1
|
Sharma M, Alessandro P, Cheriyamundath S, Lopus M. Therapeutic and diagnostic applications of carbon nanotubes in cancer: recent advances and challenges. J Drug Target 2024; 32:287-299. [PMID: 38252035 DOI: 10.1080/1061186x.2024.2309575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Carbon nanotubes (CNTs) are allotropes of carbon, composed of carbon atoms forming a tube-like structure. Their high surface area, chemical stability, and rich electronic polyaromatic structure facilitate their drug-carrying capacity. Therefore, CNTs have been intensively explored for several biomedical applications, including as a potential treatment option for cancer. By incorporating smart fabrication strategies, CNTs can be designed to specifically target cancer cells. This targeted drug delivery approach not only maximizes the therapeutic utility of CNTs but also minimizes any potential side effects of free drug molecules. CNTs can also be utilised for photothermal therapy (PTT) which uses photosensitizers to generate reactive oxygen species (ROS) to kill cancer cells, and in immunotherapeutic applications. Regarding the latter, for example, CNT-based formulations can preferentially target intra-tumoural regulatory T-cells. CNTs also act as efficient antigen presenters. With their capabilities for photoacoustic, fluorescent and Raman imaging, CNTs are excellent diagnostic tools as well. Further, metallic nanoparticles, such as gold or silver nanoparticles, are combined with CNTs to create nanobiosensors to measure biological reactions. This review focuses on current knowledge about the theranostic potential of CNT, challenges associated with their large-scale production, their possible side effects and important parameters to consider when exploring their clinical usage.
Collapse
Affiliation(s)
- Muskan Sharma
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, India
| | - Parodi Alessandro
- Department of Translational Medicine, Sirius University of Science and Technology, Sirius, Russia
| | - Sanith Cheriyamundath
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, India
| |
Collapse
|
2
|
Huber CM, Pavan TZ, Ullmann I, Heim C, Rupitsch SJ, Vossiek M, Alexiou C, Ermert H, Lyer S. A Review on Ultrasound-based Methods to Image the Distribution of Magnetic Nanoparticles in Biomedical Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2024:S0301-5629(24)00389-2. [PMID: 39537544 DOI: 10.1016/j.ultrasmedbio.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Magnetic nanoparticles (MNPs) have gained significant attention in biomedical engineering and imaging applications due to their unique magnetic and mechanical properties. With their high magnetization and small size, MNPs serve as excitation sources for magnetically heating to destroy tumors (magnetic hyperthermia) and magnetically controlled drug carriers in magnetic drug targeting. However, effectively visualizing the distribution of MNPs during research or potential clinical use with low-cost modalities remains a critical challenge. Although magnetic resonance imaging provides pre- and post-procedural imaging, it is considered to be high cost, and real-time imaging during clinical procedures is limited. In contrast, ultrasound-based imaging methods offer the advantage of providing the potential for immediate feedback during clinical use and are considered to be a low-cost modality. Ultrasound-based imaging techniques, including magnetomotive ultrasound, magnetoacoustic tomography, and thermoacoustic imaging, emerged as promising approaches for imaging the distribution of MNPs. These techniques offer the potential for real-time imaging, facilitating precise therapy monitoring. By exploring the strengths and limitations of various ultrasound-based imaging techniques for MNPs, this review seeks to provide comprehensive insights that can guide researchers in selecting suitable ultrasound-based modalities and inspire further advancements in this exciting field.
Collapse
Affiliation(s)
- Christian Marinus Huber
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for Al-Controlled Nanomaterials (KINAM), Universitätsklinikum Erlangen, Erlangen, Germany; Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Theo Z Pavan
- Department of Physics, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Ingrid Ullmann
- Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Heim
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Stefan J Rupitsch
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Martin Vossiek
- Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner Fresenius Foundation Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Helmut Ermert
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner Fresenius Foundation Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for Al-Controlled Nanomaterials (KINAM), Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
3
|
Li M, Li Y, Zheng J, Ma Z, Zhang J, Wu H, Zhu Y, Li P, Nie F. Ultrasound-responsive nanocarriers with siRNA and Fe 3O 4 regulate macrophage polarization and phagocytosis for augmented non-small cell lung cancer immunotherapy. J Nanobiotechnology 2024; 22:605. [PMID: 39375761 PMCID: PMC11460142 DOI: 10.1186/s12951-024-02883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
The immunosuppressive tumor microenvironment (TME) significantly inhibits the effective anti-tumor immune response, greatly affecting the efficacy of immunotherapy. Most tumor-associated macrophages (TAMs) belong to the M2 phenotype, which contributes significantly to the immunosuppressive effects in non-small cell lung cancer (NSCLC) TME. The interaction between signal regulatory protein α (SIRPα) expressed on macrophages and CD47, a transmembrane protein overexpressed on cancer cells, activates the "eat-me-not" signaling pathway, inhibiting phagocytosis. In this study, a folic acid (FA)-modified ultrasound responsive gene/drugs delivery system, named FA@ PFP @ Fe3O4 @LNB-SIRPα siRNA (FA-PFNB-SIRPα siRNA), was developed using 1,2-dioleoacyl-3-trimethylammonium-propane (DOTAP), FA-1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N- [amino (polyethylene glycol)2000] (DSPE-PEG2000-FA), cholesterol, and perfluoropentane (PFP), for the delivery of siRNA encoding SIRPα mRNA and immune adjuvant Fe3O4 nanoparticles. Under ultrasound conditions, the nanobubbles effectively transfected macrophages, inhibiting SIRPα mRNA and protein expression, promoting the phagocytosis of TAMs, and synergistically reversing M2 polarization. This system promotes the infiltration of T cells, enhances the proliferation and activation of cytotoxic T cells, and inhibits the infiltration of immunosuppressive cells in tumor tissues. Administration of FA-PFNB-SIRPα siRNA combined with ultrasound significantly inhibits NSCLC progression. The study highlights the potential of ultrasound nanotechnology-enabled delivery of SIRPα siRNA and Fe3O4 as an effective strategy for macrophage-based immunotherapy to reshape the immunosuppressive TME for cancer therapy.
Collapse
Affiliation(s)
- Ming Li
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Yuanyuan Li
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Jun Zheng
- State Key Laboratory of Ultrasound in Medicine and Engineering, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Zhen Ma
- Peking University Third Hospital, Beijing, 100191, China
| | - Jianye Zhang
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Hao Wu
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Yangyang Zhu
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Pan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People's Republic of China.
| | - Fang Nie
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Kim J, Choi S, Kim C, Kim J, Park B. Review on Photoacoustic Monitoring after Drug Delivery: From Label-Free Biomarkers to Pharmacokinetics Agents. Pharmaceutics 2024; 16:1240. [PMID: 39458572 PMCID: PMC11510789 DOI: 10.3390/pharmaceutics16101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Photoacoustic imaging (PAI) is an emerging noninvasive and label-free method for capturing the vasculature, hemodynamics, and physiological responses following drug delivery. PAI combines the advantages of optical and acoustic imaging to provide high-resolution images with multiparametric information. In recent decades, PAI's abilities have been used to determine reactivity after the administration of various drugs. This study investigates photoacoustic imaging as a label-free method of monitoring drug delivery responses by observing changes in the vascular system and oxygen saturation levels across various biological tissues. In addition, we discuss photoacoustic studies that monitor the biodistribution and pharmacokinetics of exogenous contrast agents, offering contrast-enhanced imaging of diseased regions. Finally, we demonstrate the crucial role of photoacoustic imaging in understanding drug delivery mechanisms and treatment processes.
Collapse
Affiliation(s)
- Jiwoong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Medical Science and Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Cheongam-ro 77, Nam-gu, Pohang 37673, Republic of Korea; (J.K.); (S.C.); (C.K.)
| | - Seongwook Choi
- Departments of Electrical Engineering, Convergence IT Engineering, Medical Science and Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Cheongam-ro 77, Nam-gu, Pohang 37673, Republic of Korea; (J.K.); (S.C.); (C.K.)
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Medical Science and Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Cheongam-ro 77, Nam-gu, Pohang 37673, Republic of Korea; (J.K.); (S.C.); (C.K.)
| | - Jeesu Kim
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Byullee Park
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Nguyen CD, Chen Y, Kaplan DL, Mallidi S. Multi-parametric Photoacoustic Imaging Combined with Acoustic Radiation Force Impulse Imaging for Applications in Tissue Engineering. Ann Biomed Eng 2024:10.1007/s10439-024-03617-7. [PMID: 39294465 DOI: 10.1007/s10439-024-03617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Tissue engineering is a dynamic field focusing on the creation of advanced scaffolds for tissue and organ regeneration. These scaffolds are customized to their specific applications and are often designed to be complex, large structures to mimic tissues and organs. This study addresses the critical challenge of effectively characterizing these thick, optically opaque scaffolds that traditional imaging methods fail to fully image due to their optical limitations. We introduce a novel multi-modal imaging approach combining ultrasound, photoacoustic, and acoustic radiation force impulse imaging. This combination leverages its acoustic-based detection to overcome the limitations posed by optical imaging techniques. Ultrasound imaging is employed to monitor the scaffold structure, photoacoustic imaging is employed to monitor cell proliferation, and acoustic radiation force impulse imaging is employed to evaluate the homogeneity of scaffold stiffness. We applied this integrated imaging system to analyze melanoma cell growth within silk fibroin protein scaffolds with varying pore sizes and therefore stiffness over different cell incubation periods. Among various materials, silk fibroin was chosen for its unique combination of features including biocompatibility, tunable mechanical properties, and structural porosity which supports extensive cell proliferation. The results provide a detailed mesoscale view of the scaffolds' internal structure, including cell penetration depth and biomechanical properties. Our findings demonstrate that the developed multimodal imaging technique offers comprehensive insights into the physical and biological dynamics of tissue-engineered scaffolds. As the field of tissue engineering continues to advance, the importance of non-ionizing and non-invasive imaging systems becomes increasingly evident, and by facilitating a deeper understanding and better characterization of scaffold architectures, such imaging systems are pivotal in driving the success of future tissue-engineering solutions.
Collapse
Affiliation(s)
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
6
|
Wang B, Li L, Liu Y, Xie Z, Deng S, Men X, Wu C, Chen H, Xiao J. Semiconducting Polymer Dots for Dual-Wavelength Differential Background-Suppressed Photoacoustic Imaging. Adv Healthc Mater 2024; 13:e2400517. [PMID: 38760889 DOI: 10.1002/adhm.202400517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/16/2024] [Indexed: 05/20/2024]
Abstract
Photoacoustic imaging (PAI) can sensitively detect regions and substances with strong optical absorption, which means that diseased tissue can be imaged with high contrast in the presence of surrounding healthy tissue through the photoacoustic effect. However, its signal intensity and resolution may be limited by background signals generated by endogenous chromophores such as melanin and hemoglobin. A feasible method for practical application of this so-called background-suppressed PAI is still lacking. In this work, a dual-wavelength differential background noise-suppressed photoacoustic tomography is developed based on organic semiconducting polymer dots (Pdots). The Pdots have a strong absorption peak at 945 nm, and then the absorption decreases sharply with the increase of wavelength, and the absorption intensity drops to only about a quarter of the original value at 1050 nm. The present system significantly suppresses the strong background noise of blood through dual-wavelength differential PAI, enabling precise monitoring of the distribution information of theranostic agents in diseased tissues. The signal-to-noise ratio of the theranostic agent distribution map is increased by about 20 dB. This work provides a platform for real-time and accurate monitoring of tumors and drugs, which helps avoid damage to healthy tissue during treatment and has clinical significance in cancer treatment.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410083, China
| | - Lingfeng Li
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410083, China
| | - Ye Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zhuojun Xie
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410083, China
| | - Sile Deng
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410083, China
| | - Xiaoju Men
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410083, China
| | - Changfeng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Haobin Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410083, China
| | - Jiaying Xiao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410083, China
- Shenzhen Research Institute, Central South University, Shenzhen, 518057, China
| |
Collapse
|
7
|
Nguyen CD, Chen Y, Kaplan DL, Mallidi S. Multi-spectral photoacoustic imaging combined with acoustic radiation force impulse imaging for applications in tissue engineering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590806. [PMID: 38712117 PMCID: PMC11071356 DOI: 10.1101/2024.04.23.590806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tissue engineering is a dynamic field focusing on the creation of advanced scaffolds for tissue and organ regeneration. These scaffolds are customized to their specific applications and are often designed to be complex, large structures to mimic tissues and organs. This study addresses the critical challenge of effectively characterizing these thick, optically opaque scaffolds that traditional imaging methods fail to fully image due to their optical limitations. We introduce a novel multi-modal imaging approach combining ultrasound, photoacoustic, and acoustic radiation force impulse imaging. This combination leverages its acoustic-based detection to overcome the limitations posed by optical imaging techniques. Ultrasound imaging is employed to monitor the scaffold structure, photoacoustic imaging is employed to monitor cell proliferation, and acoustic radiation force impulse imaging is employed to evaluate the homogeneity of scaffold stiffness. We applied this integrated imaging system to analyze melanoma cell growth within silk fibroin protein scaffolds with varying pore sizes and therefore stiffness over different cell incubation periods. Among various materials, silk fibroin was chosen for its unique combination of features including biocompatibility, tunable mechanical properties, and structural porosity which supports extensive cell proliferation. The results provide a detailed mesoscale view of the scaffolds' internal structure, including cell penetration depth and biomechanical properties. Our findings demonstrate that the developed multimodal imaging technique offers comprehensive insights into the physical and biological dynamics of tissue-engineered scaffolds. As the field of tissue engineering continues to advance, the importance of non-ionizing and non-invasive imaging systems becomes increasingly evident, and by facilitating a deeper understanding and better characterization of scaffold architectures, such imaging systems are pivotal in driving the success of future tissue-engineering solutions.
Collapse
|
8
|
Lin X, Yang C, Lv Y, Zhang B, Kan J, Li H, Tao J, Yang C, Li X, Liu Y. Preclinical multi-physiologic monitoring of immediate-early responses to diverse treatment strategies in breast cancer by optoacoustic imaging. JOURNAL OF BIOPHOTONICS 2024; 17:e202300457. [PMID: 38221652 DOI: 10.1002/jbio.202300457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Optoacoustic imaging enables the measurement of tissue oxygen saturation (sO2) and blood perfusion while being utilized for detecting tumor microenvironments. Our aim was to employ multispectral optoacoustic tomography (MSOT) to assess immediate-early changes of hemoglobin level and sO2 within breast tumors during diverse treatments. Mouse breast cancer models were allocated into four groups: control, everolimus (EVE), paclitaxel (PTX), and photodynamic therapy (PDT). Hemoglobin was quantified daily, as well as sO2 and blood perfusion were verified by immunohistochemical (IHC) staining. MSOT showed a temporal window of enhanced oxygenation and improved perfusion in EVE and PTX groups, while sO2 consistently remained below baseline in PDT. The same results were obtained for the IHC. Therefore, MSOT can monitor tumor hypoxia and indirectly reflect blood perfusion in a non-invasive and non-labeled way, which has the potential to monitor breast cancer progression early and enable individualized treatment in clinical practice.
Collapse
Affiliation(s)
- Xiaoqian Lin
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Changfeng Yang
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Yijie Lv
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Bowen Zhang
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Junnan Kan
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Hao Li
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Jin Tao
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Caixia Yang
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Yan Liu
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| |
Collapse
|
9
|
Di Gregorio E, Scarciglia A, Amaolo A, Ferrauto G. Mn(iii), Fe(iii) and Zn(ii)-serum albumin as innovative multicolour contrast agents for photoacoustic imaging. NANOSCALE ADVANCES 2024; 6:777-781. [PMID: 38298593 PMCID: PMC10825928 DOI: 10.1039/d3na00843f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024]
Abstract
Here we propose innovative photoacoustic imaging (PAI) contrast agents, based on the loading of Mn(iii)-, Fe(iii)- or Zn(ii)-protoporphyrin IX in serum albumin. These systems show different absorption wavelengths, opening the way to multicolor PA imaging. They were characterized in vitro for assessing stability, biocompatibility, and their optical and contrastographic properties. Finally, a proof of concept in vivo study was carried out in breast cancer bearing mice, to evaluate its effectiveness for cancer imaging.
Collapse
Affiliation(s)
- Enza Di Gregorio
- Department of Molecular Biotechnology, Molecular Imaging Center, University of Torino Via Nizza 42 10126 Torino Italy +39 0116708459
| | - Angelo Scarciglia
- Department of Molecular Biotechnology, Molecular Imaging Center, University of Torino Via Nizza 42 10126 Torino Italy +39 0116708459
| | - Alessandro Amaolo
- Department of Molecular Biotechnology, Molecular Imaging Center, University of Torino Via Nizza 42 10126 Torino Italy +39 0116708459
| | - Giuseppe Ferrauto
- Department of Molecular Biotechnology, Molecular Imaging Center, University of Torino Via Nizza 42 10126 Torino Italy +39 0116708459
| |
Collapse
|
10
|
Liu H, Wang M, Ji F, Jiang Y, Yang M. Mini review of photoacoustic clinical imaging: a noninvasive tool for disease diagnosis and treatment evaluation. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11522. [PMID: 38230369 PMCID: PMC10790789 DOI: 10.1117/1.jbo.29.s1.s11522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Significance Photoacoustic (PA) imaging is an imaging modality that integrates anatomical, functional, metabolic, and histologic insights. It has been a hot topic of medical research and draws extensive attention. Aim This review aims to explore the applications of PA clinical imaging in human diseases, highlighting recent advancements. Approach A systemic survey of the literature concerning the clinical utility of PA imaging was conducted, with a particular focus on its application in tumors, autoimmune diseases, inflammatory conditions, and endocrine disorders. Results PA imaging is emerging as a valuable tool for human disease investigation. Information provided by PA imaging can be used for diagnosis, grading, and prognosis in multiple types of tumors including breast tumors, ovarian neoplasms, thyroid nodules, and cutaneous malignancies. PA imaging facilitates the monitoring of disease activity in autoimmune and inflammatory diseases such as rheumatoid arthritis, systemic sclerosis, arteritis, and inflammatory bowel disease by capturing dynamic functional alterations. Furthermore, its unique capability of visualizing vascular structure and oxygenation levels aids in assessing diabetes mellitus comorbidities and thyroid function. Conclusions Despite extant challenges, PA imaging offers a promising noninvasive tool for precision disease diagnosis, long-term evaluation, and prognosis anticipation, making it a potentially significant imaging modality for clinical practice.
Collapse
Affiliation(s)
- Huazhen Liu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Department of Ultrasound, Beijing, China
| | - Ming Wang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Department of Ultrasound, Beijing, China
| | - Fei Ji
- Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Department of Ultrasound, Beijing, China
| | - Yuxin Jiang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Department of Ultrasound, Beijing, China
| | - Meng Yang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Department of Ultrasound, Beijing, China
| |
Collapse
|
11
|
Kim M, Pelivanov I, O'Donnell M. Review of Deep Learning Approaches for Interleaved Photoacoustic and Ultrasound (PAUS) Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1591-1606. [PMID: 37910419 PMCID: PMC10788151 DOI: 10.1109/tuffc.2023.3329119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Photoacoustic (PA) imaging provides optical contrast at relatively large depths within the human body, compared to other optical methods, at ultrasound (US) spatial resolution. By integrating real-time PA and US (PAUS) modalities, PAUS imaging has the potential to become a routine clinical modality bringing the molecular sensitivity of optics to medical US imaging. For applications where the full capabilities of clinical US scanners must be maintained in PAUS, conventional limited view and bandwidth transducers must be used. This approach, however, cannot provide high-quality maps of PA sources, especially vascular structures. Deep learning (DL) using data-driven modeling with minimal human design has been very effective in medical imaging, medical data analysis, and disease diagnosis, and has the potential to overcome many of the technical limitations of current PAUS imaging systems. The primary purpose of this article is to summarize the background and current status of DL applications in PAUS imaging. It also looks beyond current approaches to identify remaining challenges and opportunities for robust translation of PAUS technologies to the clinic.
Collapse
|
12
|
Sweeney A, Arora A, Edwards S, Mallidi S. Ultrasound-guided Photoacoustic image Annotation Toolkit in MATLAB (PHANTOM) for preclinical applications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.565885. [PMID: 37986998 PMCID: PMC10659350 DOI: 10.1101/2023.11.07.565885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Depth-dependent fluence-compensation in photoacoustic (PA) imaging is paramount for accurate quantification of chromophores from deep tissues. Here we present a user-friendly toolkit named PHANTOM (PHotoacoustic ANnotation TOolkit for MATLAB) that includes a graphical interface and assists in the segmentation of ultrasound-guided PA images. We modelled the light source configuration with Monte Carlo eXtreme and utilized 3D segmented tissues from ultrasound to generate fluence maps to depth compensate PA images. The methodology was used to analyze PA images of phantoms with varying blood oxygenation and results were validated with oxygen electrode measurements. Two preclinical models, a subcutaneous tumor and a calcified placenta, were imaged and fluence-compensated using the PHANTOM toolkit and the results were verified with immunohistochemistry. The PHANTOM toolkit provides scripts and auxiliary functions to enable biomedical researchers not specialized in optical imaging to apply fluence correction to PA images, enhancing accessibility of quantitative PAI for researchers in various fields.
Collapse
Affiliation(s)
- Allison Sweeney
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Aayush Arora
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Skye Edwards
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
13
|
Liu X, Jing Y, Xu C, Wang X, Xie X, Zhu Y, Dai L, Wang H, Wang L, Yu S. Medical Imaging Technology for Micro/Nanorobots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2872. [PMID: 37947717 PMCID: PMC10648532 DOI: 10.3390/nano13212872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Due to their enormous potential to be navigated through complex biological media or narrow capillaries, microrobots have demonstrated their potential in a variety of biomedical applications, such as assisted fertilization, targeted drug delivery, tissue repair, and regeneration. Numerous initial studies have been conducted to demonstrate the biomedical applications in test tubes and in vitro environments. Microrobots can reach human areas that are difficult to reach by existing medical devices through precise navigation. Medical imaging technology is essential for locating and tracking this small treatment machine for evaluation. This article discusses the progress of imaging in tracking the imaging of micro and nano robots in vivo and analyzes the current status of imaging technology for microrobots. The working principle and imaging parameters (temporal resolution, spatial resolution, and penetration depth) of each imaging technology are discussed in depth.
Collapse
Affiliation(s)
- Xuejia Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Yizhan Jing
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Chengxin Xu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Xiaoxiao Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Xiaopeng Xie
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Yanhe Zhu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Lizhou Dai
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Haocheng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Lin Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Shimin Yu
- College of Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|