1
|
Pourdanesh F, Tabrizi R, Alam M, Farzan A, Moslemi H, Farzan A, Khorsand A, Mohammadikhah M, Farzan R. Effect of transcutaneous electrical nerve stimulation on neuro-sensory disturbance after orthognathic surgery: a randomized clinical trial. Ann Med Surg (Lond) 2024; 86:5224-5229. [PMID: 39238986 PMCID: PMC11374235 DOI: 10.1097/ms9.0000000000002411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 07/05/2024] [Indexed: 09/07/2024] Open
Abstract
Background The present study aims to determine the effect of Transcutaneous Electrical Nerve Stimulation (TENS) on neuro-sensory disturbance after orthognathic surgery. Materials and methods In a randomized clinical trial, the participants via split-mouth sampling were randomly divided into two intervention (n=27) and control (n=27) groups. In the intervention group, participants received TENS physiotherapy. TENS physiotherapy was performed on the day after surgery, 1, 2, 3, and 4 weeks after surgery, along with prescriptions for the use of painkillers. On the control group, no physical therapy was performed and the patients only used painkillers (immediately after the operation). Paresthesia was evaluated using the 2-point discrimination (TPD) test and the semi-quantitative sensory-neural disorders test called brush stroke 6 months after the surgical procedures. Self-reported sensory-neural disorders were measured and reported for each patient before and 6 months after surgery using the visual analog scale (VAS). Results A total of 54 patients participated in this study. The mean TPD score in the TENS group and the control group 6 months after the operation were 5.76 (SD=0.73) and 6.14 (SD=0.54), respectively (P=0.003). The mean VAS score in the TENS group and the control group 6 months after the operation was 6.48 (SD=0.50) and 5.80 (SD=0.63), respectively (P=0.005). Also, 66.7 and 38.9% in the TENS and control groups, respectively, performed the brush stroke test correctly (P=0.007). Conclusion In sum, the benefits of TENS physiotherapy can be effective in reducing complications such as pain in dental surgery treatments or orthognathic surgeries.
Collapse
Affiliation(s)
- Fereydoun Pourdanesh
- Deptartment of Oral and Maxillofacial Surgery, Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences
| | - Reza Tabrizi
- Deptartment of Oral and Maxillofacial Surgery, Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences
| | - Avishan Farzan
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Faculty of Dentistry, Tehran
| | - Hamidreza Moslemi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences
| | - Ava Farzan
- Student Research Committee, Guilan University of Medical Sciences, Faculty of Dentistry, Rasht
| | - Ardeshir Khorsand
- Department of Oral and Maxillofacial Surgery, Oral and Maxillofacial Surgery Resident, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran
| | - Meysam Mohammadikhah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj
| | - Ramyar Farzan
- Department of Plastic and Reconstructive Surgery, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
2
|
Amador GJ, van Oorschot BK, Liao C, Wu J, Wei D. Functional fibrillar interfaces: Biological hair as inspiration across scales. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:664-677. [PMID: 38887525 PMCID: PMC11181169 DOI: 10.3762/bjnano.15.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
Hair, or hair-like fibrillar structures, are ubiquitous in biology, from fur on the bodies of mammals, over trichomes of plants, to the mastigonemes on the flagella of single-celled organisms. While these long and slender protuberances are passive, they are multifunctional and help to mediate interactions with the environment. They provide thermal insulation, sensory information, reversible adhesion, and surface modulation (e.g., superhydrophobicity). This review will present various functions that biological hairs have been discovered to carry out, with the hairs spanning across six orders of magnitude in size, from the millimeter-thick fur of mammals down to the nanometer-thick fibrillar ultrastructures on bateriophages. The hairs are categorized according to their functions, including protection (e.g., thermal regulation and defense), locomotion, feeding, and sensing. By understanding the versatile functions of biological hairs, bio-inspired solutions may be developed across length scales.
Collapse
Affiliation(s)
- Guillermo J Amador
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, Netherlands
| | - Brett Klaassen van Oorschot
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, Netherlands
| | - Caiying Liao
- School of Aeronautics and Astronautics, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jianing Wu
- School of Aeronautics and Astronautics, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Da Wei
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Graeme-Drury TJ, Worthen SF, Maden M, Raphael JH, Khan S, Vreugdenhil M, Duarte RV. Contact Heat in Magnetoencephalography: A Systematic Review. Can J Neurol Sci 2024; 51:179-186. [PMID: 36803520 DOI: 10.1017/cjn.2023.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
BACKGROUND Contact heat is commonly used in experimental research to evoke brain activity, most frequently acquired with electroencephalography (EEG). Although magnetoencephalography (MEG) improves spatial resolution, using some contact heat stimulators with MEG can present methodological challenges. This systematic review assesses studies that utilise contact heat in MEG, their findings and possible directions for further research. METHODS Eight electronic databases were searched for relevant studies, in addition to the selected papers' reference lists, citations and ConnectedPapers maps. Best practice recommendations for systematic reviews were followed. Papers met inclusion criteria if they used MEG to record brain activity in conjunction with contact heat, regardless of stimulator equipment or paradigm. RESULTS Of 646 search results, seven studies met the inclusion criteria. Studies demonstrated effective electromagnetic artefact removal from MEG data, the ability to elicit affective anticipation and differences in deep brain stimulation responders. We identify contact heat stimulus parameters that should be reported in publications to ensure comparisons between data outcomes are consistent. CONCLUSIONS Contact heat is a viable alternative to laser or electrical stimulation in experimental research, and methods exist to successfully mitigate any electromagnetic noise generated by PATHWAY CHEPS equipment - though there is a dearth of literature exploring the post-stimulus time window.
Collapse
Affiliation(s)
| | - Siân F Worthen
- Aston Institute of Health and Neurodevelopment, Birmingham, UK
| | - Michelle Maden
- Liverpool Reviews and Implementation Group; University of Liverpool, Liverpool, UK
| | - Jon H Raphael
- School of Health Sciences, Birmingham City University, Birmingham, UK
| | - Salim Khan
- School of Health Sciences, Birmingham City University, Birmingham, UK
| | | | - Rui V Duarte
- Liverpool Reviews and Implementation Group; University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Kell PA, Vore CN, Hahn BJ, Payne MF, Rhudy JL. Optimizing Temporal Summation of Heat Pain Using a Constant Contact Heat Stimulator. J Pain Res 2024; 17:583-598. [PMID: 38347852 PMCID: PMC10860393 DOI: 10.2147/jpr.s439862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Purpose Temporal summation (TS) of pain occurs when pain increases over repeated presentations of identical noxious stimuli. TS paradigms can model central sensitization, a state of hyperexcitability in nociceptive pathways that promotes chronic pain onset and maintenance. Many experimenters use painful heat stimuli to measure TS (TS-heat); yet, TS-heat research faces unresolved challenges, including difficulty evoking summation in up to 30-50% of participants. Moreover, substantial variability exists between laboratories regarding the methods for evoking and calculating TS-heat. Patients and Methods To address these limitations, this study sought to identify optimal parameters for evoking TS-heat in healthy participants with a commercially available constant contact heat stimulator, the Medoc TSA-II. Working within constraints of the TSA-II, stimulus trains with varying parameters (eg, stimulus frequency, baseline temp, peak temp, peak duration, testing site) were tested in a sample of 32 healthy, chronic pain-free participants to determine which combination best evoked TS-heat. To determine whether TS scoring method altered results, TS-heat was scored using three common methods. Results Across all methods, only two trains successfully evoked group-level TS-heat. These trains shared the following parameters: site (palmar hand), baseline and peak temperatures (44°C and 50°C, respectively), and peak duration (0.5 s). Both produced summation that peaked at moderate pain (~50 out of 100 rating). Conclusion Future TS-heat investigations using constant contact thermodes and fixed protocols may benefit from adopting stimulus parameters that include testing on the palmar hand, using 44°C baseline and 50°C peak temperatures, at ≥0.33 Hz stimulus frequency, and peak pulse durations of at least 0.5 seconds.
Collapse
Affiliation(s)
- Parker A Kell
- Department of Psychology, The University of Tulsa, Tulsa, OK, USA
| | - Claudia N Vore
- Department of Psychology, The University of Tulsa, Tulsa, OK, USA
| | - Burkhart J Hahn
- Department of Psychology, The University of Tulsa, Tulsa, OK, USA
- Department of Psychology, Oklahoma State University, Stillwater, OK, USA
| | - Michael F Payne
- Department of Psychology, The University of Tulsa, Tulsa, OK, USA
- Department of Pediatrics, Division of Child & Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jamie L Rhudy
- Department of Psychology, The University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
5
|
Cosentino G, Antoniazzi E, Cavigioli C, Tang V, Tammam G, Zaffina C, Tassorelli C, Todisco M. Repetitive Transcranial Magnetic Stimulation of the Human Motor Cortex Modulates Processing of Heat Pain Sensation as Assessed by the Offset Analgesia Paradigm. J Clin Med 2023; 12:7066. [PMID: 38002678 PMCID: PMC10672427 DOI: 10.3390/jcm12227066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Offset analgesia (OA), which is defined as a disproportionately large reduction in pain perception following a small decrease in a heat stimulus, quantifies temporal aspects of endogenous pain modulation. In this study on healthy subjects, we aimed to (i) determine the Heat Pain Threshold (HPT) and the response to constant and dynamic heat stimuli assessing sensitization, adaptation and OA phenomena at the thenar eminence; (ii) evaluate the effects of high-frequency repetitive Transcranial Magnetic Stimulation (rTMS) of the primary motor cortex (M1) on these measures. Twenty-four healthy subjects underwent quantitative sensory testing before and after active or sham 10 Hz rTMS (1200 stimuli) of the left M1, during separate sessions. We did not observe any rTMS-related changes in the HPT or visual analogue scale (VAS) values recorded during the constant trial. Of note, at baseline, we did not find OA at the thenar eminence. Only after active rTMS did we detect significantly reduced VAS values during dynamic heat stimuli, indicating a delayed and attenuated OA phenomenon. rTMS of the left M1 may activate remote brain areas that belong to the descending pain modulatory and reward systems involved in the OA phenomenon. Our findings provide insights into the mechanisms by which rTMS of M1 could exert its analgesic effects.
Collapse
Affiliation(s)
- Giuseppe Cosentino
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Elisa Antoniazzi
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Camilla Cavigioli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Vanessa Tang
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giulia Tammam
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Chiara Zaffina
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Massimiliano Todisco
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| |
Collapse
|
6
|
Guiloff RJ, Campero M, Barraza GR, Treede RD, Matamala JM, Castillo JL. Pain-Related Vertex Evoked Potentials. Comparison of Surface Electrical to Heat Stimulation. J Clin Neurophysiol 2023; 40:616-624. [PMID: 37931163 DOI: 10.1097/wnp.0000000000000929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Demonstration of nociceptive fiber abnormality is important for diagnosing neuropathic pain and small fiber neuropathies. This is usually assessed by brief heat pulses using lasers, contact heat, or special electrodes. We hypothesized that pain-related evoked potentials to conventional surface electrical stimulation (PREPse) can index Aδ afferences despite tactile Aß fibers coactivation. PREPse may be more readily used clinically than contact heat evoked potentials (CHEPS). METHODS Twenty-eight healthy subjects. Vertex (Cz-A1/A2) recordings. Electrical stimulation of middle finger and second toe with conventional ring, and forearm/leg skin with cup, electrodes. Contact heat stimulation to forearm and leg. Compression ischemic nerve blockade. RESULTS PREPse peripheral velocities were within the midrange of Aδ fibers. N1-P1 amplitude increased with pain numerical rating scale graded (0-10) electrical stimulation (n = 25) and decreased with increasing stimulation frequency. Amplitudes were unchanged by different presentation orders of four stimulation intensities. PREPse N1 (∼130 milliseconds) and N2 (∼345 milliseconds) peaks were approximately 40 milliseconds earlier than that with CHEPS. PREPse and CHEPS N1-N2 interpeak latency (∼207 milliseconds) were similar. PREPse became unrecordable with nerve blockade of Aδ fibers. CONCLUSIONS PREPse earlier N1 and N2 peaks, and similar interpeak N1-N2 latencies and central conduction velocities, or synaptic delays, to CHEPS are consistent with direct stimulation of Aδ fibers. The relation of vertex PREPse amplitude and pain, or the differential effects of frequency stimulation, is similar to pain-related evoked potential to laser, special electrodes, or contact heat stimulation. The relationship to Aδ was validated by conduction velocity and nerve block. Clinical utility of PREPse compared with CHEPS needs validation in somatosensory pathways lesions.
Collapse
Affiliation(s)
- Roberto J Guiloff
- Faculty of Medicine University of Chile, Santiago, Chile
- Imperial College, London, United Kingdom
- Neuromuscular Unit, Department of Neurology and Neurosurgery, Hospital Clinico Universidad de Chile, Santiago, Chile
| | - Mario Campero
- Faculty of Medicine University of Chile, Santiago, Chile
- Neuromuscular Unit, Department of Neurology and Neurosurgery, Hospital Clinico Universidad de Chile, Santiago, Chile
| | - Gonzalo R Barraza
- Neuromuscular Unit, Department of Neurology and Neurosurgery, Hospital Clinico Universidad de Chile, Santiago, Chile
| | | | - Jose M Matamala
- Faculty of Medicine University of Chile, Santiago, Chile
- Department of Neurological Science, Hospital El Salvador, Santiago, Chile
| | - Jose L Castillo
- Department of Neurological Science, Hospital El Salvador, Santiago, Chile
| |
Collapse
|
7
|
Franz S, Heutehaus L, Tappe-Theodor A, Weidner N, Treede RD, Schuh-Hofer S. Noxious radiant heat evokes bi-component nociceptive withdrawal reflexes in spinal cord injured humans-A clinical tool to study neuroplastic changes of spinal neural circuits. Front Hum Neurosci 2023; 17:1141690. [PMID: 37200949 PMCID: PMC10185789 DOI: 10.3389/fnhum.2023.1141690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/04/2023] [Indexed: 05/20/2023] Open
Abstract
Investigating nocifensive withdrawal reflexes as potential surrogate marker for the spinal excitation level may widen the understanding of maladaptive nociceptive processing after spinal cord injury (SCI). The aim of this prospective, explorative cross-sectional observational study was to investigate the response behavior of individuals with SCI to noxious radiant heat (laser) stimuli and to assess its relation to spasticity and neuropathic pain, two clinical consequences of spinal hyperexcitability/spinal disinhibition. Laser stimuli were applied at the sole and dorsum of the foot and below the fibula head. Corresponding reflexes were electromyography (EMG) recorded ipsilateral. Motor responses to laser stimuli were analyzed and related to clinical readouts (severity of injury/spasticity/pain), using established clinical assessment tools. Twenty-seven participants, 15 with SCI (age 18-63; 6.5 years post-injury; AIS-A through D) and 12 non-disabled controls, [non-disabled controls (NDC); age 19-63] were included. The percentage of individuals with SCI responding to stimuli (70-77%; p < 0.001), their response rates (16-21%; p < 0.05) and their reflex magnitude (p < 0.05) were significantly higher compared to NDC. SCI-related reflexes clustered in two time-windows, indicating involvement of both A-delta- and C-fibers. Spasticity was associated with facilitated reflexes in SCI (Kendall-tau-b p ≤ 0.05) and inversely associated with the occurrence/severity of neuropathic pain (Fisher's exact p < 0.05; Eta-coefficient p < 0.05). However, neuropathic pain was not related to reflex behavior. Altogether, we found a bi-component motor hyperresponsiveness of SCI to noxious heat, which correlated with spasticity, but not neuropathic pain. Laser-evoked withdrawal reflexes may become a suitable outcome parameter to explore maladaptive spinal circuitries in SCI and to assess the effect of targeted treatment strategies. Registration: https://drks.de/search/de/trial/DRKS00006779.
Collapse
Affiliation(s)
- Steffen Franz
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
- Steffen Franz,
| | - Laura Heutehaus
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Anke Tappe-Theodor
- Department of Molecular Pharmacology, Medical Faculty Heidelberg, Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
| | - Sigrid Schuh-Hofer
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
- Department of Neurology and Epileptology, University of Tübingen, Tübingen, Germany
- *Correspondence: Sigrid Schuh-Hofer,
| |
Collapse
|
8
|
McPhetres J, Zickfeld JH. The physiological study of emotional piloerection: A systematic review and guide for future research. Int J Psychophysiol 2022; 179:6-20. [PMID: 35764195 DOI: 10.1016/j.ijpsycho.2022.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
This paper provides an accessible review of the biological and psychological evidence to guide new and experienced researchers in the study of emotional piloerection in humans. A limited number of studies have attempted to examine the physiological and emotional correlates of piloerection in humans. However, no review has attempted to collate this evidence to guide the field as it moves forward. We first discuss the mechanisms and function of non-emotional and emotional piloerection in humans and animals. We discuss the biological foundations of piloerection as a means to understand the similarities and differences between emotional and non-emotional piloerection. We then present a systematic qualitative review (k = 24) in which we examine the physiological correlates of emotional piloerection. The analysis revealed that indices of sympathetic activation are abundant, suggesting emotional piloerection occurs with increased (phasic) skin conductance and heart rate. Measures of parasympathetic activation are lacking and no definite conclusions can be drawn. Additionally, several studies examined self-reported emotional correlates, and these correlates are discussed in light of several possible theoretical explanations for emotional piloerection. Finally, we provide an overview of the methodological possibilities available for the study of piloerection and we highlight some pressing questions researchers may wish to answer in future studies.
Collapse
|
9
|
Spinal integration of hot and cold nociceptive stimuli by wide-dynamic-range neurons in anesthetized adult rats. Pain Rep 2021; 6:e983. [PMID: 34938936 PMCID: PMC8687733 DOI: 10.1097/pr9.0000000000000983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/07/2021] [Accepted: 11/02/2021] [Indexed: 12/28/2022] Open
Abstract
Introduction Early neuronal processing of thermal noxious information relies mostly on molecular detectors of the transient receptor potential family expressed by specific subpopulation of sensory neurons. This information may converge to second-order wide-dynamic-range (WDR) neurons located in the deep layer of the dorsal horn of the spinal cord. Method Using a micro-Peltier thermode thermal contact stimulator II delivering various cold and hot noxious stimulations, we have characterized the extracellular electrophysiological responses of mechanosensitive WDR neurons in anesthetized adult male and female Wistar rats. Results Most of the WDR neurons were activated after hot and cold noxious stimulations, at mean temperature thresholds corresponding to 43 and 20°C, respectively. If the production of action potential was not different in frequency between the 2 thermal modalities, the latency to observe the first action potential was significantly different (cold: 212 ms; hot: 490 ms, unpaired Student t-test: t = 8.041; df = 32; P < 0.0001), suggesting that different fiber types and circuits were involved. The temporal summation was also different because no facilitation was seen for cold noxious stimulations contrary to hot noxious ones. Conclusion Altogether, this study helps better understand how short-lasting and long-lasting hot or cold noxious stimuli are integrated by mechanosensitive WDR neurons. In our experimental conditions, we found WDR neurons to be nociceptive specific for C-fiber-mediated hot stimuli. We also found that cold nonnoxious and noxious information, triggered at glabrous skin areas, are likely taken in charge by A-type sensory neurons. This study will be helpful to establish working hypothesis explaining the thermal pain symptoms displayed by animal models and patients in a translational extent.
Collapse
|
10
|
Lefaucheur JP, Abbas SA, Lefaucheur-Ménard I, Rouie D, Tebbal D, Bismuth J, Nordine T. Small nerve fiber selectivity of laser and intraepidermal electrical stimulation: A comparative study between glabrous and hairy skin. Neurophysiol Clin 2021; 51:357-374. [PMID: 34304975 DOI: 10.1016/j.neucli.2021.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES In clinical neurophysiology practice, various methods of stimulation can be used to activate small-diameter nociceptive cutaneous afferents located in the epidermis. These methods include different types of laser and intraepidermal electrical stimulation techniques. The diffusion of the stimulation in the skin, inside or under the epidermis, depends on laser wavelength and electrode design, in particular. The aim of this study was to compare several of these techniques in their ability to selectively stimulate small nerve fibers. METHODS In 8 healthy subjects, laser stimulation (using a CO2 or Nd:YAP laser) and intraepidermal electrical stimulation (using a micropatterned, concentric planar, or concentric needle electrode), were applied at increasing energy or intensity on the dorsal or volar aspect of the right hand or foot. The subjects were asked to define the perceived sensation (warm, pinprick, or electric shock sensation, corresponding to the activation of C fibers, Aδ fibers, or Aβ fibers, respectively) after each stimulation. Depending on the difference in the sensations perceived between dorsal (hairy skin with thin stratum corneum) and volar (glabrous skin with thick stratum corneum) stimulations, the diffusion of the stimulation inside or under the epidermis and the nature of the activated afferents were determined. RESULTS Regarding laser stimulation, the perceived sensations turned from warm to pinprick with increasing energies of stimulation, in particular with the Nd:YAP laser, of which pulse could penetrate deep in the skin according to its short wavelength. In contrast, CO2 laser stimulation produced only warm sensations and no pricking sensation when applied to the glabrous skin, perhaps due to a thicker stratum corneum and the shallow penetration of the CO2 laser pulse. Regarding intraepidermal electrical stimulation using concentric electrodes, the perceived sensations turned from pinprick to a combination of pinprick and electrical shocks with increasing intensities. Using the concentric planar electrode, the sensations perceived at high stimulation intensity even consisted of electric shocks without concomitant pinprick. In contrast, using the micropatterned electrode, only pinprick sensations were produced by the stimulation of the hairy skin, while the stimulation of the glabrous skin produced no sensation at all within the limits of stimulation intensities used in this study. CONCLUSIONS Using the CO2 laser or the micropatterned electrode, pinprick sensations were selectively produced by the stimulation of hairy skin, while only warm sensation or no sensation at all were produced by the stimulation of glabrous skin. These two techniques appear to be more selective with a limited diffusion of the stimulation into the skin, restricting the activation of sensory afferents to the most superficial and smallest intraepidermal nerve fibers.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, F-94010 Creteil, France; AP-HP, Henri Mondor University Hospital, Clinical Neurophysiology Unit, F-94010 Creteil, France.
| | - Samar A Abbas
- AP-HP, Henri Mondor University Hospital, Clinical Neurophysiology Unit, F-94010 Creteil, France
| | | | - Denis Rouie
- AP-HP, Henri Mondor University Hospital, Clinical Neurophysiology Unit, F-94010 Creteil, France
| | - Denise Tebbal
- AP-HP, Henri Mondor University Hospital, Clinical Neurophysiology Unit, F-94010 Creteil, France
| | - Julie Bismuth
- AP-HP, Henri Mondor University Hospital, Clinical Neurophysiology Unit, F-94010 Creteil, France
| | - Tarik Nordine
- Univ Paris Est Creteil, EA4391, ENT, F-94010 Creteil, France; AP-HP, Henri Mondor University Hospital, Clinical Neurophysiology Unit, F-94010 Creteil, France
| |
Collapse
|
11
|
Fibromyalgia: Pathogenesis, Mechanisms, Diagnosis and Treatment Options Update. Int J Mol Sci 2021; 22:ijms22083891. [PMID: 33918736 PMCID: PMC8068842 DOI: 10.3390/ijms22083891] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Fibromyalgia is a syndrome characterized by chronic and widespread musculoskeletal pain, often accompanied by other symptoms, such as fatigue, intestinal disorders and alterations in sleep and mood. It is estimated that two to eight percent of the world population is affected by fibromyalgia. From a medical point of view, this pathology still presents inexplicable aspects. It is known that fibromyalgia is caused by a central sensitization phenomenon characterized by the dysfunction of neuro-circuits, which involves the perception, transmission and processing of afferent nociceptive stimuli, with the prevalent manifestation of pain at the level of the locomotor system. In recent years, the pathogenesis of fibromyalgia has also been linked to other factors, such as inflammatory, immune, endocrine, genetic and psychosocial factors. A rheumatologist typically makes a diagnosis of fibromyalgia when the patient describes a history of pain spreading in all quadrants of the body for at least three months and when pain is caused by digital pressure in at least 11 out of 18 allogenic points, called tender points. Fibromyalgia does not involve organic damage, and several diagnostic approaches have been developed in recent years, including the analysis of genetic, epigenetic and serological biomarkers. Symptoms often begin after physical or emotional trauma, but in many cases, there appears to be no obvious trigger. Women are more prone to developing the disease than men. Unfortunately, the conventional medical therapies that target this pathology produce limited benefits. They remain largely pharmacological in nature and tend to treat the symptomatic aspects of various disorders reported by the patient. The statistics, however, highlight the fact that 90% of people with fibromyalgia also turn to complementary medicine to manage their symptoms.
Collapse
|
12
|
Lithfous S, Després O, Pebayle T, Casadio C, Dufour A. Accurate Determination of the Cold Detection Threshold with High-Speed Cooling of the Skin. PAIN MEDICINE 2020; 21:3428-3436. [PMID: 33011804 DOI: 10.1093/pm/pnaa246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE This study used high-speed cooling of the skin and exact control of stimulus duration to measure the cold detection threshold in healthy participants. The objective was to compare the method of limits, in which the temperature is slowly and gradually increased/decreased until the subject perceives the stimulation, and the method of levels, in which the subject must detect brief thermal stimulations close to the threshold of perception. METHODS Twenty healthy volunteers (nine women, 11 men) aged 20-30 years participated in the study. The method of limits and method of levels were performed in all subjects in a counterbalanced order. Four cold detection thresholds were measured with the method of levels, with a temperature ramp of 300°C/sec and stimulus durations of 50 ms, 100 ms, 300 ms, and 500 ms. Three thresholds were measured with the method of limits, with temperature ramps of 1°C/sec, 2°C/sec, and 4°C/sec. RESULTS On average, the cold detection thresholds were -0.47°C below skin temperature with the method of levels and -1.67°C the method of limits. Interindividual variability was significantly lower with the method of levels than with the method of limits. CONCLUSIONS These results suggest that the method of levels is more accurate than the method of limits for measuring cold detection threshold. The improvement of cold detection threshold measurement may provide new perspectives to more precisely assess the function of A-delta fibers and the spino-thalamic pathway.
Collapse
Affiliation(s)
- Segolene Lithfous
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364 CNRS-UNISTRA, Strasbourg, France
| | - Olivier Després
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364 CNRS-UNISTRA, Strasbourg, France
| | - Thierry Pebayle
- Centre d'Investigations Neurocognitives et Neurophysiologiques, UMS 3489 CNRS-UNISTRA, Strasbourg Cedex, France
| | - Claudia Casadio
- Centre d'Investigations Neurocognitives et Neurophysiologiques, UMS 3489 CNRS-UNISTRA, Strasbourg Cedex, France
| | - Andre Dufour
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364 CNRS-UNISTRA, Strasbourg, France.,Centre d'Investigations Neurocognitives et Neurophysiologiques, UMS 3489 CNRS-UNISTRA, Strasbourg Cedex, France
| |
Collapse
|
13
|
Asplund CL, Kannangath A, Long VJE, Derbyshire SWG. Offset analgesia is reduced on the palm and increases with stimulus duration. Eur J Pain 2020; 25:790-800. [PMID: 33290593 DOI: 10.1002/ejp.1710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND A noxious stimulus following a more intense stimulus often feels less painful than continuous noxious stimulation. This effect, known as offset analgesia (OA), may be due to descending inhibitory control, to changes in peripheral neural transmission or both. The timing and location of noxious thermal stimulation were manipulated to better understand the peripheral and central contributions to OA. METHODS In a first experiment, participants (n = 29) provided continuous pain ratings as stimuli were delivered to the palm or dorsum of each hand. Offset trials included 44°C (T1), 45°C (T2) and 44°C (T3) stimulation periods. Baseline trials were identical except the T3 temperature fell to 35°C. Constant trials were 44°C throughout. The duration of T1 and T2 was either 1 s or 6 s, whereas T3 was always 12 s. In a second experiment, participants (n = 43) rated pain levels of noxious stimuli presented to the forearms with varying T1 and T2 durations (3, 6, 10 or 13 s) and a 20 s T3 period. RESULTS OA effects became stronger with increasing inducing durations. OA, however, was not found on the palm even at longer durations. CONCLUSIONS The increase in OA with duration suggests that accumulated nociceptive signalling is more important to triggering OA than is a decrease in nociceptors' instantaneous firing rates. The lack of OA on the palm, however, implies a key role for the rapidly adapting Type II AMH fibres that may be absent or not readily activated on the palm. Unravelling the relative central and peripheral contribution to OA requires further investigation. SIGNIFICANCE Offset analgesia (OA) is a fundamentally temporal phenomenon dependent on dynamic changes in stimulus intensity. Here we demonstrate increased OA with increased stimulus duration. This finding implies the more slowly-responding AMH-I peripheral mechanoreceptors contribute to OA. The more rapidly responding AMH-II peripheral mechanoreceptors, however, may be absent or more difficult to activate in the palm where we did not observe OA. This finding implies that the AMH-II receptors are necessary for OA. Our studies suggest methods to unravel the different peripheral and central contributions to OA.
Collapse
Affiliation(s)
- Christopher L Asplund
- Division of Social Sciences, Yale-NUS College, Singapore.,Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, Singapore.,Department of Psychology, National University of Singapore, Singapore.,N.1 Institute for Health, National University of Singapore, Singapore.,Duke-NUS Medical School, Singapore
| | - Anjali Kannangath
- Duke-NUS Medical School, Singapore.,Division of Sciences, Yale-NUS College, Singapore
| | - Victoria Jane En Long
- Division of Social Sciences, Yale-NUS College, Singapore.,Duke-NUS Medical School, Singapore
| | - Stuart W G Derbyshire
- Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, Singapore.,Department of Psychology, National University of Singapore, Singapore
| |
Collapse
|
14
|
Jutzeler CR, Linde LD, Rosner J, Hubli M, Curt A, Kramer JLK. Single-trial averaging improves the physiological interpretation of contact heat evoked potentials. Neuroimage 2020; 225:117473. [PMID: 33099013 DOI: 10.1016/j.neuroimage.2020.117473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/12/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022] Open
Abstract
Laser and contact heat evoked potentials (LEPs and CHEPs, respectively) provide an objective measure of pathways and processes involved in nociception. The majority of studies analyzing LEP or CHEP outcomes have done so based on conventional, across-trial averaging. With this approach, evoked potential components are potentially confounded by latency jitter and ignore relevant information contained within single trials. The current study addressed the advantage of analyzing nociceptive evoked potentials based on responses to noxious stimulations within each individual trial. Single-trial and conventional averaging were applied to data previously collected in 90 healthy subjects from 3 stimulation locations on the upper limb. The primary analysis focused on relationships between single and across-trial averaged CHEP outcomes (i.e., N2P2 amplitude and N2 and P2 latencies) and subject characteristics (i.e., age, sex, height, and rating of perceived intensity), which were examined by way of linear mixed model analysis. Single-trial averaging lead to larger N2P2 amplitudes and longer N2 and P2 latencies. Age and ratings of perceived intensity were the only subject level characteristics associated with CHEPs outcomes that significantly interacted with the method of analysis (conventional vs single-trial averaging). The strength of relationships for age and ratings of perceived intensity, measured by linear fit, were increased for single-trial compared to conventional across-trial averaged CHEP outcomes. By accounting for latency jitter, single-trial averaging improved the associations between CHEPs and physiological outcomes and should be incorporated as a standard analytical technique in future studies.
Collapse
Affiliation(s)
- Catherine R Jutzeler
- Swiss Federal Institute of Technology (ETH Zurich), Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Switzerland; Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland.
| | - Lukas D Linde
- ICORD, University of British Columbia, 818W 10th Ave, Vancouver, British Columbia, Canada; Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, 818W 10th Ave, Vancouver, British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 818W 10th Ave, Vancouver, British Columbia, Canada
| | - Jan Rosner
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - John L K Kramer
- ICORD, University of British Columbia, 818W 10th Ave, Vancouver, British Columbia, Canada; Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, 818W 10th Ave, Vancouver, British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 818W 10th Ave, Vancouver, British Columbia, Canada.
| |
Collapse
|
15
|
Chien YL, Chao CC, Wu SW, Hsueh HW, Chiu YN, Tsai WC, Gau SSF, Hsieh ST. Small fiber pathology in autism and clinical implications. Neurology 2020; 95:e2697-e2706. [PMID: 33055277 DOI: 10.1212/wnl.0000000000010932] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To investigate small fiber innervation of the skin and its relationships with clinicometry of autism and peripheral afferents for contact heat-evoked potential (CHEP) and psychophysical measures of thermal thresholds. METHODS We recruited 32 men with autism (26.5 ± 5.9 years) and conducted small fiber assessments of skin biopsy with quantifying intraepidermal nerve fiber (IENF) density, CHEP, quantitative sensory testing, and large fiber physiology of nerve conduction studies. Results were compared with age-matched controls and analyzed with clinical measures of autism. RESULTS Patients with autism showed a lower IENF density than controls (5.53 ± 2.09 vs 11.13 ± 3.49 fibers/mm, p < 0.0001). The IENF density was reduced in 17 (53.1%) men with autism classified as skin denervation group. On psychophysics, 9 (28%) men with autism had elevated thermal thresholds, and the warm threshold of the big toe was negatively correlated with IENF density (p = 0.0073), indicating functional impairments of small fiber sensory nerves. IENF density was negatively correlated with CHEP amplitude in autism (p = 0.003), in contrast to the pattern of positive correlation in controls, indicating different processing of nociceptive afferent in autism. Clinically, IENF density was related to distinct tactile symptom patterns in the skin denervation vs normal innervation group, respectively. Furthermore, IENF density was associated with autistic symptoms measured by the Autism Spectrum Quotient in a U-shaped model (p = 0.014). CONCLUSIONS These observations indicated that a substantial portion of individuals with autism had small fiber pathology, which was associated with tactile and autistic symptoms, providing structural and physiologic evidence for the involvement of peripheral sensory nerves in autism.
Collapse
Affiliation(s)
- Yi-Ling Chien
- From the Departments of Psychiatry (Y.-L.C., Y.-N.C., W.-C.T., S.S.-F.G.) and Neurology (C.-C.C., S.-W.W., H.-W.H., S.-T.H.), College of Medicine, National Taiwan University Hospital; and Graduate Institute of Clinical Medicine (Y.-L.C., S.S.-F.G., S.-T.H.), Graduate Institute of Brain and Mind Sciences (S.S.-F.G., S.-T.H.), Department of Anatomy and Cell Biology (S.-T.H.), and Center of Precision Medicine (S.-T.H.), College of Medicine, National Taiwan University, Taipei
| | - Chi-Chao Chao
- From the Departments of Psychiatry (Y.-L.C., Y.-N.C., W.-C.T., S.S.-F.G.) and Neurology (C.-C.C., S.-W.W., H.-W.H., S.-T.H.), College of Medicine, National Taiwan University Hospital; and Graduate Institute of Clinical Medicine (Y.-L.C., S.S.-F.G., S.-T.H.), Graduate Institute of Brain and Mind Sciences (S.S.-F.G., S.-T.H.), Department of Anatomy and Cell Biology (S.-T.H.), and Center of Precision Medicine (S.-T.H.), College of Medicine, National Taiwan University, Taipei
| | - Shao-Wei Wu
- From the Departments of Psychiatry (Y.-L.C., Y.-N.C., W.-C.T., S.S.-F.G.) and Neurology (C.-C.C., S.-W.W., H.-W.H., S.-T.H.), College of Medicine, National Taiwan University Hospital; and Graduate Institute of Clinical Medicine (Y.-L.C., S.S.-F.G., S.-T.H.), Graduate Institute of Brain and Mind Sciences (S.S.-F.G., S.-T.H.), Department of Anatomy and Cell Biology (S.-T.H.), and Center of Precision Medicine (S.-T.H.), College of Medicine, National Taiwan University, Taipei
| | - Hsueh-Wen Hsueh
- From the Departments of Psychiatry (Y.-L.C., Y.-N.C., W.-C.T., S.S.-F.G.) and Neurology (C.-C.C., S.-W.W., H.-W.H., S.-T.H.), College of Medicine, National Taiwan University Hospital; and Graduate Institute of Clinical Medicine (Y.-L.C., S.S.-F.G., S.-T.H.), Graduate Institute of Brain and Mind Sciences (S.S.-F.G., S.-T.H.), Department of Anatomy and Cell Biology (S.-T.H.), and Center of Precision Medicine (S.-T.H.), College of Medicine, National Taiwan University, Taipei
| | - Yen-Nan Chiu
- From the Departments of Psychiatry (Y.-L.C., Y.-N.C., W.-C.T., S.S.-F.G.) and Neurology (C.-C.C., S.-W.W., H.-W.H., S.-T.H.), College of Medicine, National Taiwan University Hospital; and Graduate Institute of Clinical Medicine (Y.-L.C., S.S.-F.G., S.-T.H.), Graduate Institute of Brain and Mind Sciences (S.S.-F.G., S.-T.H.), Department of Anatomy and Cell Biology (S.-T.H.), and Center of Precision Medicine (S.-T.H.), College of Medicine, National Taiwan University, Taipei
| | - Wen-Che Tsai
- From the Departments of Psychiatry (Y.-L.C., Y.-N.C., W.-C.T., S.S.-F.G.) and Neurology (C.-C.C., S.-W.W., H.-W.H., S.-T.H.), College of Medicine, National Taiwan University Hospital; and Graduate Institute of Clinical Medicine (Y.-L.C., S.S.-F.G., S.-T.H.), Graduate Institute of Brain and Mind Sciences (S.S.-F.G., S.-T.H.), Department of Anatomy and Cell Biology (S.-T.H.), and Center of Precision Medicine (S.-T.H.), College of Medicine, National Taiwan University, Taipei
| | - Susan Shur-Fen Gau
- From the Departments of Psychiatry (Y.-L.C., Y.-N.C., W.-C.T., S.S.-F.G.) and Neurology (C.-C.C., S.-W.W., H.-W.H., S.-T.H.), College of Medicine, National Taiwan University Hospital; and Graduate Institute of Clinical Medicine (Y.-L.C., S.S.-F.G., S.-T.H.), Graduate Institute of Brain and Mind Sciences (S.S.-F.G., S.-T.H.), Department of Anatomy and Cell Biology (S.-T.H.), and Center of Precision Medicine (S.-T.H.), College of Medicine, National Taiwan University, Taipei
| | - Sung-Tsang Hsieh
- From the Departments of Psychiatry (Y.-L.C., Y.-N.C., W.-C.T., S.S.-F.G.) and Neurology (C.-C.C., S.-W.W., H.-W.H., S.-T.H.), College of Medicine, National Taiwan University Hospital; and Graduate Institute of Clinical Medicine (Y.-L.C., S.S.-F.G., S.-T.H.), Graduate Institute of Brain and Mind Sciences (S.S.-F.G., S.-T.H.), Department of Anatomy and Cell Biology (S.-T.H.), and Center of Precision Medicine (S.-T.H.), College of Medicine, National Taiwan University, Taipei.
| |
Collapse
|
16
|
Gong W, Li J, Luo F. Time Course of Attention Interruption After Transient Pain Stimulation. THE JOURNAL OF PAIN 2020; 21:1247-1256. [PMID: 32553619 DOI: 10.1016/j.jpain.2020.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/08/2020] [Accepted: 02/08/2020] [Indexed: 11/28/2022]
Abstract
Although pain has been shown to affect attentional performance, little is known about the time course of attention interruption after pain stimulus perception. The present study examined the time course of the effects of transient heat pain stimulation on 2 components of attention. Three groups of subjects performed attention tasks under pain, warmth, and no-stimulation control conditions, respectively. The pain and warmth groups received brief physical stimulation. Attention tasks were presented 0 ms, 250 ms, 750 ms, or 1500 ms after the end of stimulation. The 2 attention tasks, namely the spatial cue task (Experiment 1, N = 92) and a Stroop task (Experiment 2, N = 86), were conducted separately. In Experiment 1, attentional orientation of the pain and warmth groups was significantly impaired for at least 1.5 seconds after the physical stimulation had ended. Interestingly, this effect lasted longer for the warmth group than for the pain group. In Experiment 2, pain stimulation had no effect on executive attention at any time. We concluded that attentional orientation is selectively disrupted by both pain and warmth stimuli, but recovers earlier from pain. PERSPECTIVE: This article is concerned with the subsequent interruptive effect of pain on attentional orientation and executive attention by using the spatial cue task and the Stroop task, respectively. These measures offer options for investigating the time course of attention interruption after transient pain stimulation.
Collapse
Affiliation(s)
- Wenxiao Gong
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Jifang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, PR China; Sino-Danish Center for Education and Research, Beijing, PR China
| | - Fei Luo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
17
|
Morgan M, Deuis JR, Frøsig-Jørgensen M, Lewis RJ, Cabot PJ, Gray PD, Vetter I. Burn Pain: A Systematic and Critical Review of Epidemiology, Pathophysiology, and Treatment. PAIN MEDICINE 2019; 19:708-734. [PMID: 29036469 DOI: 10.1093/pm/pnx228] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Objective This review aims to examine the available literature on the epidemiology, pathophysiology, and treatment of burn-induced pain. Methods A search was conducted on the epidemiology of burn injury and treatment of burn pain utilizing the database Medline, and all relevant articles were systemically reviewed. In addition, a critical review was performed on the pathophysiology of burn pain and animal models of burn pain. Results The search on the epidemiology of burn injury yielded a total of 163 publications of interest, 72 of which fit the inclusion/exclusion criteria, with no publications providing epidemiological data on burn injury pain management outcomes. The search on the treatment of burn pain yielded a total of 213 publications, 14 of which fit the inclusion/exclusion criteria, highlighting the limited amount of evidence available on the treatment of burn-induced pain. Conclusions The pathophysiology of burn pain is poorly understood, with limited clinical trials available to assess the effectiveness of analgesics in burn patients. Further studies are needed to identify new pharmacological targets and treatments for the effective management of burn injury pain.
Collapse
Affiliation(s)
- Michael Morgan
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Jennifer R Deuis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Majbrit Frøsig-Jørgensen
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Richard J Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Peter J Cabot
- School of Pharmacy, The University of Queensland, Wooloongabba, Queensland, Australia
| | - Paul D Gray
- Tess Cramond Multidisciplinary Pain Centre, Royal Brisbane & Women's Hospital, Metro North Health, Herston, Queensland, Australia.,School of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia.,School of Pharmacy, The University of Queensland, Wooloongabba, Queensland, Australia
| |
Collapse
|
18
|
Miller RE, Brown DS, Keith SW, Hegarty SE, Setty Y, Campbell CM, McCahan SM, Gayen-Betal S, Byck H, Stuart M. Quantitative sensory testing in children with sickle cell disease: additional insights and future possibilities. Br J Haematol 2019; 185:925-934. [PMID: 30924134 PMCID: PMC6563447 DOI: 10.1111/bjh.15876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022]
Abstract
Quantitative sensory testing (QST) is used in a variety of pain disorders to characterize pain and predict prognosis and response to specific therapies. In this study, we aimed to confirm results in the literature documenting altered QST thresholds in sickle cell disease (SCD) and assess the test-retest reliability of results over time. Fifty-seven SCD and 60 control subjects aged 8-20 years underwent heat and cold detection and pain threshold testing using a Medoc TSAII. Participants were tested at baseline and 3 months; SCD subjects were additionally tested at 6 months. An important facet of our study was the development and use of a novel QST modelling approach, allowing us to model all data together across modalities. We have not demonstrated significant differences in thermal thresholds between subjects with SCD and controls. Thermal thresholds were consistent over a 3- to 6-month period. Subjects on whom hydroxycarbamide (HC) was initiated shortly before or after baseline testing (new HC users) exhibited progressive decreases in thermal sensitivity from baseline to 6 months, suggesting that thermal testing may be sensitive to effective therapy to prevent vasoocclusive pain. These findings inform the use of QST as an endpoint in the evaluation of preventative pain therapies.
Collapse
Affiliation(s)
- Robin E Miller
- Nemours Center for Cancer and Blood Disorders, Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | - Dawn S Brown
- Nemours Center for Cancer and Blood Disorders, Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | - Scott W Keith
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sarah E Hegarty
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yamaja Setty
- Nemours Center for Cancer and Blood Disorders, Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | - Claudia M Campbell
- Department of Psychiatry and Behavioral Health, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Suzanne M McCahan
- Bioinformatics Core Facility, Nemours Biomedical Research, Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | - Suhita Gayen-Betal
- Nemours Center for Cancer and Blood Disorders, Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | - Hal Byck
- Department of Pediatrics, Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | - Marie Stuart
- Nemours Center for Cancer and Blood Disorders, Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| |
Collapse
|
19
|
Hüllemann P, Nerdal A, Sendel M, Dodurgali D, Forstenpointner J, Binder A, Baron R. Cold‐evoked potentials versus contact heat‐evoked potentials—Methodological considerations and clinical application. Eur J Pain 2019; 23:1209-1220. [DOI: 10.1002/ejp.1389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 02/22/2019] [Accepted: 03/03/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Philipp Hüllemann
- Division of Neurological Pain Research and Therapy, Department of Neurology University clinic Schleswig‐Holstein Kiel Germany
| | - Annika Nerdal
- Division of Neurological Pain Research and Therapy, Department of Neurology University clinic Schleswig‐Holstein Kiel Germany
| | - Manon Sendel
- Division of Neurological Pain Research and Therapy, Department of Neurology University clinic Schleswig‐Holstein Kiel Germany
| | - Dilara Dodurgali
- Division of Neurological Pain Research and Therapy, Department of Neurology University clinic Schleswig‐Holstein Kiel Germany
| | - Julia Forstenpointner
- Division of Neurological Pain Research and Therapy, Department of Neurology University clinic Schleswig‐Holstein Kiel Germany
| | - Andreas Binder
- Division of Neurological Pain Research and Therapy, Department of Neurology University clinic Schleswig‐Holstein Kiel Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology University clinic Schleswig‐Holstein Kiel Germany
| |
Collapse
|
20
|
Abstract
Clinical neurophysiologic investigation of pain pathways in humans is based on specific techniques and approaches, since conventional methods of nerve conduction studies and somatosensory evoked potentials do not explore these pathways. The proposed techniques use various types of painful stimuli (thermal, laser, mechanical, or electrical) and various types of assessments (measurement of sensory thresholds, study of nerve fiber excitability, or recording of electromyographic reflexes or cortical potentials). The two main tests used in clinical practice are quantitative sensory testing and pain-related evoked potentials (PREPs). In particular, PREPs offer the possibility of an objective assessment of nociceptive pathways. Three types of PREPs can be distinguished depending on the type of stimulation used to evoke pain: laser-evoked potentials, contact heat evoked potentials, and intraepidermal electrical stimulation evoked potentials (IEEPs). These three techniques investigate both small-diameter peripheral nociceptive afferents (mainly Aδ nerve fibers) and spinothalamic tracts without theoretically being able to differentiate the level of lesion in the case of abnormal results. In routine clinical practice, PREP recording is a reliable method of investigation for objectifying the existence of a peripheral or central lesion or loss of function concerning the nociceptive pathways, but not the existence of pain. Other methods, such as nerve fiber excitability studies using microneurography, more directly reflect the activities of nociceptive axons in response to provoked pain, but without detecting or quantifying the presence of spontaneous pain. These methods are more often used in research or experimental study design. Thus, it should be kept in mind that most of the results of neurophysiologic investigation performed in clinical practice assess small fiber or spinothalamic tract lesions rather than the neuronal mechanisms directly at the origin of pain and they do not provide objective quantification of pain.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Excitabilité Nerveuse et Thérapeutique, Faculté de Médecine de Créteil, Université Paris-Est-Créteil, Hôpital Henri Mondor, Créteil, France; Service de Physiologie-Explorations Fonctionnelles, Hôpital Henri Mondor, Créteil, France.
| |
Collapse
|
21
|
Correa LI, Cardenas K, Casanova‐Mollá J, Valls‐Solé J. Thermoalgesic stimuli induce prepulse inhibition of the blink reflex and affect conscious perception in healthy humans. Psychophysiology 2018; 56:e13310. [DOI: 10.1111/psyp.13310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Lilia I. Correa
- EMG Unit, Neurology Department, Hospital Clinic, Facultat de Medicina Universitat de Barcelona Barcelona Spain
| | - Karem Cardenas
- EMG Unit, Neurology Department, Hospital Clinic, Facultat de Medicina Universitat de Barcelona Barcelona Spain
| | - Jordi Casanova‐Mollá
- EMG Unit, Neurology Department, Hospital Clinic, Facultat de Medicina Universitat de Barcelona Barcelona Spain
| | - Josep Valls‐Solé
- EMG Unit, Neurology Department, Hospital Clinic, Facultat de Medicina Universitat de Barcelona Barcelona Spain
| |
Collapse
|
22
|
Sava SL, de Pasqua V, de Noordhout AM, Schoenen J. Visually induced analgesia during face or limb stimulation in healthy and migraine subjects. J Pain Res 2018; 11:1821-1828. [PMID: 30254484 PMCID: PMC6140700 DOI: 10.2147/jpr.s160276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Visually induced analgesia (VIA) defines a phenomenon in which viewing one’s own body part during its painful stimulation decreases the perception of pain. VIA occurs during direct vision of the stimulated body part and also when seeing it reflected in a mirror. To the best of our knowledge, VIA has not been studied in the trigeminal area, where it could be relevant for the control of headache. Subjects and methods We used heat stimuli (53°C) to induce pain in the right forehead or wrist in 11 healthy subjects (HSs) and 14 female migraine without aura (MO) patients between attacks. The subjects rated pain on a visual analog scale (VAS) and underwent contact heat-evoked potential (CHEP) recordings (five sequential blocks of four responses) with or without observation of their face/wrist in a mirror. Results During wrist stimulation, amplitude of the first block of P1–P2 components of CHEPs decreased compared to that in the control recording when HSs were seeing their wrist reflected in the mirror (p = 0.036; Z = 2.08); however, this was not found in MO patients. In the latter, the VAS pain score increased viewing the reflected wrist (p = 0.049; Z = 1.96). Seeing their forehead reflected in the mirror induced a significant increase in N2 latency of CHEPs in HSs, as well as an amplitude reduction in the first block of P1–P2 components of CHEPs both in HSs (p = 0.007; Z = 2.69) and MO patients (p = 0.035; Z = 2.10). Visualizing the body part did not modify habituation of CHEP amplitudes over the five blocks of averaged responses, neither during wrist nor during forehead stimulation. Conclusion This study adds to the available knowledge on VIA and demonstrates this phenomenon for painful stimuli in the trigeminal area, as long as CHEPs are used as indices of central pain processing. In migraine patients during interictal periods, VIA assessed with CHEPs is within normal limits in the face but absent at the wrist, possibly reflecting dysfunctioning of extracephalic pain control.
Collapse
Affiliation(s)
| | - Victor de Pasqua
- Headache Research Unit, Department of Neurology, Liège University, Liège, Belgium
| | | | - Jean Schoenen
- Headache Research Unit, Department of Neurology, Liège University, Liège, Belgium
| |
Collapse
|
23
|
Pickering G, Macian N, Delage N, Picard P, Cardot JM, Sickout-Arondo S, Giron F, Dualé C, Pereira B, Marcaillou F. Milnacipran poorly modulates pain in patients suffering from fibromyalgia: a randomized double-blind controlled study. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2485-2496. [PMID: 30127596 PMCID: PMC6089099 DOI: 10.2147/dddt.s162810] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction Fibromyalgia is characterized by widespread and chronic pain, and its prevalence is increasing worldwide. Milnacipran, an antidepressant, is often prescribed for fibromyalgia with a possible beneficial effect on central pain modulation. The aim of this study was to evaluate if milnacipran could modify the status of conditioned pain modulation (CPM) in patients suffering from fibromyalgia. Design and setting Randomized, double-blind controlled trial. Subjects and methods Women with fibromyalgia received milnacipran 100 mg or placebo. The primary end point was the evolution of CPM with treatments after a 30-second painful stimulus. Secondary outcomes included the predictability of milnacipran efficacy from CPM performance, evolution of global pain, mechanical sensitivity, thermal pain threshold, mechanical allodynia, cognitive function, and tolerance. Results Fifty-four women with fibromyalgia (46.7±10.6 years) were included and randomized, and 24 patients were analyzed in each group. At inclusion, CPM was dysfunctional (CPM30=-0.5±1.9), and global pain was 6.5±1.8. After treatment, there was a nonsignificant CPM difference between milnacipran and placebo (CPM30=-0.46±1.22 vs -0.69±1.43, respectively, p=0.55) and 18.8% vs 6.3% (p=0.085) patients did reactivate CPM after milnacipran vs placebo. Initial CPM was not a predictor of milnacipran efficacy. Global pain, mechanical and thermal thresholds, allodynia, cognition, and tolerance were not significantly different between both groups. Conclusion Milnacipran did not display a significant analgesic effect after 1-month treatment, but the tendency of milnacipran to reactivate CPM in a number of patients must be explored with longer treatment duration in future studies and pleads for possible subtypes of fibromyalgia patients.
Collapse
Affiliation(s)
- Gisèle Pickering
- University Clermont Auvergne Neurodol, Clermont-Ferrand, France, .,Clinical Pharmacology Department CPC/CIC Inserm 1405, University Hospital, Clermont-Ferrand, France,
| | - Nicolas Macian
- Clinical Pharmacology Department CPC/CIC Inserm 1405, University Hospital, Clermont-Ferrand, France,
| | - Noémie Delage
- Pain Clinic, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Pascale Picard
- Pain Clinic, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Jean-Michel Cardot
- University Clermont Auvergne MEDIS, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Sophia Sickout-Arondo
- Clinical Pharmacology Department CPC/CIC Inserm 1405, University Hospital, Clermont-Ferrand, France,
| | - Fatiha Giron
- Clinical Pharmacology Department CPC/CIC Inserm 1405, University Hospital, Clermont-Ferrand, France,
| | - Christian Dualé
- Clinical Pharmacology Department CPC/CIC Inserm 1405, University Hospital, Clermont-Ferrand, France,
| | - Bruno Pereira
- DRCI, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | | |
Collapse
|
24
|
Nakata H, Kakigi R, Shibasaki M. Warm-, hot- and pain-related neural activities depending on baseline skin temperatures. Eur J Pain 2018; 22:1791-1799. [PMID: 29956432 DOI: 10.1002/ejp.1275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND This study investigated the characteristics of temperature-related evoked neural activities to baseline skin temperatures on target and adjacent sites using contact heat evoked potentials (CHEPs). METHODS Contact heat evoked potentials were recorded from 12 normal subjects during three stimuli: target temperatures for "warm", "hot" and "pain" were set at 41, 46 and 51 °C, respectively. The baseline temperature was separately set at 30, 35 and 40 °C under all conditions, and a heat pulse was delivered over the right forearm at 41 °C under the warm condition, at 46 °C under the hot condition and at 51 °C under the pain condition. RESULTS The N2-P2 amplitude was significantly larger at the 40 °C baseline than at the 30 and 35 °C baselines during the pain condition, whereas no significant differences were observed during the hot and warm conditions. In addition, the effects of an interference warm stimulation to adjacent sites were examined; however, no significant effects were observed. CONCLUSIONS These results suggest that the priming effects of temperature on CHEPs were only observed under the pain condition, indicating the specificity of thermal pain, as well as a difference in the neural mechanisms responsible for thermal noxious and innocuous processing in human brains. SIGNIFICANCE This study using CHEPs shows the importance of baseline and target skin temperatures to investigate the characteristics of temperature-related neural activities. This measure may contribute to understanding of warm-, hot-, and pain-related neural activities in human brains.
Collapse
Affiliation(s)
- H Nakata
- Faculty of Human Life and Environment, Nara Women's University, Japan
| | - R Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - M Shibasaki
- Faculty of Human Life and Environment, Nara Women's University, Japan
| |
Collapse
|
25
|
Kisler LB, Gurion I, Granovsky Y, Sinai A, Sprecher E, Shamay-Tsoory S, Weissman-Fogel I. Can a single pulse transcranial magnetic stimulation targeted to the motor cortex interrupt pain processing? PLoS One 2018; 13:e0195739. [PMID: 29630681 PMCID: PMC5891059 DOI: 10.1371/journal.pone.0195739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/28/2018] [Indexed: 01/06/2023] Open
Abstract
The modulatory role of the primary motor cortex (M1), reflected by an inhibitory effect of M1-stimulation on clinical pain, motivated us to deepen our understanding of M1’s role in pain modulation. We used Transcranial Magnetic Stimulation (TMS)-induced virtual lesion (VL) to interrupt with M1 activity during noxious heat pain. We hypothesized that TMS-VL will effect experimental pain ratings. Three VL protocols were applied consisting of single-pulse TMS to transiently interfere with right M1 activity: (1) VLM1- TMS applied to 11 subjects, 20 msec before the individual’s first pain-related M1 peak activation, as determined by source analysis (sLORETA), (2) VL-50 (N = 16; TMS applied 50 ms prior to noxious stimulus onset), and (3) VL+150 (N = 16; TMS applied 150 ms after noxious stimulus onset). Each protocol included 3 conditions ('pain-alone', ' TMS-VL', and ‘SHAM-VL’), each consisted of 30 noxious heat stimuli. Pain ratings were compared, in each protocol, for TMS-VL vs. SHAM-VL and vs. pain-alone conditions. Repeated measures analysis of variance, corrected for multiple comparisons revealed no significant differences in the pain ratings between the different conditions within each protocol. Therefore, our results from this exploratory study suggest that a single pulse TMS-induced VL that is targeted to M1 failed to interrupt experimental pain processing in the specific three stimulation timing examined here.
Collapse
Affiliation(s)
- Lee-Bareket Kisler
- Department of Psychology, University of Haifa, Haifa, Israel
- Laboratory of Clinical Neurophysiology, Technion Faculty of Medicine, Haifa, Israel
| | - Ilan Gurion
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Yelena Granovsky
- Laboratory of Clinical Neurophysiology, Technion Faculty of Medicine, Haifa, Israel
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Alon Sinai
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
- Department of Neurosurgery, Rambam Health Care Campus, Haifa, Israel
| | - Elliot Sprecher
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | | | - Irit Weissman-Fogel
- Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
- * E-mail:
| |
Collapse
|
26
|
Chiang H, Chang KC, Kan HW, Wu SW, Tseng MT, Hsueh HW, Lin YH, Chao CC, Hsieh ST. Physiological and pathological characterization of capsaicin-induced reversible nerve degeneration and hyperalgesia. Eur J Pain 2018; 22:1043-1056. [DOI: 10.1002/ejp.1189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2017] [Indexed: 11/07/2022]
Affiliation(s)
- H. Chiang
- Department of Anatomy and Cell Biology; National Taiwan University College of Medicine; Taipei Taiwan
| | - K.-C. Chang
- Department of Neurology; National Taiwan University Hospital; Taipei Taiwan
| | - H.-W. Kan
- Department of Anatomy and Cell Biology; National Taiwan University College of Medicine; Taipei Taiwan
| | - S.-W. Wu
- Department of Anatomy and Cell Biology; National Taiwan University College of Medicine; Taipei Taiwan
- Department of Neurology; National Taiwan University Hospital; Taipei Taiwan
| | - M.-T. Tseng
- Graduate Institute of Brain and Mind Sciences; National Taiwan University College of Medicine; Taipei Taiwan
| | - H.-W. Hsueh
- Department of Neurology; National Taiwan University Hospital; Taipei Taiwan
| | - Y.-H. Lin
- Department of Neurology; National Taiwan University Hospital; Taipei Taiwan
| | - C.-C. Chao
- Department of Neurology; National Taiwan University Hospital; Taipei Taiwan
| | - S.-T. Hsieh
- Department of Anatomy and Cell Biology; National Taiwan University College of Medicine; Taipei Taiwan
- Department of Neurology; National Taiwan University Hospital; Taipei Taiwan
- Graduate Institute of Brain and Mind Sciences; National Taiwan University College of Medicine; Taipei Taiwan
- Graduate Institute of Clinical Medicine; National Taiwan University College of Medicine; Taipei Taiwan
| |
Collapse
|
27
|
An K, Lim S, Lee HJ, Kwon H, Kim M, Gohel B, Kim J, Kim K. Magnetoencephalographic study of event-related fields and cortical oscillatory changes during cutaneous warmth processing. Hum Brain Mapp 2018; 39:1972-1981. [PMID: 29363226 PMCID: PMC5947665 DOI: 10.1002/hbm.23977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 01/13/2023] Open
Abstract
Thermoreception is an important cutaneous sense, which plays a role in the maintenance of our body temperature and in the detection of potential noxious heat stimulation. In this study, we investigated event‐related fields (ERFs) and neural oscillatory activities, which were modulated by warmth stimulation. We developed a warmth stimulator that could elicit a warmth sensation, without pain or tactile sensation, by using a deep‐penetrating 980‐nm diode laser. The index finger of each participant (n = 24) was irradiated with the laser warmth stimulus, and the cortical responses were measured using magnetoencephalography (MEG). The ERFs and oscillatory responses had late latencies (∼1.3 s and 1.0–1.5 s for ERFs and oscillatory responses, respectively), which could be explained by a slow conduction velocity of warmth‐specific C‐fibers. Cortical sources of warmth‐related ERFs were seen in the bilateral primary and secondary somatosensory cortices (SI and SII), posterior part of the anterior cingulate cortex (pACC), ipsilateral primary motor, and premotor cortex. Thus, we suggested that SI, SII, and pACC play a role in processing the warmth sensation. Time–frequency analysis demonstrated the suppression of the alpha (8–13 Hz) and beta (18–23 Hz) band power in the bilateral sensorimotor cortex. We proposed that the suppressions in alpha and beta band power are involved in the automatic response to the input of warmth stimulation and sensorimotor interactions. The delta band power (1–4 Hz) increased in the frontal, temporal, and cingulate cortices. The power changes in delta band might be related with the attentional processes during the warmth stimulation.
Collapse
Affiliation(s)
- Kyung‐min An
- Center for Biosignals, Korea Research Institute of Standards and Science (KRISS)DaejeonRepublic of Korea
| | - Sanghyun Lim
- Center for Biosignals, Korea Research Institute of Standards and Science (KRISS)DaejeonRepublic of Korea
- Department of Medical PhysicsUniversity of Science and Technology (UST)DaejeonRepublic of Korea
| | - Hyun Joon Lee
- Center for Biosignals, Korea Research Institute of Standards and Science (KRISS)DaejeonRepublic of Korea
- Department of PhysicsPusan National UniversityBusanRepublic of Korea
| | - Hyukchan Kwon
- Center for Biosignals, Korea Research Institute of Standards and Science (KRISS)DaejeonRepublic of Korea
| | - Min‐Young Kim
- Center for Biosignals, Korea Research Institute of Standards and Science (KRISS)DaejeonRepublic of Korea
| | - Bakul Gohel
- Center for Biosignals, Korea Research Institute of Standards and Science (KRISS)DaejeonRepublic of Korea
| | - Ji‐Eun Kim
- Center for Biosignals, Korea Research Institute of Standards and Science (KRISS)DaejeonRepublic of Korea
- Department of Medical PhysicsUniversity of Science and Technology (UST)DaejeonRepublic of Korea
| | - Kiwoong Kim
- Center for Biosignals, Korea Research Institute of Standards and Science (KRISS)DaejeonRepublic of Korea
- Department of Medical PhysicsUniversity of Science and Technology (UST)DaejeonRepublic of Korea
| |
Collapse
|
28
|
Biomarkers of neuropathic pain in skin nerve degeneration neuropathy: contact heat-evoked potentials as a physiological signature. Pain 2017; 158:516-525. [DOI: 10.1097/j.pain.0000000000000791] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Bi-phasic activation of the primary motor cortex by pain and its relation to pain-evoked potentials − an exploratory study. Behav Brain Res 2017; 328:209-217. [DOI: 10.1016/j.bbr.2017.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/31/2017] [Accepted: 04/01/2017] [Indexed: 01/09/2023]
|
30
|
|
31
|
Benromano T, Pick CG, Granovsky Y, Defrin R. Increased Evoked Potentials and Behavioral Indices in Response to Pain Among Individuals with Intellectual Disability. PAIN MEDICINE 2017; 18:1715-1730. [DOI: 10.1093/pm/pnw349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Attenuated contact heat-evoked potentials associated with sensory and social-emotional symptoms in individuals with autism spectrum disorder. Sci Rep 2017; 7:36887. [PMID: 28139664 PMCID: PMC5282530 DOI: 10.1038/srep36887] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/26/2016] [Indexed: 02/06/2023] Open
Abstract
Sensory disturbance is associated with socio-emotional problems in individuals with autism spectrum disorder (ASD). Most studies assess sensory symptoms by self-reports, which are largely limited by the language ability and self-awareness of the individuals. This study aims to investigate sensory disturbance by contact heat-evoked potentials (CHEP) in ASD individuals, and to examine the clinical correlates of CHEP parameters. We compared the CHEP parameters and reported pain between 31 ASD individuals (aged 20.5 ± 5.2 years) and and 22 typically-developing controls (TD, aged 21.4 ± 2.6), and correlated the CHEP parameters with self-reported sensory symptoms and attention/socio-emotional symptoms. We found that ASD individuals showed smaller P2-wave amplitudes than TD, even though they reported a similar level of pain. In TD individuals, a smaller P2-wave amplitude was related to higher scores on ‘low registration,’ ‘attention to detail,’ and ‘attention switching difficulties.’ In ASD individuals, longer N2-wave latency was related to higher scores on ‘sensory sensitivity’ and socio-emotional problems; while higher reported pain was associated with higher scores on ‘low registration,’ overall autistic severity, and longer N2-wave latency. Our findings of attenuated CHEP response in ASD, which was associated with sensory symptoms and socio-emotional problems, suggest a potential role for CHEP in studying sensory disturbances in ASD.
Collapse
|
33
|
Zeng L, Alongkronrusmee D, van Rijn RM. An integrated perspective on diabetic, alcoholic, and drug-induced neuropathy, etiology, and treatment in the US. J Pain Res 2017; 10:219-228. [PMID: 28176937 PMCID: PMC5268333 DOI: 10.2147/jpr.s125987] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neuropathic pain (NeuP) is a syndrome that results from damaged nerves and/or aberrant regeneration. Common etiologies of neuropathy include chronic illnesses and medication use. Chronic disorders, such as diabetes and alcoholism, can cause neuronal injury and consequently NeuP. Certain medications with antineoplastic effects also carry an exquisitely high risk for neuropathy. These culprits are a few of many that are fueling the NeuP epidemic, which currently affects 7%-10% of the population. It has been estimated that approximately 10% and 7% of US adults carry a diagnosis of diabetes and alcohol disorder, respectively. Despite its pervasiveness, many physicians are unfamiliar with adequate treatment of NeuP, partly due to the few reviews that are available that have integrated basic science and clinical practice. In light of the recent Centers for Disease Control and Prevention guidelines that advise against the routine use of μ-opioid receptor-selective opioids for chronic pain management, such a review is timely. Here, we provide a succinct overview of the etiology and treatment options of diabetic and alcohol- and drug-induced neuropathy, three different and prevalent neuropathies fusing the combined clinical and preclinical pharmacological expertise in NeuP of the authors. We discuss the anatomy of pain and pain transmission, with special attention to key ion channels, receptors, and neurotransmitters. An understanding of pain neurophysiology will lead to a better understanding of the rationale for the effectiveness of current treatment options, and may lead to better diagnostic tools to help distinguish types of neuropathy. We close with a discussion of ongoing research efforts to develop additional treatments for NeuP.
Collapse
Affiliation(s)
- Lily Zeng
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Doungkamol Alongkronrusmee
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
34
|
Granovsky Y, Raz N, Defrin R. Electrophysiological and psychophysical correlates of spatial summation to noxious heat: the possible role of A-delta fibers. Exp Brain Res 2016; 235:639-646. [DOI: 10.1007/s00221-016-4825-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/05/2016] [Indexed: 11/29/2022]
|
35
|
Sex dimorphism in a mediatory role of the posterior midcingulate cortex in the association between anxiety and pain sensitivity. Exp Brain Res 2016; 234:3119-3131. [DOI: 10.1007/s00221-016-4710-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/19/2016] [Indexed: 10/21/2022]
|
36
|
Hüllemann P, Nerdal A, Binder A, Helfert S, Reimer M, Baron R. Cold-evoked potentials - Ready for clinical use? Eur J Pain 2016; 20:1730-1740. [DOI: 10.1002/ejp.896] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2016] [Indexed: 11/12/2022]
Affiliation(s)
- P. Hüllemann
- Division of Neurological Pain Research and Therapy; Department of Neurology; University Clinic Schleswig-Holstein; Campus Kiel Germany
| | - A. Nerdal
- Division of Neurological Pain Research and Therapy; Department of Neurology; University Clinic Schleswig-Holstein; Campus Kiel Germany
| | - A. Binder
- Division of Neurological Pain Research and Therapy; Department of Neurology; University Clinic Schleswig-Holstein; Campus Kiel Germany
| | - S. Helfert
- Division of Neurological Pain Research and Therapy; Department of Neurology; University Clinic Schleswig-Holstein; Campus Kiel Germany
| | - M. Reimer
- Division of Neurological Pain Research and Therapy; Department of Neurology; University Clinic Schleswig-Holstein; Campus Kiel Germany
| | - R. Baron
- Division of Neurological Pain Research and Therapy; Department of Neurology; University Clinic Schleswig-Holstein; Campus Kiel Germany
| |
Collapse
|
37
|
Lin CH, Chao CC, Wu SW, Hsieh PC, Feng FP, Lin YH, Chen YM, Wu RM, Hsieh ST. Pathophysiology of Small-Fiber Sensory System in Parkinson's Disease: Skin Innervation and Contact Heat Evoked Potential. Medicine (Baltimore) 2016; 95:e3058. [PMID: 26962835 PMCID: PMC4998916 DOI: 10.1097/md.0000000000003058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sensory symptoms are frequent nonmotor complaints in patients with Parkinson's disease (PD). However, few investigations integrally explored the physiology and pathology of the thermonociceptive pathway in PD. We aim to investigate the involvement of the thermonociceptive pathway in PD.Twenty-eight PD patients (16 men, with a mean age and standard deviation of 65.6 ± 10.7 years) free of neuropathic symptoms and systemic disorders were recruited for the study and compared to 23 age- and gender-matched control subjects (12 men, with a mean age and standard deviation of 65.1 ± 9.9 years). We performed skin biopsy, contact heat-evoked potential (CHEP), and quantitative sensory tests (QST) to study the involvement of the thermonociceptive pathway in PD.The duration of PD was 7.1 ± 3.2 (range 2-17 years) years and the UPDRS part III score was 25.6 ± 9.7 (range 10-48) during the off period. Compared to control subjects, PD patients had reduced intra-epidermal nerve fiber (IENF) density (2.48 ± 1.65 vs 6.36 ± 3.19 fibers/mm, P < 0.001) and CHEP amplitude (18.02 ± 10.23 vs 33.28 ± 10.48 μV, P < 0.001). Twenty-three patients (82.1%) had abnormal IENF densities and 18 (64.3%) had abnormal CHEP. Nine patients (32.1%) had abnormal thermal thresholds in the feet. In total 27 patients (96.4%) had at least 1 abnormality in IENF, CHEP, or thermal thresholds of the foot, indicating dysfunctions in the small-fiber nerve system. In control subjects, CHEP amplitude linearly correlated with IENF density (P < 0.001). In contrast, this relationship disappeared in PD (P = 0.312) and CHEP amplitude was negatively correlated with motor severity of PD independent of age, gender, and anti-PD medication dose (P = 0.036), suggesting the influences of central components on thermonociceptive systems in addition to peripheral small-fiber nerves in PD.The present study suggested impairment of small-fiber sensory system at both peripheral and central levels is an intrinsic feature of PD, and skin biopsy, CHEP, and QST provided an integral approach for assessing such dysfunctions.
Collapse
Affiliation(s)
- Chin-Hsien Lin
- From the Department of Neurology (C-HL, C-CC, S-WW, F-PF, Y-HL, S-TH), National Taiwan University Hospital; the Department of Pathology (P-CH), Far Eastern Memorial Hospital; Institute of Health Policy and Management (Y-MC), National Taiwan University, Taipei, Taiwan; and Department of Anatomy and Cell Biology (S-TH), Graduate Institute of Brain and Mind Sciences, and Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Stancak A, Cook S, Wright H, Fallon N. Mapping multidimensional pain experience onto electrophysiological responses to noxious laser heat stimuli. Neuroimage 2016; 125:244-255. [PMID: 26477652 DOI: 10.1016/j.neuroimage.2015.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/29/2015] [Accepted: 10/11/2015] [Indexed: 11/30/2022] Open
Abstract
The origin of the conscious experience of pain in the brain is a continuing enigma in neuroscience. To shed light on the brain representation of a multifaceted pain experience in humans, we combined multivariate analysis of subjective aspects of pain sensations with detailed, single-trial analysis of electrophysiological brain responses. Participants were asked to fully focus on any painful or non-painful sensations occurring in their left hand during an interval surrounding the onset of noxious laser heat stimuli, and to rate their sensations using a set of visual analogue scales. Statistical parametric mapping was used to compute a multivariate regression analysis of subjective responses and single-trial laser evoked potentials (LEPs) at subject and group levels. Standardized Low Resolution Electromagnetic Tomography method was used to reconstruct sources of LEPs. Factor analysis of subjective responses yielded five factors. Factor 1, representing pain, mapped firstly as a negative potential at the vertex and a positive potential at the fronto-temporal region during the 208-260ms interval, and secondly as a strong negative potential in the right lateral frontal and prefrontal scalp regions during the 1292-1340ms interval. Three other factors, labelled "anticipated pain", "stimulus onset time", and "body sensations", represented non-specific aspects of the pain experience, and explained portions of LEPs in the latency range from 200ms to 700ms. The subjective space of pain during noxious laser stimulation is represented by one large factor featuring pain intensity, and by other factors accounting for non-specific parts of the sensory experience. Pain is encoded in two separate latency components with different scalp and brain representations.
Collapse
Affiliation(s)
- Andrej Stancak
- Department of Psychological Sciences, University of Liverpool, Liverpool L69 7ZA, UK.
| | - Stephanie Cook
- Department of Psychological Sciences, University of Liverpool, Liverpool L69 7ZA, UK
| | - Hazel Wright
- Department of Psychological Sciences, University of Liverpool, Liverpool L69 7ZA, UK
| | - Nicholas Fallon
- Department of Psychological Sciences, University of Liverpool, Liverpool L69 7ZA, UK
| |
Collapse
|
39
|
Wang L, Gui P, Li L, Ku Y, Bodner M, Fan G, Zhou YD, Dong XW. Neural correlates of heat-evoked pain memory in humans. J Neurophysiol 2016; 115:1596-604. [PMID: 26740529 DOI: 10.1152/jn.00126.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 12/31/2015] [Indexed: 11/22/2022] Open
Abstract
The neural processes underlying pain memory are not well understood. To explore these processes, contact heat-evoked potentials (CHEPs) were recorded in humans with electroencephalography (EEG) technique during a delayed matching-to-sample task, a working memory task involving presentations of two successive painful heat stimuli (S-1 and S-2) with different intensities separated by a 2-s interval (the memorization period). At the end of the task, the subject was required to discriminate the stimuli by indicating which (S-1 or S-2) induced more pain. A control task was used, in which no active discrimination was required between stimuli. All event-related potential (ERP) analysis was aligned to the onset of S-1. EEG activity exhibited two successive CHEPs: an N2-P2 complex (∼400 ms after onset of S-1) and an ultralate component (ULC, ∼900 ms). The amplitude of the N2-P2 at vertex, but not the ULC, was significantly correlated with stimulus intensity in these two tasks, suggesting that the N2-P2 represents neural coding of pain intensity. A late negative component (LNC) in the frontal recording region was observed only in the memory task during a 500-ms period before onset of S-2. LNC amplitude differed between stimulus intensities and exhibited significant correlations with the N2-P2 complex. These indicate that the frontal LNC is involved in maintenance of intensity of pain in working memory. Furthermore, alpha-band oscillations observed in parietal recording regions during the late delay displayed significant power differences between tasks. This study provides in the temporal domain previously unidentified neural evidence showing the neural processes involved in working memory of painful stimuli.
Collapse
Affiliation(s)
- Liping Wang
- Key Laboratory of Brain Functional Genomics, MOE and STCSM, Institute of Cognitive Neuroscience, East China Normal University, Shanghai, People's Republic of China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai and Collaborative Innovation Center for Brain Science, Shanghai, People's Republic of China;
| | - Peng Gui
- Key Laboratory of Brain Functional Genomics, MOE and STCSM, Institute of Cognitive Neuroscience, East China Normal University, Shanghai, People's Republic of China
| | - Lei Li
- Key Laboratory of Brain Functional Genomics, MOE and STCSM, Institute of Cognitive Neuroscience, East China Normal University, Shanghai, People's Republic of China
| | - Yixuan Ku
- Key Laboratory of Brain Functional Genomics, MOE and STCSM, Institute of Cognitive Neuroscience, East China Normal University, Shanghai, People's Republic of China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai and Collaborative Innovation Center for Brain Science, Shanghai, People's Republic of China
| | - Mark Bodner
- MIND Research Institute, Irvine, California; and
| | - Gaojie Fan
- Department of Psychology, Colorado State University, Fort Collins, Colorado
| | - Yong-Di Zhou
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai and Collaborative Innovation Center for Brain Science, Shanghai, People's Republic of China; Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland; Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland
| | - Xiao-Wei Dong
- Key Laboratory of Brain Functional Genomics, MOE and STCSM, Institute of Cognitive Neuroscience, East China Normal University, Shanghai, People's Republic of China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai and Collaborative Innovation Center for Brain Science, Shanghai, People's Republic of China
| |
Collapse
|
40
|
|
41
|
Ulrich A, Min K, Curt A. High sensitivity of contact-heat evoked potentials in “snake-eye” appearance myelopathy. Clin Neurophysiol 2015; 126:1994-2003. [DOI: 10.1016/j.clinph.2014.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 11/30/2014] [Accepted: 12/10/2014] [Indexed: 12/12/2022]
|
42
|
Pickering G, Kastler A, Macian N, Pereira B, Valabrègue R, Lehericy S, Boyer L, Dubray C, Jean B. The brain signature of paracetamol in healthy volunteers: a double-blind randomized trial. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3853-62. [PMID: 26229445 PMCID: PMC4517518 DOI: 10.2147/dddt.s81004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Paracetamol's (APAP) mechanism of action suggests the implication of supraspinal structures but no neuroimaging study has been performed in humans. METHODS AND RESULTS This randomized, double-blind, crossover, placebo-controlled trial in 17 healthy volunteers (NCT01562704) aimed to evaluate how APAP modulates pain-evoked functional magnetic resonance imaging signals. We used behavioral measures and functional magnetic resonance imaging to investigate the response to experimental thermal stimuli with APAP or placebo administration. Region-of-interest analysis revealed that activity in response to noxious stimulation diminished with APAP compared to placebo in prefrontal cortices, insula, thalami, anterior cingulate cortex, and periaqueductal gray matter. CONCLUSION These findings suggest an inhibitory effect of APAP on spinothalamic tracts leading to a decreased activation of higher structures, and a top-down influence on descending inhibition. Further binding and connectivity studies are needed to evaluate how APAP modulates pain, especially in the context of repeated administration to patients with pain.
Collapse
Affiliation(s)
- Gisèle Pickering
- CHU Clermont-Ferrand, Centre de Pharmacologie Clinique, Faculté de medicine, France ; Centre d'Investigation Clinique - Inserm 1405, Faculté de medicine, France ; Clermont Université, Laboratoire de Pharmacologie, Faculté de medicine, France
| | - Adrian Kastler
- CHU Gabriel Montpied, Clermont-Ferrand, Service d'Imagerie Ostéo-articulaire thoracique et neurologique, Clermont-Ferrand, France
| | - Nicolas Macian
- CHU Clermont-Ferrand, Centre de Pharmacologie Clinique, Faculté de medicine, France ; Centre d'Investigation Clinique - Inserm 1405, Faculté de medicine, France
| | - Bruno Pereira
- CHU Clermont-Ferrand, Délégation Recherche Clinique et à l'Innovation, Clermont-Ferrand, France
| | - Romain Valabrègue
- Institut du Cerveau et de la Moelle epiniere - ICM, Centre de NeuroImagerie de Recherche CENIR, Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC University Paris, Paris, France, Department of Neuroradiology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Stéphane Lehericy
- Institut du Cerveau et de la Moelle epiniere - ICM, Centre de NeuroImagerie de Recherche CENIR, Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC University Paris, Paris, France, Department of Neuroradiology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Louis Boyer
- CHU Gabriel Montpied, Clermont-Ferrand, Service d'Imagerie Ostéo-articulaire thoracique et neurologique, Clermont-Ferrand, France ; UMR CNRS UdA 6284, Clemont-Ferrand, France
| | - Claude Dubray
- CHU Clermont-Ferrand, Centre de Pharmacologie Clinique, Faculté de medicine, France ; Centre d'Investigation Clinique - Inserm 1405, Faculté de medicine, France ; Clermont Université, Laboratoire de Pharmacologie, Faculté de medicine, France
| | - Betty Jean
- CHU Gabriel Montpied, Clermont-Ferrand, Service d'Imagerie Ostéo-articulaire thoracique et neurologique, Clermont-Ferrand, France
| |
Collapse
|
43
|
Reches A, Nir RR, Shram M, Dickman D, Laufer I, Shani-Hershkovich R, Stern Y, Weiss M, Yarnitsky D, Geva A. A novel electroencephalography-based tool for objective assessment of network dynamics activated by nociceptive stimuli. Eur J Pain 2015; 20:250-62. [DOI: 10.1002/ejp.716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2015] [Indexed: 11/05/2022]
Affiliation(s)
| | - R.-R. Nir
- Department of Neurology; Rambam Health Care Campus; Haifa Israel
- Clinical Neurophysiology Lab; Faculty of Medicine; Technion - Israel Institute of Technology; Haifa Israel
| | - M.J. Shram
- Altreos Research Partners, Inc.; Toronto ON Canada
- Department of Pharmacology and Toxicology; University of Toronto; Toronto ON Canada
| | | | | | | | | | | | - D. Yarnitsky
- Department of Neurology; Rambam Health Care Campus; Haifa Israel
- Clinical Neurophysiology Lab; Faculty of Medicine; Technion - Israel Institute of Technology; Haifa Israel
| | - A.B. Geva
- ElMindA Ltd.; Herzliya Israel
- Electrical and Computer Engineering; Ben Gurion University of the Negev; Beersheba Israel
| |
Collapse
|
44
|
Macian N, Pereira B, Shinjo C, Dubray C, Pickering G. Fibromyalgia, milnacipran and experimental pain modulation: study protocol for a double blind randomized controlled trial. Trials 2015; 16:134. [PMID: 25873248 PMCID: PMC4393595 DOI: 10.1186/s13063-015-0659-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The prevalence of fibromyalgia increases worldwide and is characterized by widespread and chronic pain. Treatment is difficult and includes both drug and non-drug approaches. Milnacipran, an antidepressant, is used for fibromyalgia, with a possible beneficial effect on central pain modulation. Our hypothesis is that the efficacy of milnacipran in fibromyalgia depends on the performance of pain inhibitory controls. METHODS/DESIGN A randomized, double blind, clinical trial (NCT01747044) with two parallel groups, in 48 women with fibromyalgia, is planned in the Clinical Pharmacology Center, University Hospital, Clermont-Ferrand, France. Conditioned pain modulation (estimated with thermal stimuli using a numeric pain rating scale), the primary endpoint measure, is evaluated before and one month after treatment with milnacipran or placebo. Secondary outcome measures include the predictability of pain descending pathways performance for milnacipran efficacy, tolerance and cognitive function. Data analysis is performed using mixed models; the tests are two-sided, with a type I error set at alpha = 0.05. Not only will this trial allow estimation of the beneficial effect of milnacipran on pain and on descending pain pathways but it will also evaluate whether the performance of this modulatory system could be predictive of its efficacy in alleviating pain. DISCUSSION This method would allow clinicians to take a pro-active attitude by performing a rapid psychophysical test before starting milnacipran treatment and would avoid unnecessary prescription while preventing therapeutic failure in patients who often face this recurrent problem. TRIAL REGISTRATION ClinicalTrials.gov NCT01747044 .
Collapse
Affiliation(s)
- Nicolas Macian
- CHU de Clermont-Ferrand, Inserm CIC 1405, Centre de Pharmacologie Clinique, F-63003, Clermont-Ferrand, France.
| | - Bruno Pereira
- CHU de Clermont-Ferrand, Délégation Recherche Clinique & Innovation - Villa annexe IFSI, 58 Rue Montalembert, F-63003, Clermont-Ferrand, France.
| | - Coralie Shinjo
- CHU de Clermont-Ferrand, Inserm CIC 1405, Centre de Pharmacologie Clinique, F-63003, Clermont-Ferrand, France.
| | - Claude Dubray
- CHU de Clermont-Ferrand, Inserm CIC 1405, Centre de Pharmacologie Clinique, F-63003, Clermont-Ferrand, France. .,Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, Laboratoire de Pharmacologie, Facultés de Médecine/Pharmacie, F-63000, Clermont-Ferrand, France. .,Inserm, U1107 Neuro-Dol, F-63001, Clermont-Ferrand, France.
| | - Gisèle Pickering
- CHU de Clermont-Ferrand, Inserm CIC 1405, Centre de Pharmacologie Clinique, F-63003, Clermont-Ferrand, France. .,Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, Laboratoire de Pharmacologie, Facultés de Médecine/Pharmacie, F-63000, Clermont-Ferrand, France. .,Inserm, U1107 Neuro-Dol, F-63001, Clermont-Ferrand, France.
| |
Collapse
|
45
|
Merkies ISJ, Faber CG, Lauria G. Advances in diagnostics and outcome measures in peripheral neuropathies. Neurosci Lett 2015; 596:3-13. [PMID: 25703220 DOI: 10.1016/j.neulet.2015.02.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/05/2015] [Accepted: 02/17/2015] [Indexed: 12/13/2022]
Abstract
Peripheral neuropathies are a group of acquired and hereditary disorders presenting with different distribution and nerve fiber class involvement. The overall prevalence is 2.4%, increasing to 8% in the elderly population. However, the frequency may vary depending on the underlying pathogenesis and association with systemic diseases. Distal symmetric polyneuropathy is the most common form, though multiple mononeuropathies, non-length dependent neuropathy and small fiber neuropathy can occur and may require specific diagnostic tools. The use of uniform outcome measures in peripheral neuropathies is important to improve the quality of randomized controlled trials, enabling comparison between studies. Recent developments in defining the optimal set of outcome measures in inflammatory neuropathies may serve as an example for other conditions. Diagnostic and outcome measure advances in peripheral neuropathies will be discussed.
Collapse
Affiliation(s)
- Ingemar S J Merkies
- Department of Neurology, Spaarne Hospital, Hoofddorp, The Netherlands; Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Catharina G Faber
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Giuseppe Lauria
- 3rd Neurology Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy.
| |
Collapse
|
46
|
Raz N, Granovsky Y, Defrin R. Investigating the neural processing of spatial summation of pain: the role of A-delta nociceptors. Exp Brain Res 2014; 233:405-13. [DOI: 10.1007/s00221-014-4123-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/04/2014] [Indexed: 11/24/2022]
|
47
|
Westgeest A, Morales M, Cabib C, Valls-Sole J. The effects of transcranial direct current stimulation on conscious perception of sensory inputs from hand palm and dorsum. Eur J Neurosci 2014; 40:3818-27. [DOI: 10.1111/ejn.12743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 09/02/2014] [Indexed: 11/30/2022]
Affiliation(s)
| | - Merche Morales
- Neurology Department; Hospital Clínic; Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS); Facultad de Medicina; Universitat de Barcelona; Barcelona Spain
| | - Christopher Cabib
- Neurology Department; Hospital Clínic; Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS); Facultad de Medicina; Universitat de Barcelona; Barcelona Spain
| | - Josep Valls-Sole
- Neurology Department; Hospital Clínic; Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS); Facultad de Medicina; Universitat de Barcelona; Barcelona Spain
| |
Collapse
|
48
|
Hunter J, Dranga R, van Wyk M, Dostrovsky J. Unique influence of stimulus duration and stimulation site (glabrous vs. hairy skin) on the thermal grill-induced percept. Eur J Pain 2014; 19:202-15. [DOI: 10.1002/ejp.538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2014] [Indexed: 12/17/2022]
Affiliation(s)
- J. Hunter
- Department of Physical Therapy; University of Toronto; Canada
| | - R. Dranga
- The Institute of Biomaterials & Biomedical Engineering (IBBME); University of Toronto; Canada
| | - M. van Wyk
- Department of Physical Therapy; University of Toronto; Canada
| | | |
Collapse
|
49
|
Cortical responses to C-fiber stimulation by intra-epidermal electrical stimulation: An MEG study. Neurosci Lett 2014; 570:69-74. [DOI: 10.1016/j.neulet.2014.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/24/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
|
50
|
Stress-induced mast cell activation in glabrous and hairy skin. Mediators Inflamm 2014; 2014:105950. [PMID: 24904196 PMCID: PMC4034722 DOI: 10.1155/2014/105950] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 04/04/2014] [Accepted: 04/10/2014] [Indexed: 11/28/2022] Open
Abstract
Mast cells play a key role in modulation of stress-induced cutaneous inflammation. In this study we investigate the impact of repeated exposure to stress on mast cell degranulation, in both hairy and glabrous skin. Adult male Wistar rats were randomly divided into four groups: Stress 1 day (n = 8), Stress 10 days (n = 7), Stress 21 days (n = 6), and Control (n = 8). Rats in the stress groups were subjected to 2 h/day restraint stress. Subsequently, glabrous and hairy skin samples from animals of all groups were collected to assess mast cell degranulation by histochemistry and transmission electron microscopy. The impact of stress on mast cell degranulation was different depending on the type of skin and duration of stress exposure. Short-term stress exposure induced an amplification of mast cell degranulation in hairy skin that was maintained after prolonged exposure to stress. In glabrous skin, even though acute stress exposure had a profound stimulating effect on mast cell degranulation, it diminished progressively with long-term exposure to stress. The results of our study reinforce the view that mast cells are active players in modulating skin responses to stress and contribute to further understanding of pathophysiological mechanisms involved in stress-induced initiation or exacerbation of cutaneous inflammatory processes.
Collapse
|