylenediaminetetraacetic acid
- HMW-MAA, high molecular weight melanoma associated antigen
- Hepatic metastasis
- Ipi, ipilimumab
- LN, lymph node
- MEKi, MEK inhibitor
- METi, MET inhibitor;
- Peripheral venous
- TACE, transarterial chemoembolization
- Uveal melanoma
- VPA, valproic acid
- XRT, radiation therapy
Collapse
|
30
|
Juratli MA, Siegel ER, Nedosekin DA, Sarimollaoglu M, Jamshidi-Parsian A, Cai C, Menyaev YA, Suen JY, Galanzha EI, Zharov VP. In Vivo Long-Term Monitoring of Circulating Tumor Cells Fluctuation during Medical Interventions. PLoS One 2015; 10:e0137613. [PMID: 26367280 PMCID: PMC4569172 DOI: 10.1371/journal.pone.0137613] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
The goal of this research was to study the long-term impact of medical interventions on circulating tumor cell (CTC) dynamics. We have explored whether tumor compression, punch biopsy or tumor resection cause dissemination of CTCs into peripheral blood circulation using in vivo fluorescent flow cytometry and breast cancer-bearing mouse model inoculated with MDA-MB-231-Luc2-GFP cells in the mammary gland. Two weeks after tumor inoculation, three groups of mice were the subject of the following interventions: (1) tumor compression for 15 minutes using 400 g weight to approximate the pressure during mammography; (2) punch biopsy; or (3) surgery. The CTC dynamics were determined before, during and six weeks after these interventions. An additional group of tumor-bearing mice was used as control and did not receive an intervention. The CTC dynamics in all mice were monitored weekly for eight weeks after tumor inoculation. We determined that tumor compression did not significantly affect CTC dynamics, either during the procedure itself (P = 0.28), or during the 6-week follow-up. In the punch biopsy group, we observed a significant increase in CTC immediately after the biopsy (P = 0.02), and the rate stayed elevated up to six weeks after the procedure in comparison to the tumor control group. The CTCs in the group of mice that received a tumor resection disappeared immediately after the surgery (P = 0.03). However, CTC recurrence in small numbers was detected during six weeks after the surgery. In the future, to prevent these side effects of medical interventions, the defined dynamics of intervention-induced CTCs may be used as a basis for initiation of aggressive anti-CTC therapy at time-points of increasing CTC number.
Collapse
Affiliation(s)
- Mazen A. Juratli
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
- Department of General and Visceral Surgery, University hospital of Frankfurt, Frankfurt am Main, Germany
- * E-mail:
| | - Eric R. Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Dmitry A. Nedosekin
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Mustafa Sarimollaoglu
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Azemat Jamshidi-Parsian
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Chengzhong Cai
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Yulian A. Menyaev
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - James Y. Suen
- Department of Otolaryngology - Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Ekaterina I. Galanzha
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Vladimir P. Zharov
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
- Department of Otolaryngology - Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| |
Collapse
|
31
|
Simandoux O, Prost A, Gateau J, Bossy E. Influence of nanoscale temperature rises on photoacoustic generation: Discrimination between optical absorbers based on thermal nonlinearity at high frequency. PHOTOACOUSTICS 2015; 3:20-5. [PMID: 25893167 PMCID: PMC4398813 DOI: 10.1016/j.pacs.2014.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/21/2014] [Accepted: 12/11/2014] [Indexed: 05/07/2023]
Abstract
In this work, we experimentally investigate thermal-based nonlinear photoacoustic generation as a mean to discriminate between different types of absorbing particles. The photoacoustic generation from solutions of dye molecules and gold nanospheres (same optical densities) was detected using a high frequency ultrasound transducer (20 MHz). Photoacoustic emission was observed with gold nanospheres at low fluence for an equilibrium temperature around 4 °C, where the linear photoacoustic effect in water vanishes, highlighting the nonlinear emission from the solution of nanospheres. The photoacoustic amplitude was also studied as a function of the equilibrium temperature from 2 °C to 20 °C. While the photoacoustic amplitude from the dye molecules vanished around 4 °C, the photoacoustic amplitude from the gold nanospheres remained significant over the whole temperature range. Our preliminary results suggest that in the context of high frequency photoacoustic imaging, nanoparticles may be discriminated from molecular absorbers based on nanoscale temperature rises.
Collapse
Affiliation(s)
| | | | | | - Emmanuel Bossy
- Corresponding author. Tel.: +33 1 80963081; fax: +33 1 80963355.
| |
Collapse
|
32
|
Galanzha EI, Zharov VP. Circulating Tumor Cell Detection and Capture by Photoacoustic Flow Cytometry in Vivo and ex Vivo. Cancers (Basel) 2013; 5:1691-738. [PMID: 24335964 PMCID: PMC3875961 DOI: 10.3390/cancers5041691] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/17/2013] [Accepted: 11/19/2013] [Indexed: 12/23/2022] Open
Abstract
Despite progress in detecting circulating tumor cells (CTCs), existing assays still have low sensitivity (1-10 CTC/mL) due to the small volume of blood samples (5-10 mL). Consequently, they can miss up to 103-104 CTCs, resulting in the development of barely treatable metastasis. Here we analyze a new concept of in vivo CTC detection with enhanced sensitivity (up to 102-103 times) by the examination of the entire blood volume in vivo (5 L in adults). We focus on in vivo photoacoustic (PA) flow cytometry (PAFC) of CTCs using label-free or targeted detection, photoswitchable nanoparticles with ultrasharp PA resonances, magnetic trapping with fiber-magnetic-PA probes, optical clearance, real-time spectral identification, nonlinear signal amplification, and the integration with PAFC in vitro. We demonstrate PAFC's capability to detect rare leukemia, squamous carcinoma, melanoma, and bulk and stem breast CTCs and its clusters in preclinical animal models in blood, lymph, bone, and cerebrospinal fluid, as well as the release of CTCs from primary tumors triggered by palpation, biopsy or surgery, increasing the risk of metastasis. CTC lifetime as a balance between intravasation and extravasation rates was in the range of 0.5-4 h depending on a CTC metastatic potential. We introduced theranostics of CTCs as an integration of nanobubble-enhanced PA diagnosis, photothermal therapy, and feedback through CTC counting. In vivo data were verified with in vitro PAFC demonstrating a higher sensitivity (1 CTC/40 mL) and throughput (up to 10 mL/min) than conventional assays. Further developments include detection of circulating cancer-associated microparticles, and super-rsesolution PAFC beyond the diffraction and spectral limits.
Collapse
Affiliation(s)
- Ekaterina I. Galanzha
- Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA; E-Mail:
| | - Vladimir P. Zharov
- Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA; E-Mail:
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 USA
| |
Collapse
|
33
|
Menyaev YA, Nedosekin DA, Sarimollaoglu M, Juratli MA, Galanzha EI, Tuchin VV, Zharov VP. Optical clearing in photoacoustic flow cytometry. BIOMEDICAL OPTICS EXPRESS 2013; 4:3030-41. [PMID: 24409398 PMCID: PMC3862168 DOI: 10.1364/boe.4.003030] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/01/2013] [Accepted: 11/25/2013] [Indexed: 05/03/2023]
Abstract
Clinical applications of photoacoustic (PA) flow cytometry (PAFC) for detection of circulating tumor cells in deep blood vessels are hindered by laser beam scattering, that result in loss of PAFC sensitivity and resolution. We demonstrate biocompatible and rapid optical clearing (OC) of skin to minimize light scattering and thus, increase optical resolution and sensitivity of PAFC. OC effect was achieved in 20 min by sequent skin cleaning, microdermabrasion, and glycerol application enhanced by massage and sonophoresis. Using 0.8 mm mouse skin layer over a blood vessel in vitro phantom we demonstrated 1.6-fold decrease in laser spot blurring accompanied by 1.6-fold increase in PA signal amplitude from blood background. As a result, peak rate for B16F10 melanoma cells in blood flow increased 1.7-fold. By using OC we also demonstrated the feasibility of PA contrast improvement for human hand veins.
Collapse
Affiliation(s)
- Yulian A. Menyaev
- Phillips Classic Laser and Nanomedicine Laboratories, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205 USA
| | - Dmitry A. Nedosekin
- Phillips Classic Laser and Nanomedicine Laboratories, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205 USA
| | - Mustafa Sarimollaoglu
- Phillips Classic Laser and Nanomedicine Laboratories, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205 USA
| | - Mazen A. Juratli
- Phillips Classic Laser and Nanomedicine Laboratories, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205 USA
| | - Ekaterina I. Galanzha
- Phillips Classic Laser and Nanomedicine Laboratories, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205 USA
| | - Valery V. Tuchin
- Saratov State University, 83 Astrakhanskaya St., Saratov, 410012 Russia
- Institute of Precise Mechanics and Control of RAS, 28 Rabochaya St., Saratov, 410028 Russia
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, P.O. BOX 4500, 90014 Finland
| | - Vladimir P. Zharov
- Phillips Classic Laser and Nanomedicine Laboratories, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205 USA
| |
Collapse
|