1
|
Yu Y, Feng T, Qiu H, Gu Y, Chen Q, Zuo C, Ma H. Simultaneous photoacoustic and ultrasound imaging: A review. ULTRASONICS 2024; 139:107277. [PMID: 38460216 DOI: 10.1016/j.ultras.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
Photoacoustic imaging (PAI) is an emerging biomedical imaging technique that combines the advantages of optical and ultrasound imaging, enabling the generation of images with both optical resolution and acoustic penetration depth. By leveraging similar signal acquisition and processing methods, the integration of photoacoustic and ultrasound imaging has introduced a novel hybrid imaging modality suitable for clinical applications. Photoacoustic-ultrasound imaging allows for non-invasive, high-resolution, and deep-penetrating imaging, providing a wealth of image information. In recent years, with the deepening research and the expanding biomedical application scenarios of photoacoustic-ultrasound bimodal systems, the immense potential of photoacoustic-ultrasound bimodal imaging in basic research and clinical applications has been demonstrated, with some research achievements already commercialized. In this review, we introduce the principles, technical advantages, and biomedical applications of photoacoustic-ultrasound bimodal imaging techniques, specifically focusing on tomographic, microscopic, and endoscopic imaging modalities. Furthermore, we discuss the future directions of photoacoustic-ultrasound bimodal imaging technology.
Collapse
Affiliation(s)
- Yinshi Yu
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Ting Feng
- Academy for Engineering & Technology, Fudan University, Shanghai 200433,China.
| | - Haixia Qiu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Ying Gu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Qian Chen
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Chao Zuo
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| | - Haigang Ma
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| |
Collapse
|
2
|
Jung U, Ryu J, Choi H. Optical Light Sources and Wavelengths within the Visible and Near-Infrared Range Using Photoacoustic Effects for Biomedical Applications. BIOSENSORS 2022; 12:bios12121154. [PMID: 36551121 PMCID: PMC9775951 DOI: 10.3390/bios12121154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/01/2023]
Abstract
The photoacoustic (PA) effect occurs when sound waves are generated by light according to the thermodynamic and optical properties of the materials; they are absorption spectroscopic techniques that can be applied to characterize materials that absorb pulse or continuous wave (CW)-modulated electromagnetic radiation. In addition, the wavelengths and properties of the incident light significantly impact the signal-to-ratio and contrast with photoacoustic signals. In this paper, we reviewed how absorption spectroscopic research results have been used in applying actual photoacoustic effects, focusing on light sources of each wavelength. In addition, the characteristics and compositions of the light sources used for the applications were investigated and organized based on the absorption spectrum of the target materials. Therefore, we expect that this study will help researchers (who desire to study photoacoustic effects) to more efficiently approach the appropriate conditions or environments for selecting the target materials and light sources.
Collapse
Affiliation(s)
- Unsang Jung
- Production Technology Research Center, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Gyeongsangbuk-do, Republic of Korea
| | - Jaemyung Ryu
- Department of Optical Engineering, Kumoh National Institute of Technology, 350-27 Gumi-daero, Gumi 39253, Gyeongsangbuk-do, Republic of Korea
| | - Hojong Choi
- Department of Electronic Engineering, Gachon University, Seongnam-daero, Sujeong-gu, Seongnam 13420, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Zhang Y, Luo D, Zhou SK, Yang L, Yao WF, Cheng FF, Zhu JJ, Zhang L. Analytical and biomedical applications of nanomaterials in Chinese herbal medicines research. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Palma-Chavez J, Pfefer TJ, Agrawal A, Jokerst JV, Vogt WC. Review of consensus test methods in medical imaging and current practices in photoacoustic image quality assessment. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210176VSSR. [PMID: 34510850 PMCID: PMC8434148 DOI: 10.1117/1.jbo.26.9.090901] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/17/2021] [Indexed: 05/06/2023]
Abstract
SIGNIFICANCE Photoacoustic imaging (PAI) is a powerful emerging technology with broad clinical applications, but consensus test methods are needed to standardize performance evaluation and accelerate translation. AIM To review consensus image quality test methods for mature imaging modalities [ultrasound, magnetic resonance imaging (MRI), x-ray CT, and x-ray mammography], identify best practices in phantom design and testing procedures, and compare against current practices in PAI phantom testing. APPROACH We reviewed scientific papers, international standards, clinical accreditation guidelines, and professional society recommendations describing medical image quality test methods. Observations are organized by image quality characteristics (IQCs), including spatial resolution, geometric accuracy, imaging depth, uniformity, sensitivity, low-contrast detectability, and artifacts. RESULTS Consensus documents typically prescribed phantom geometry and material property requirements, as well as specific data acquisition and analysis protocols to optimize test consistency and reproducibility. While these documents considered a wide array of IQCs, reported PAI phantom testing focused heavily on in-plane resolution, depth of visualization, and sensitivity. Understudied IQCs that merit further consideration include out-of-plane resolution, geometric accuracy, uniformity, low-contrast detectability, and co-registration accuracy. CONCLUSIONS Available medical image quality standards provide a blueprint for establishing consensus best practices for photoacoustic image quality assessment and thus hastening PAI technology advancement, translation, and clinical adoption.
Collapse
Affiliation(s)
- Jorge Palma-Chavez
- University of California San Diego, Department of NanoEngineering, La Jolla, California, United States
| | - T. Joshua Pfefer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Anant Agrawal
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Jesse V. Jokerst
- University of California San Diego, Department of NanoEngineering, La Jolla, California, United States
- University of California San Diego, Department of Radiology, La Jolla, California, United States
- University of California San Diego, Materials Science and Engineering Program, La Jolla, California, United States
| | - William C. Vogt
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| |
Collapse
|
5
|
Wiacek A, Lediju Bell MA. Photoacoustic-guided surgery from head to toe [Invited]. BIOMEDICAL OPTICS EXPRESS 2021; 12:2079-2117. [PMID: 33996218 PMCID: PMC8086464 DOI: 10.1364/boe.417984] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 05/04/2023]
Abstract
Photoacoustic imaging-the combination of optics and acoustics to visualize differences in optical absorption - has recently demonstrated strong viability as a promising method to provide critical guidance of multiple surgeries and procedures. Benefits include its potential to assist with tumor resection, identify hemorrhaged and ablated tissue, visualize metal implants (e.g., needle tips, tool tips, brachytherapy seeds), track catheter tips, and avoid accidental injury to critical subsurface anatomy (e.g., major vessels and nerves hidden by tissue during surgery). These benefits are significant because they reduce surgical error, associated surgery-related complications (e.g., cancer recurrence, paralysis, excessive bleeding), and accidental patient death in the operating room. This invited review covers multiple aspects of the use of photoacoustic imaging to guide both surgical and related non-surgical interventions. Applicable organ systems span structures within the head to contents of the toes, with an eye toward surgical and interventional translation for the benefit of patients and for use in operating rooms and interventional suites worldwide. We additionally include a critical discussion of complete systems and tools needed to maximize the success of surgical and interventional applications of photoacoustic-based technology, spanning light delivery, acoustic detection, and robotic methods. Multiple enabling hardware and software integration components are also discussed, concluding with a summary and future outlook based on the current state of technological developments, recent achievements, and possible new directions.
Collapse
Affiliation(s)
- Alycen Wiacek
- Department of Electrical and Computer Engineering, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218, USA
| | - Muyinatu A. Lediju Bell
- Department of Electrical and Computer Engineering, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Computer Science, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
6
|
Li M, Vu T, Sankin G, Winship B, Boydston K, Terry R, Zhong P, Yao J. Internal-Illumination Photoacoustic Tomography Enhanced by a Graded-Scattering Fiber Diffuser. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:346-356. [PMID: 32986546 PMCID: PMC7772228 DOI: 10.1109/tmi.2020.3027199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The penetration depth of photoacoustic imaging in biological tissues has been fundamentally limited by the strong optical attenuation when light is delivered externally through the tissue surface. To address this issue, we previously reported internal-illumination photoacoustic imaging using a customized radial-emission optical fiber diffuser, which, however, has complex fabrication, high cost, and non-uniform light emission. To overcome these shortcomings, we have developed a new type of low-cost fiber diffusers based on a graded-scattering method in which the optical scattering of the fiber diffuser is gradually increased as the light travels. The graded scattering can compensate for the optical attenuation and provide relatively uniform light emission along the diffuser. We performed Monte Carlo numerical simulations to optimize several key design parameters, including the number of scattering segments, scattering anisotropy factor, divergence angle of the optical fiber, and reflective index of the surrounding medium. These optimized parameters collectively result in uniform light emission along the fiber diffuser and can be flexibly adjusted to accommodate different applications. We fabricated and characterized the prototype fiber diffuser made of agarose gel and intralipid. Equipped with the new fiber diffuser, we performed thorough proof-of-concept studies on ex vivo tissue phantoms and an in vivo swine model to demonstrate the deep-imaging capability (~10 cm achieved ex vivo) of photoacoustic tomography. We believe that the internal light delivery via the optimized fiber diffuser is an effective strategy to image deep targets (e.g., kidney) in large animals or humans.
Collapse
|
7
|
Li M, Nyayapathi N, Kilian HI, Xia J, Lovell JF, Yao J. Sound Out the Deep Colors: Photoacoustic Molecular Imaging at New Depths. Mol Imaging 2020; 19:1536012120981518. [PMID: 33336621 PMCID: PMC7750763 DOI: 10.1177/1536012120981518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Photoacoustic tomography (PAT) has become increasingly popular for molecular imaging due to its unique optical absorption contrast, high spatial resolution, deep imaging depth, and high imaging speed. Yet, the strong optical attenuation of biological tissues has traditionally prevented PAT from penetrating more than a few centimeters and limited its application for studying deeply seated targets. A variety of PAT technologies have been developed to extend the imaging depth, including employing deep-penetrating microwaves and X-ray photons as excitation sources, delivering the light to the inside of the organ, reshaping the light wavefront to better focus into scattering medium, as well as improving the sensitivity of ultrasonic transducers. At the same time, novel optical fluence mapping algorithms and image reconstruction methods have been developed to improve the quantitative accuracy of PAT, which is crucial to recover weak molecular signals at larger depths. The development of highly-absorbing near-infrared PA molecular probes has also flourished to provide high sensitivity and specificity in studying cellular processes. This review aims to introduce the recent developments in deep PA molecular imaging, including novel imaging systems, image processing methods and molecular probes, as well as their representative biomedical applications. Existing challenges and future directions are also discussed.
Collapse
Affiliation(s)
- Mucong Li
- Department of Biomedical Engineering, 3065Duke University, Durham, NC, USA
| | - Nikhila Nyayapathi
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Hailey I Kilian
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Jun Xia
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Junjie Yao
- Department of Biomedical Engineering, 3065Duke University, Durham, NC, USA
| |
Collapse
|
8
|
Gold Nanoparticles in Glioma Theranostics. Pharmacol Res 2020; 156:104753. [PMID: 32209363 DOI: 10.1016/j.phrs.2020.104753] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/07/2023]
Abstract
Despite many endeavors to treat malignant gliomas in the last decades, the median survival of patients has not significantly improved. The infiltrative nature of high-grade gliomas and the impermeability of the blood-brain barrier to the most therapeutic agents remain major hurdles, impeding an efficacious treatment. Theranostic platforms bridging diagnosis and therapeutic modalities aim to surmount the current limitations in diagnosis and therapy of glioma. Gold nanoparticles (AuNPs) due to their biocompatibility and tunable optical properties have widely been utilized for an assortment of theranostic purposes. In this Review, applications of AuNPs as imaging probes, drug/gene delivery systems, radiosensitizers, photothermal transducers, and multimodal theranostic agents in malignant gliomas are discussed. This Review also aims to provide a perspective on cancer theranostic applications of AuNPs in future clinical trials.
Collapse
|
9
|
Rich LJ, Chamberlain SR, Falcone DR, Bruce R, Heinmiller A, Xia J, Seshadri M. Performance Characteristics of Photoacoustic Imaging Probes with Varying Frequencies and Light-delivery Schemes. ULTRASONIC IMAGING 2019; 41:319-335. [PMID: 31570083 PMCID: PMC7042667 DOI: 10.1177/0161734619879043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Photoacoustic imaging (PAI) is an emerging biomedical imaging technique that utilizes a combination of light and ultrasound to detect photoabsorbers embedded within tissues. While the clinical utility of PAI has been widely explored for several applications, limitations in light penetration and detector sensitivity have restricted these studies to mostly superficial sites. Given the importance of PA signal generation and detection on light delivery and ultrasound detector frequency, there is an ongoing effort to optimize these parameters to enhance photoabsorber detection at increased depths. With this in mind, in this study we examined performance benchmarks of a commercially available PAI/ultrasound linear array system when using different imaging frequencies and light delivery schemes. A modified light fiber jacket providing focused light delivery (FLD) at the center of the probe was compared with the built-in fiber optics lining the length of the probe. Studies were performed in vitro to compare performance characteristics such as imaging resolution, maximum imaging depth, and sensitivity to varying hematocrit concentration for each frequency and light delivery method. Monte Carlo simulations of each light delivery method revealed increased light penetration with FLD. In tissue-mimicking phantoms, vascular channels used to simulate blood vessels could be visualized at a depth of 2.4 cm when lowering imaging frequency and utilizing FLD. Imaging at lower frequencies with FLD also enabled enhanced detection of varying hematocrit concentration levels at increased depths, although lateral imaging resolution was reduced. Finally, a proof of concept in vivo probe comparison study in a mouse tumor model provided supportive evidence of our in vitro results. Collectively, our findings show that adjusting imaging frequency and applying FLD can be a straightforward approach for improving PAI performance.
Collapse
Affiliation(s)
- Laurie J Rich
- Laboratory for Translational Imaging, Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sarah R Chamberlain
- Laboratory for Translational Imaging, Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Daniela R Falcone
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Robert Bruce
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, NY, USA
| | | | - Jun Xia
- Department of Biomedical Engineering, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Mukund Seshadri
- Laboratory for Translational Imaging, Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
10
|
Kempski KM, Wiacek A, Graham M, González E, Goodson B, Allman D, Palmer J, Hou H, Beck S, He J, Bell MAL. In vivo photoacoustic imaging of major blood vessels in the pancreas and liver during surgery. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-12. [PMID: 31411010 PMCID: PMC7006046 DOI: 10.1117/1.jbo.24.12.121905] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/22/2019] [Indexed: 05/07/2023]
Abstract
Abdominal surgeries carry considerable risk of gastrointestinal and intra-abdominal hemorrhage, which could possibly cause patient death. Photoacoustic imaging is one solution to overcome this challenge by providing visualization of major blood vessels during surgery. We investigate the feasibility of in vivo blood vessel visualization for photoacoustic-guided liver and pancreas surgeries. In vivo photoacoustic imaging of major blood vessels in these two abdominal organs was successfully achieved after a laparotomy was performed on two swine. Three-dimensional photoacoustic imaging with a robot-controlled ultrasound (US) probe and color Doppler imaging were used to confirm vessel locations. Blood vessels in the in vivo liver were visualized with energies of 20 to 40 mJ, resulting in 10 to 15 dB vessel contrast. Similarly, an energy of 36 mJ was sufficient to visualize vessels in the pancreas with up to 17.3 dB contrast. We observed that photoacoustic signals were more focused when the light source encountered a major vessel in the liver. This observation can be used to distinguish major blood vessels in the image plane from the more diffuse signals associated with smaller blood vessels in the surrounding tissue. A postsurgery histopathological analysis was performed on resected pancreatic and liver tissues to explore possible laser-related damage. Results are generally promising for photoacoustic-guided abdominal surgery when the US probe is fixed and the light source is used to interrogate the surgical workspace. These findings are additionally applicable to other procedures that may benefit from photoacoustic-guided interventional imaging of the liver and pancreas (e.g., biopsy and guidance of radiofrequency ablation lesions in the liver).
Collapse
Affiliation(s)
- Kelley M. Kempski
- University of Delaware, Department of Biomedical Engineering, Newark, Delaware, United States
| | - Alycen Wiacek
- Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
| | - Michelle Graham
- Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
| | - Eduardo González
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
| | - Bria Goodson
- Delta State University, Department of Biology, Cleveland, Mississippi, United States
| | - Derek Allman
- Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
| | - Jasmin Palmer
- Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, Massachusetts, United States
| | - Huayu Hou
- Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
| | - Sarah Beck
- Johns Hopkins Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, Maryland, United States
| | - Jin He
- Johns Hopkins Medicine, Department of Surgery, Baltimore, Maryland, United States
- Johns Hopkins Medicine, Department of Oncology, Baltimore, Maryland, United States
| | - Muyinatu A. Lediju Bell
- Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
- Johns Hopkins University, Department of Computer Science, Baltimore, Maryland, United States
- Address all correspondence to Muyinatu A. Lediju Bell, E-mail:
| |
Collapse
|
11
|
Wood C, Harutyunyan K, Sampaio DR, Konopleva M, Bouchard R. Photoacoustic-based oxygen saturation assessment of murine femoral bone marrow in a preclinical model of leukemia. PHOTOACOUSTICS 2019; 14:31-36. [PMID: 31049286 PMCID: PMC6484208 DOI: 10.1016/j.pacs.2019.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 05/02/2023]
Abstract
A variety of hematological diseases manifest in the bone marrow (BM), broadly characterized as BM failure (BMF). BMF can be caused by acute lymphoblastic leukemia (ALL), which results in an expansion of hypoxic regions in the BM. Because of this hypoxic presentation, there is potential for improved characterization of BMF through in vivo assessment of oxygenation in the BM cavity. Photoacoustic (PA) imaging can provide local assessment of intravascular oxygen saturation (SO2), which has been shown to correlate with pimonidazole-assessed hypoxia. This study introduces an optimized PA imaging technique to assess SO2 within the femoral BM cavity through disease progression in a murine model of ALL. Results show a statistically significant difference with temporal changes in SO2 (from baseline) between control and diseased cohorts, demonstrating the potential of PA imaging for noninvasive, label-free monitoring of BMF diseases.
Collapse
Affiliation(s)
- Cayla Wood
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Karine Harutyunyan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Diego R.T. Sampaio
- Department of Physics, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Richard Bouchard
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Corresponding author at: Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Naser MA, Sampaio DRT, Muñoz NM, Wood CA, Mitcham TM, Stefan W, Sokolov KV, Pavan TZ, Avritscher R, Bouchard RR. Improved Photoacoustic-Based Oxygen Saturation Estimation With SNR-Regularized Local Fluence Correction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:561-571. [PMID: 30207951 PMCID: PMC6445252 DOI: 10.1109/tmi.2018.2867602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
As photoacoustic (PA) imaging makes its way into the clinic, the accuracy of PA-based metrics becomes increasingly important. To address this need, a method combining finite-element-based local fluence correction (LFC) with signal-to-noise-ratio (SNR) regularization was developed and validated to accurately estimate oxygen saturation (SO2) in tissue. With data from a Vevo LAZR system, performance of our LFC approach was assessed in ex vivo blood targets (37.6%-99.6% SO2) and in vivo rat arteries. Estimation error of absolute SO2 and change in SO2 reduced from 10.1% and 6.4%, respectively, without LFC to 2.8% and 2.0%, respectively, with LFC, while the accuracy of the LFC method was correlated with the number of wavelengths acquired. This paper demonstrates the need for an SNR-regularized LFC to accurately quantify SO2 with PA imaging.
Collapse
Affiliation(s)
- Mohamed A. Naser
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Diego R. T. Sampaio
- Department of Physics, University of Sao Paulo, Ribeirao Preto, SP 14040-901, BRAZIL
| | - Nina M. Muñoz
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Cayla A. Wood
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030 USA
| | - Trevor M. Mitcham
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030 USA
| | - Wolfgang Stefan
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Konstantin V. Sokolov
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030 USA
| | - Theo Z. Pavan
- Department of Physics, University of Sao Paulo, Ribeirao Preto, SP 14040-901, BRAZIL
| | - Rony Avritscher
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Richard R. Bouchard
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA ().; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030 USA
| |
Collapse
|
13
|
Shubert J, Lediju Bell MA. Photoacoustic imaging of a human vertebra: implications for guiding spinal fusion surgeries. Phys Med Biol 2018; 63:144001. [PMID: 29923832 DOI: 10.1088/1361-6560/aacdd3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It is well known that there are structural differences between cortical and cancellous bone. However, spinal surgeons currently have no reliable method to non-invasively determine these differences in real-time when choosing the optimal starting point and trajectory to insert pedicle screws and avoid surgical complications associated with breached or weakened bone. This paper explores 3D photoacoustic imaging of a human vertebra to noninvasively differentiate cortical from cancellous bone for this surgical task. We observed that signals from the cortical bone tend to appear as compact, high-amplitude signals, while signals from the cancellous bone have lower amplitudes and are more diffuse. In addition, we discovered that the location of the light source for photoacoustic imaging is a critical parameter that can be adjusted to non-invasively determine the optimal entry point into the pedicle. Once inside the pedicle, statistically significant differences in the contrast and SNR of signals originating from the cancellous core of the pedicle (when compared to signals originating from the surrounding cortical bone) were obtained with laser energies of 0.23-2.08 mJ (p < 0.05). Similar quantitative differences were observed with an energy of 1.57 mJ at distances ⩾6 mm from the cortical bone of the pedicle. These quantifiable differences between cortical and cancellous bone (when imaging with an ultrasound probe in direct contact with each bone type) can potentially be used to ensure an optimal trajectory during surgery. Our results are promising for the introduction and development of photoacoustic imaging systems to overcome a wide range of longstanding challenges with spinal surgeries, including challenges with the occurrence of bone breaches due to misplaced pedicle screws.
Collapse
Affiliation(s)
- Joshua Shubert
- Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States of America
| | | |
Collapse
|
14
|
Wu C, Bayer CL. Imaging placental function: current technology, clinical needs, and emerging modalities. ACTA ACUST UNITED AC 2018; 63:14TR01. [DOI: 10.1088/1361-6560/aaccd9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Rebling J, Oyaga Landa FJ, Deán-Ben XL, Douplik A, Razansky D. Integrated catheter for simultaneous radio frequency ablation and optoacoustic monitoring of lesion progression. OPTICS LETTERS 2018; 43:1886-1889. [PMID: 29652390 DOI: 10.1364/ol.43.001886] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/03/2018] [Indexed: 06/08/2023]
Abstract
Radio frequency (RF) catheter ablation is commonly used to eliminate dysfunctional cardiac tissue by heating via an alternating current. Clinical outcomes are highly dependent on careful anatomical guidance, electrophysiological mapping, and careful RF power titration during the procedure. Yet, current treatments rely mainly on the expertise of the surgeon to assess lesion formation, causing large variabilities in the success rate. We present an integrated catheter design suitable for simultaneous RF ablation and real-time optoacoustic monitoring of the forming lesion. The catheter design utilizes copper-coated multimode light guides capable of delivering both ablation current and near-infrared pulsed-laser illumination to the target tissue. The generated optoacoustic responses were used to visualize the ablation lesion formation in an ex-vivo bovine heart specimen in 3D. The presented catheter design enables the monitoring of ablation lesions with high spatiotemporal resolution while the overall therapy-monitoring approach remains compatible with commercially available catheter designs.
Collapse
|
16
|
Zhang W, Li Y, Nguyen VP, Huang Z, Liu Z, Wang X, Paulus YM. High-resolution, in vivo multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence microscopy imaging of rabbit retinal neovascularization. LIGHT, SCIENCE & APPLICATIONS 2018; 7:103. [PMID: 30534372 PMCID: PMC6281580 DOI: 10.1038/s41377-018-0093-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/21/2018] [Accepted: 10/27/2018] [Indexed: 05/03/2023]
Abstract
Photoacoustic microscopy (PAM) is an emerging imaging technology that can non-invasively visualize ocular structures in animal eyes. This report describes an integrated multimodality imaging system that combines PAM, optical coherence tomography (OCT), and fluorescence microscopy (FM) to evaluate angiogenesis in larger animal eyes. High-resolution in vivo imaging was performed in live rabbit eyes with vascular endothelial growth factor (VEGF)-induced retinal neovascularization (RNV). The results demonstrate that our multimodality imaging system can non-invasively visualize RNV in both albino and pigmented rabbits to determine retinal pathology using PAM and OCT and verify the leakage of neovascularization using FM and fluorescein dye. This work presents high-resolution visualization of angiogenesis in rabbits using a multimodality PAM, OCT, and FM system and may represent a major step toward the clinical translation of the technology.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105 USA
- Institution of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192 China
| | - Yanxiu Li
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105 USA
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105 USA
| | - Ziyi Huang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105 USA
| | - Zhipeng Liu
- Institution of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192 China
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105 USA
- Department of Radiology, University of Michigan, Ann Arbor, MI 48105 USA
| | - Yannis M. Paulus
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105 USA
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105 USA
| |
Collapse
|
17
|
Mitcham T, Taghavi H, Long J, Wood C, Fuentes D, Stefan W, Ward J, Bouchard R. Photoacoustic-based sO 2 estimation through excised bovine prostate tissue with interstitial light delivery. PHOTOACOUSTICS 2017; 7:47-56. [PMID: 28794990 PMCID: PMC5540703 DOI: 10.1016/j.pacs.2017.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 06/21/2017] [Accepted: 06/27/2017] [Indexed: 05/08/2023]
Abstract
Photoacoustic (PA) imaging is capable of probing blood oxygen saturation (sO2), which has been shown to correlate with tissue hypoxia, a promising cancer biomarker. However, wavelength-dependent local fluence changes can compromise sO2 estimation accuracy in tissue. This work investigates using PA imaging with interstitial irradiation and local fluence correction to assess precision and accuracy of sO2 estimation of blood samples through ex vivo bovine prostate tissue ranging from 14% to 100% sO2. Study results for bovine blood samples at distances up to 20 mm from the irradiation source show that local fluence correction improved average sO2 estimation error from 16.8% to 3.2% and maintained an average precision of 2.3% when compared to matched CO-oximeter sO2 measurements. This work demonstrates the potential for future clinical translation of using fluence-corrected and interstitially driven PA imaging to accurately and precisely assess sO2 at depth in tissue with high resolution.
Collapse
Affiliation(s)
- Trevor Mitcham
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Houra Taghavi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - James Long
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cayla Wood
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - David Fuentes
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Wolfgang Stefan
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John Ward
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard Bouchard
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Corresponding author at: Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Zhang H, Chao WY, Cheng Q, Huang S, Wang X, Wu D, Xu G. Interstitial photoacoustic spectral analysis: instrumentation and validation. BIOMEDICAL OPTICS EXPRESS 2017; 8:1689-1697. [PMID: 28663857 PMCID: PMC5480572 DOI: 10.1364/boe.8.001689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/12/2017] [Accepted: 02/01/2017] [Indexed: 05/08/2023]
Abstract
Photoacoustic (PA) spectral analysis (PASA) is a recently developed approach for quantifying molecular components and microscopic architectures in tissue. The PASA relies on signals with sufficient temporal length and narrow dynamic range for statistics based analysis. However, the optical and acoustic attenuation within the biological tissue make it difficult to acquire desirable signals from deep locations in biological tissue for PASA. This study proposes an interstitial PASA approach. By combining a fiber optics diffuser and a small aperture needle hydrophone, a fine needle PA probe facilitates PASA in deep tissue. A prototype probe has been fabricated and tested in quantifying the prostate cancer cell concentrations in vitro and lipid infiltrated hepatocyte in liver ex vivo. Experiment results show that the needle probe could potentially provide pathologic information of the tissues.
Collapse
Affiliation(s)
- Haonan Zhang
- Department of Biomedical Engineering, University of Michigan Medical School, 2200 Bonisteel Boulevard, Ann Arbor, MI 48019, USA
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wan-yu Chao
- Faculty of Science, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
- Department of Radiology, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI 48019, USA
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shengsong Huang
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan Medical School, 2200 Bonisteel Boulevard, Ann Arbor, MI 48019, USA
| | - Denglong Wu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Guan Xu
- Department of Radiology, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI 48019, USA
| |
Collapse
|
19
|
Singh MKA, Parameshwarappa V, Hendriksen E, Steenbergen W, Manohar S. Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:120501. [PMID: 27924348 DOI: 10.1117/1.jbo.21.12.120501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/14/2016] [Indexed: 05/20/2023]
Abstract
An important problem in minimally invasive photoacoustic (PA) imaging of brachytherapy seeds is reflection artifacts caused by the high signal from the optical fiber/needle tip reflecting off the seed. The presence of these artifacts confounds interpretation of images. In this letter, we demonstrate a recently developed concept called photoacoustic-guided focused ultrasound (PAFUSion) for the first time in the context of interstitial illumination PA imaging to identify and remove reflection artifacts. In this method, ultrasound (US) from the transducer is focused on the region of the optical fiber/needle tip identified in a first step using PA imaging. The image developed from the US diverging from the focus zone at the tip region visualizes only the reflections from seeds and other acoustic inhomogeneities, allowing identification of the reflection artifacts of the first step. These artifacts can then be removed from the PA image. Using PAFUSion, we demonstrate reduction of reflection artifacts and thereby improved interstitial PA visualization of brachytherapy seeds in phantom and <italic<ex vivo</italic< measurements on porcine tissue.
Collapse
Affiliation(s)
- Mithun Kuniyil Ajith Singh
- University of Twente, P.O. Box 217, Biomedical Photonic Imaging Group, Enschede 7500 AE, The Netherlands
| | - Vinay Parameshwarappa
- University of Twente, P.O. Box 217, Biomedical Photonic Imaging Group, Enschede 7500 AE, The Netherlands
| | - Ellen Hendriksen
- Department of Radiation Oncology, Medisch Spectrum Twente, P.O. Box 50000, Enschede 7512 KZ, The Netherlands
| | - Wiendelt Steenbergen
- University of Twente, P.O. Box 217, Biomedical Photonic Imaging Group, Enschede 7500 AE, The Netherlands
| | - Srirang Manohar
- University of Twente, P.O. Box 217, Biomedical Photonic Imaging Group, Enschede 7500 AE, The Netherlands
| |
Collapse
|
20
|
Multifunctional BSA-Au nanostars for photoacoustic imaging and X-ray computed tomography. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1805-1813. [DOI: 10.1016/j.nano.2016.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/26/2016] [Accepted: 05/04/2016] [Indexed: 01/25/2023]
|
21
|
Wang LV, Yao J. A practical guide to photoacoustic tomography in the life sciences. Nat Methods 2016; 13:627-38. [PMID: 27467726 PMCID: PMC4980387 DOI: 10.1038/nmeth.3925] [Citation(s) in RCA: 734] [Impact Index Per Article: 81.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022]
Abstract
The life sciences can benefit greatly from imaging technologies that connect microscopic discoveries with macroscopic observations. One technology uniquely positioned to provide such benefits is photoacoustic tomography (PAT), a sensitive modality for imaging optical absorption contrast over a range of spatial scales at high speed. In PAT, endogenous contrast reveals a tissue's anatomical, functional, metabolic, and histologic properties, and exogenous contrast provides molecular and cellular specificity. The spatial scale of PAT covers organelles, cells, tissues, organs, and small animals. Consequently, PAT is complementary to other imaging modalities in contrast mechanism, penetration, spatial resolution, and temporal resolution. We review the fundamentals of PAT and provide practical guidelines for matching PAT systems with research needs. We also summarize the most promising biomedical applications of PAT, discuss related challenges, and envision PAT's potential to lead to further breakthroughs.
Collapse
Affiliation(s)
- Lihong V. Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Junjie Yao
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|