1
|
Huang B, Wong TTW. Review of low-cost light sources and miniaturized designs in photoacoustic microscopy. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11503. [PMID: 37869479 PMCID: PMC10587694 DOI: 10.1117/1.jbo.29.s1.s11503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
Significance Photoacoustic microscopy (PAM) is a promising imaging technique to provide structural, functional, and molecular information for preclinical and clinical studies. However, expensive and bulky lasers and motorized stages have limited the broad applications of conventional PAM systems. A recent trend is to use low-cost light sources and miniaturized designs to develop a compact PAM system and expand its applications from benchtop to bedside. Aim We provide (1) an overview of PAM systems and their limitations, (2) a comprehensive review of PAM systems with low-cost light sources and their applications, (3) a comprehensive review of PAM systems with miniaturized and handheld scanning designs, and (4) perspective applications and a summary of the cost-effective and miniaturized PAM systems. Approach Papers published before July 2023 in the area of using low-cost light sources and miniaturized designs in PAM were reviewed. They were categorized into two main parts: (1) low-cost light sources and (2) miniaturized or handheld designs. The first part was classified into two subtypes: pulsed laser diode and continuous-wave laser diode. The second part was also classified into two subtypes: galvanometer scanner and micro-electro-mechanical system scanner. Results Significant progress has been made in the development of PAM systems based on low-cost and compact light sources as well as miniaturized and handheld designs. Conclusions The review highlights the potential of these advancements to revolutionize PAM technology, making it more accessible and practical for various applications in preclinical studies, clinical practice, and long-term monitoring.
Collapse
Affiliation(s)
- Bingxin Huang
- Hong Kong University of Science and Technology, Department of Chemical and Biological Engineering, Translational and Advanced Bioimaging Laboratory, Hong Kong, China
| | - Terence T. W. Wong
- Hong Kong University of Science and Technology, Department of Chemical and Biological Engineering, Translational and Advanced Bioimaging Laboratory, Hong Kong, China
- Hong Kong University of Science and Technology, Research Center for Medical Imaging and Analysis, Hong Kong, China
| |
Collapse
|
2
|
Li D, Yao Y, Zuo T, Xu J, Tao C, Qian X, Liu X. In vivo structural and functional imaging of human nailbed microvasculature using photoacoustic microscopy. OPTICS LETTERS 2023; 48:5711-5714. [PMID: 37910740 DOI: 10.1364/ol.502305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
Monitoring microvascular structure and function is of great significance for the diagnosis of many diseases. In this study, we demonstrate the feasibility of OR-PAM to nailbed microcirculation detection as a new, to the best of our knowledge, application scenario in humans. We propose a dual-wavelength optical-resolution photoacoustic microscopy (OR-PAM) with improved local-flexible coupling to image human nailbed microvasculature. Microchip lasers with 532 nm wavelength are employed as the pump sources. The 558 nm laser is generated from the 532 nm laser through the stimulated Raman scattering effect. The flowing water, circulated by a peristaltic pump, maintains the acoustic coupling between the ultrasonic transducer and the sample. These designs improve the sensitivity, practicality, and stability of the OR-PAM system for human in vivo experiments. The imaging of the mouse ear demonstrates the ability of our system to acquire structural and functional information. Then, the system is applied to image human nailbed microvasculature. The imaging results reveal that the superficial capillaries are arranged in a straight sagittal pattern, approximately parallel to the long axis of the finger. The arterial and venular limbs are distinguished according to their oxygen saturation differences. Additionally, the images successfully discover the capillary loops with single or multiple twists, the oxygen release at the end of the capillary loop, and the changes when the nailbed is abnormal.
Collapse
|
3
|
Barulin A, Park H, Park B, Kim I. Dual-wavelength UV-visible metalens for multispectral photoacoustic microscopy: A simulation study. PHOTOACOUSTICS 2023; 32:100545. [PMID: 37645253 PMCID: PMC10461252 DOI: 10.1016/j.pacs.2023.100545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
Photoacoustic microscopy is advancing with research on utilizing ultraviolet and visible light. Dual-wavelength approaches are sought for observing DNA/RNA- and vascular-related disorders. However, the availability of high numerical aperture lenses covering both ultraviolet and visible wavelengths is severely limited due to challenges such as chromatic aberration in the optics. Herein, we present a groundbreaking proposal as a pioneering simulation study for incorporating multilayer metalenses into ultraviolet-visible photoacoustic microscopy. The proposed metalens has a thickness of 1.4 µm and high numerical aperture of 0.8. By arranging cylindrical hafnium oxide nanopillars, we design an achromatic transmissive lens for 266 and 532 nm wavelengths. The metalens achieves a diffraction-limited focal spot, surpassing commercially available objective lenses. Through three-dimensional photoacoustic simulation, we demonstrate high-resolution imaging with superior endogenous contrast of targets with ultraviolet and visible optical absorption bands. This metalens will open new possibilities for downsized multispectral photoacoustic microscopy in clinical and preclinical applications.
Collapse
Affiliation(s)
- Aleksandr Barulin
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyemi Park
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Byullee Park
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Cheng Z, Wang D, Zhang Z, Wang Z, Yang F, Zeng L, Ji X. Photoacoustic maximum amplitude projection microscopy by ultra-low data sampling. OPTICS LETTERS 2023; 48:1718-1721. [PMID: 37221749 DOI: 10.1364/ol.485628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/14/2023] [Indexed: 05/25/2023]
Abstract
Photoacoustic microscopy (PAM) has attracted increasing research interest in the biomedical field due to its unique merit of combining light and sound. In general, the bandwidth of a photoacoustic signal reaches up to tens or even hundreds of MHz, which requires a high-performance acquisition card to meet the high requirement of precision of sampling and control. For most depth-insensitive scenes, it is complex and costly to capture the photoacoustic maximum amplitude projection (MAP) images. Herein, we propose a simple and low-cost MAP-PAM system based on a custom-made peak holding circuit to obtain the extremum values by Hz data sampling. The dynamic range of the input signal is 0.01-2.5 V, and the -6-dB bandwidth of the input signal can be up to 45 MHz. Through in vitro and in vivo experiments, we have verified that the system has the same imaging ability as conventional PAM. Owing to its compact size and ultra-low price (approximately $18), it provides a new performance paradigm for PAM and opens up a new way for an optimal photoacoustic sensing and imaging device.
Collapse
|
5
|
Functional photoacoustic microscopy of hemodynamics: a review. Biomed Eng Lett 2022; 12:97-124. [PMID: 35529339 PMCID: PMC9046529 DOI: 10.1007/s13534-022-00220-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 12/19/2022] Open
Abstract
Functional blood imaging can reflect tissue metabolism and organ viability, which is important for life science and biomedical studies. However, conventional imaging modalities either cannot provide sufficient contrast or cannot support simultaneous multi-functional imaging for hemodynamics. Photoacoustic imaging, as a hybrid imaging modality, can provide sufficient optical contrast and high spatial resolution, making it a powerful tool for in vivo vascular imaging. By using the optical-acoustic confocal alignment, photoacoustic imaging can even provide subcellular insight, referred as optical-resolution photoacoustic microscopy (OR-PAM). Based on a multi-wavelength laser source and developed the calculation methods, OR-PAM can provide multi-functional hemodynamic microscopic imaging of the total hemoglobin concentration (CHb), oxygen saturation (sO2), blood flow (BF), partial oxygen pressure (pO2), oxygen extraction fraction, and metabolic rate of oxygen (MRO2). This concise review aims to systematically introduce the principles and methods to acquire various functional parameters for hemodynamics by photoacoustic microscopy in recent studies, with characteristics and advantages comparison, typical biomedical applications introduction, and future outlook discussion.
Collapse
|
6
|
Sangha GS, Hu B, Li G, Fox SE, Sholl AB, Brown JQ, Goergen CJ. Assessment of photoacoustic tomography contrast for breast tissue imaging using 3D correlative virtual histology. Sci Rep 2022; 12:2532. [PMID: 35169198 PMCID: PMC8847353 DOI: 10.1038/s41598-022-06501-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
Current breast tumor margin detection methods are destructive, time-consuming, and result in significant reoperative rates. Dual-modality photoacoustic tomography (PAT) and ultrasound has the potential to enhance breast margin characterization by providing clinically relevant compositional information with high sensitivity and tissue penetration. However, quantitative methods that rigorously compare volumetric PAT and ultrasound images with gold-standard histology are lacking, thus limiting clinical validation and translation. Here, we present a quantitative multimodality workflow that uses inverted Selective Plane Illumination Microscopy (iSPIM) to facilitate image co-registration between volumetric PAT-ultrasound datasets with histology in human invasive ductal carcinoma breast tissue samples. Our ultrasound-PAT system consisted of a tunable Nd:YAG laser coupled with a 40 MHz central frequency ultrasound transducer. A linear stepper motor was used to acquire volumetric PAT and ultrasound breast biopsy datasets using 1100 nm light to identify hemoglobin-rich regions and 1210 nm light to identify lipid-rich regions. Our iSPIM system used 488 nm and 647 nm laser excitation combined with Eosin and DRAQ5, a cell-permeant nucleic acid binding dye, to produce high-resolution volumetric datasets comparable to histology. Image thresholding was applied to PAT and iSPIM images to extract, quantify, and topologically visualize breast biopsy lipid, stroma, hemoglobin, and nuclei distribution. Our lipid-weighted PAT and iSPIM images suggest that low lipid regions strongly correlate with malignant breast tissue. Hemoglobin-weighted PAT images, however, correlated poorly with cancerous regions determined by histology and interpreted by a board-certified pathologist. Nuclei-weighted iSPIM images revealed similar cellular content in cancerous and non-cancerous tissues, suggesting malignant cell migration from the breast ducts to the surrounding tissues. We demonstrate the utility of our nondestructive, volumetric, region-based quantitative method for comprehensive validation of 3D tomographic imaging methods suitable for bedside tumor margin detection.
Collapse
Affiliation(s)
- Gurneet S Sangha
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Dr, College Park, MD, 20742, USA.,Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
| | - Bihe Hu
- Department of Biomedical Engineering, Tulane University, 547 Lindy Boggs Center, New Orleans, LA, 70118, USA
| | - Guang Li
- Department of Biomedical Engineering, Tulane University, 547 Lindy Boggs Center, New Orleans, LA, 70118, USA
| | - Sharon E Fox
- Department of Pathology, LSU Health Sciences Center, New Orleans, 433 Bolivar St, New Orleans, LA, 70112, USA.,Pathology and Laboratory Medicine Service, Southeast Louisiana Veterans Healthcare System, 2400 Canal Street, New Orleans, LA, 70112, USA
| | - Andrew B Sholl
- Delta Pathology Group, Touro Infirmary, 1401 Foucher St, New Orleans, LA, 70115, USA
| | - J Quincy Brown
- Department of Biomedical Engineering, Tulane University, 547 Lindy Boggs Center, New Orleans, LA, 70118, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA. .,Purdue University Center for Cancer Research, Purdue University, 201 S. University St., West Lafayette, IN, 47907, USA.
| |
Collapse
|