1
|
Kerr PL, Gregg JM. The Roles of Endogenous Opioids in Placebo and Nocebo Effects: From Pain to Performance to Prozac. ADVANCES IN NEUROBIOLOGY 2024; 35:183-220. [PMID: 38874724 DOI: 10.1007/978-3-031-45493-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Placebo and nocebo effects have been well documented for nearly two centuries. However, research has only relatively recently begun to explicate the neurobiological underpinnings of these phenomena. Similarly, research on the broader social implications of placebo/nocebo effects, especially within healthcare delivery settings, is in a nascent stage. Biological and psychosocial outcomes of placebo/nocebo effects are of equal relevance. A common pathway for such outcomes is the endogenous opioid system. This chapter describes the history of placebo/nocebo in medicine; delineates the current state of the literature related to placebo/nocebo in relation to pain modulation; summarizes research findings related to human performance in sports and exercise; discusses the implications of placebo/nocebo effects among diverse patient populations; and describes placebo/nocebo influences in research related to psychopharmacology, including the relevance of endogenous opioids to new lines of research on antidepressant pharmacotherapies.
Collapse
Affiliation(s)
- Patrick L Kerr
- West Virginia University School of Medicine-Charleston, Charleston, WV, USA.
| | - John M Gregg
- Department of Surgery, VTCSOM, Blacksburg, VA, USA
| |
Collapse
|
2
|
Salinsky LM, Merritt CR, Zamora JC, Giacomini JL, Anastasio NC, Cunningham KA. μ-opioid receptor agonists and psychedelics: pharmacological opportunities and challenges. Front Pharmacol 2023; 14:1239159. [PMID: 37886127 PMCID: PMC10598667 DOI: 10.3389/fphar.2023.1239159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Opioid misuse and opioid-involved overdose deaths are a massive public health problem involving the intertwined misuse of prescription opioids for pain management with the emergence of extremely potent fentanyl derivatives, sold as standalone products or adulterants in counterfeit prescription opioids or heroin. The incidence of repeated opioid overdose events indicates a problematic use pattern consistent with the development of the medical condition of opioid use disorder (OUD). Prescription and illicit opioids reduce pain perception by activating µ-opioid receptors (MOR) localized to the central nervous system (CNS). Dysregulation of meso-corticolimbic circuitry that subserves reward and adaptive behaviors is fundamentally involved in the progressive behavioral changes that promote and are consequent to OUD. Although opioid-induced analgesia and the rewarding effects of abused opioids are primarily mediated through MOR activation, serotonin (5-HT) is an important contributor to the pharmacology of opioid abused drugs (including heroin and prescription opioids) and OUD. There is a recent resurgence of interest into psychedelic compounds that act primarily through the 5-HT2A receptor (5-HT 2A R) as a new frontier in combatting such diseases (e.g., depression, anxiety, and substance use disorders). Emerging data suggest that the MOR and 5-HT2AR crosstalk at the cellular level and within key nodes of OUD circuitry, highlighting a major opportunity for novel pharmacological intervention for OUD. There is an important gap in the preclinical profiling of psychedelic 5-HT2AR agonists in OUD models. Further, as these molecules carry risks, additional analyses of the profiles of non-hallucinogenic 5-HT2AR agonists and/or 5-HT2AR positive allosteric modulators may provide a new pathway for 5-HT2AR therapeutics. In this review, we discuss the opportunities and challenges associated with utilizing 5-HT2AR agonists as therapeutics for OUD.
Collapse
Affiliation(s)
| | | | | | | | - Noelle C. Anastasio
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Kathryn A. Cunningham
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
3
|
Huang M, Wang G, Lin Y, Guo Y, Ren X, Shao J, Cao J, Zang W, Li Z. Dopamine receptor D2, but not D1, mediates the reward circuit from the ventral tegmental area to the central amygdala, which is involved in pain relief. Mol Pain 2022; 18:17448069221145096. [PMID: 36464669 PMCID: PMC9742700 DOI: 10.1177/17448069221145096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pain involves both sensory and affective dimensions. The amygdala is a key player in linking nociceptive stimuli to negative emotional behaviors or affective states. Relief of pain is rewarding and activates brain reward circuits. Whether the reward circuit from the ventral tegmental area (VTA) to the central amygdala (CeA) is involved in pain relief remains unexplored. Using a model of experimental postsurgical pain, we found that pain relief elicited conditioned place preference (CPP), activated CeA-projecting dopaminergic cells in the VTA, and decreased dopaminergic D2 receptor expression in the CeA. Activation of the VTA-CeA neural pathway using optogenetic approaches relieved incisional pain. Administration of a D2 receptor agonist reversed the pain relief elicited by light-induced activation of the VTA-CeA pathway. These findings indicate that the VTA-CeA circuit is involved in pain relief in mice via dopamine receptor D2 in the CeA.
Collapse
Affiliation(s)
- Minjie Huang
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China,Department of Human Anatomy, Basic Medical Sciences College, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Guoqing Wang
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China,Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yazhou Lin
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yanyan Guo
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiuhua Ren
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jinping Shao
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Cao
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Weidong Zang
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhihua Li
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China,Zhihua Li, Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, 1 Science Road, Zhengzhou 450001, Henan Province, China.
| |
Collapse
|
4
|
Ma L, Liu S, Yi M, Wan Y. Spontaneous pain as a challenge of research and management in chronic pain. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:308-319. [PMID: 37724190 PMCID: PMC10388751 DOI: 10.1515/mr-2022-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/31/2022] [Indexed: 09/20/2023]
Abstract
Spontaneous pain occurring without apparent external stimuli, is a significant complaint of individuals with chronic pain whose mechanisms, somewhat surprisingly, remain poorly understood. Over the past decades, neuroimaging studies start to reveal brain activities accompanying spontaneous pain. Meanwhile, a variety of animal models and behavioral tests have been established, including non-reflexive tests and free-choice tests, which have been shown to be effective in assessing spontaneous pain. For the spontaneous pain mechanisms, multiple lines of research mainly focus on three aspects: (1) sensitization of peripheral nociceptor receptors and ion channels, (2) spontaneous neuronal firing and abnormal activity patterns at the dorsal root ganglion and spinal cord level, (3) functional and structural alterations in the brain, particularly the limbic system and the medial pain pathway. Despite accumulating evidence revealing distinct neuronal mechanisms from evoked pain, we are still far from full understanding of spontaneous pain, leaving a big gap between bench and bedside for chronic pain treatment. A better understanding of the neural processes in chronic pain, with specific linkage as to which anatomical structures and molecules related to spontaneous pain perception and comorbidities, will greatly improve our ability to develop novel therapeutics.
Collapse
Affiliation(s)
- Longyu Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shuting Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| |
Collapse
|
5
|
Abdus-Saboor I, Luo W. Measuring Mouse Somatosensory Reflexive Behaviors with High-speed Videography, Statistical Modeling, and Machine Learning. NEUROMETHODS 2022; 178:441-456. [PMID: 35783537 PMCID: PMC9249079 DOI: 10.1007/978-1-0716-2039-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Objectively measuring and interpreting an animal's sensory experience remains a challenging task. This is particularly true when using preclinical rodent models to study pain mechanisms and screen for potential new pain treatment reagents. How to determine their pain states in a precise and unbiased manner is a hurdle that the field will need to overcome. Here, we describe our efforts to measure mouse somatosensory reflexive behaviors with greatly improved precision by high-speed video imaging. We describe how coupling sub-second ethograms of reflexive behaviors with a statistical reduction method and supervised machine learning can be used to create a more objective quantitative mouse "pain scale." Our goal is to provide the readers with a protocol of how to integrate some of the new tools described here with currently used mechanical somatosensory assays, while discussing the advantages and limitations of this new approach.
Collapse
Affiliation(s)
- Ishmail Abdus-Saboor
- Department of Biology, University of Pennsylvania, 3740 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Wenqin Luo
- Department of Neuroscience, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA
| |
Collapse
|
6
|
The Effect of Melatonin on Radicular Pain in a Rat Model of Lumbar Disc Herniation. Spine (Phila Pa 1976) 2022; 47:754-763. [PMID: 35102121 DOI: 10.1097/brs.0000000000004329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Controlled, randomized, animal study. OBJECTIVE To investigate the effect of melatonin and its receptors on radicular pain and the possible mechanisms. SUMMARY OF BACKGROUND DATA Lumbar disc herniation (LDH) may induce radicular pain, but the mechanism is not clear and therapeutic effect is still poor. Previously we report central sensitization meaning potentiation of spinal nociceptive synaptic transmission is the critical cause of radicular pain. Melatonin (Mel) has been reported to promote hippocampal synaptic transmission and thus improve learning ability. But the effect of Mel on spinal synaptic transmission and radicular pain are not clear. METHODS Rat LDH model was induced by autologous nucleus pulposus (NP) implantation. Melatonin was delivered intraperitoneally four times a day, from day 1 to day 3 after surgery. Melatonin receptor agonist and antagonists were delivered intrathecally for 3 days as well. Mechanical and thermal pain thresholds were assessed by von Frey filaments and hotplate test respectively. Electrophysiological recording was employed for survey C-fiber evoked field potentials. The protein level of N- methyl-D-aspartate submit 2A (NR2A), NR2B, melatonin receptor 1 (MT1), and receptor 2 (MT2) was evaluated by western blotting. Spinal expression of calcitonin gene related peptides (CGRP), isolectin b4 (IB4), and neurofilament-200 (NF200) was displayed by immunofluorescence staining. RESULTS Melatonin significantly increased mechanical and thermal pain thresholds, lasting at least to day 5 after surgery. Melatonin decreased C-fiber evoked field potentials; decreased spinal NR2B protein level; reduced spinal CGRP, and IB4 expression. MT2 was upregulated after NP implantation and was co-localized with neuron and microglia. MT2 receptor agonist simulated the effect of Mel, and both MT receptor broadspectrum antagonist and MT2 specific antagonist abolished the effect of MT2 receptor agonist. CONCLUSION Melatonin alleviates radicular pain from LDH by inhibiting central sensitization via binding with its receptor 2, decreasing spinal CGRP, IB4, and NR2B expression.
Collapse
|
7
|
Scheff NN, Wall IM, Nicholson S, Williams H, Chen E, Tu NH, Dolan JC, Liu CZ, Janal MN, Bunnett NW, Schmidt BL. Oral cancer induced TRPV1 sensitization is mediated by PAR 2 signaling in primary afferent neurons innervating the cancer microenvironment. Sci Rep 2022; 12:4121. [PMID: 35260737 PMCID: PMC8904826 DOI: 10.1038/s41598-022-08005-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/22/2022] [Indexed: 11/29/2022] Open
Abstract
Oral cancer patients report sensitivity to spicy foods and liquids. The mechanism responsible for chemosensitivity induced by oral cancer is not known. We simulate oral cancer-induced chemosensitivity in a xenograft oral cancer mouse model using two-bottle choice drinking and conditioned place aversion assays. An anatomic basis of chemosensitivity is shown in increased expression of TRPV1 in anatomically relevant trigeminal ganglion (TG) neurons in both the xenograft and a carcinogen (4-nitroquinoline 1-oxide)-induced oral cancer mouse models. The percent of retrograde labeled TG neurons that respond to TRPV1 agonist, capsaicin, is increased along with the magnitude of response as measured by calcium influx, in neurons from the cancer models. To address the possible mechanism of TRPV1 sensitivity in tongue afferents, we study the role of PAR2, which can sensitize the TRPV1 channel. We show co-expression of TRPV1 and PAR2 on tongue afferents and using a conditioned place aversion assay, demonstrate that PAR2 mediates oral cancer-induced, TRPV1-evoked sensitivity in an oral cancer mouse model. The findings provide insight into oral cancer-mediated chemosensitivity.
Collapse
Affiliation(s)
- Nicole N Scheff
- Department of Neurobiology and Hillman Cancer Research Center, University of Pittsburgh, Pittsburgh, USA
| | - Ian M Wall
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Sam Nicholson
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Hannah Williams
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Elyssa Chen
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Nguyen H Tu
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - John C Dolan
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Cheng Z Liu
- Pathology Department, NYU Langone Health, New York, USA
| | - Malvin N Janal
- Department of Epidemiology and Health Promotion, NYU College of Dentistry, New York, USA
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, USA
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Health Neuroscience Institute, NYU Langone Health, New York, USA
| | - Brian L Schmidt
- Department of Neurobiology and Hillman Cancer Research Center, University of Pittsburgh, Pittsburgh, USA.
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, USA.
| |
Collapse
|
8
|
Dietz BE, Mugan D, Vuong QC, Obara I. Electrically Evoked Compound Action Potentials in Spinal Cord Stimulation: Implications for Preclinical Research Models. Neuromodulation 2021; 25:64-74. [PMID: 34224656 DOI: 10.1111/ner.13480] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 01/26/2023]
Abstract
OBJECTIVES The study aimed to assess the feasibility of recording electrically evoked compound action potentials (ECAPs) from the rat spinal cord. To achieve this, we characterized electrophysiological responses of dorsal column (DC) axons from electrical stimulation and quantified the relationship between ECAP and motor thresholds (ECAPTs and MTs). MATERIAL AND METHODS Naïve, anesthetized and freely behaving rats were implanted with a custom-made epidural spinal cord stimulation (SCS) lead. Epidural stimulation and recordings were performed on the same lead using specifically designed equipment. RESULTS The ECAPs recorded from the rat spinal cord demonstrated the expected triphasic morphology. Using 20 μsec pulse duration and 2 Hz frequency rate, the current required in anesthetized rats to generate ECAPs was 0.13 ± 0.02 mA, while the average current required to observe MT was 1.49 ± 0.14 mA. In unanesthetized rats, the average current required to generate ECAPs was 0.09 ± 0.02 mA, while the average current required to observe MT was 0.27 ± 0.04 mA. Thus, there was a significant difference between the ECAPT and MT in both anesthetized and unanesthetized rats (MT was 13.39 ± 2.40 and 2.84 ± 0.33 times higher than ECAPT, respectively). Signal analysis revealed average conduction velocities (CVs) suggesting that predominantly large, myelinated fibers were activated. In addition, a morphometric evaluation of spinal cord slices indicated that the custom-made lead may preferentially activate DC axons. CONCLUSIONS This is the first evidence demonstrating the feasibility of recording ECAPs from the rat spinal cord, which may be more useful in determining parameters of SCS in preclinical SCS models than MTs. Thus, this approach may allow for the development of a novel model of SCS in rats with chronic pain that will translate better between animals and humans.
Collapse
Affiliation(s)
| | - Dave Mugan
- Saluda Medical Europe Ltd, Harrogate, UK
| | - Quoc Chi Vuong
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Ilona Obara
- School of Pharmacy, Newcastle University, Newcastle-upon-Tyne, UK.,Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
9
|
Uncovering the analgesic effects of a pH-dependent mu-opioid receptor agonist using a model of nonevoked ongoing pain. Pain 2021; 161:2798-2804. [PMID: 32639370 DOI: 10.1097/j.pain.0000000000001968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Currently, opioids targeting mu-opioid receptors are the most potent drugs for acute and cancer pain. However, opioids produce adverse side effects such as constipation, respiratory depression, or addiction potential. We recently developed (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP), a compound that does not evoke central or intestinal side effects due to its selective activation of mu-opioid receptors at low pH in peripheral injured tissues. Although we demonstrated that NFEPP effectively abolishes injury-induced pain, hyperalgesia, and allodynia in rodents, the efficacy of NFEPP in nonevoked ongoing pain remains to be established. Here, we examined reward, locomotor activity, and defecation in rats with complete Freund's adjuvant-induced paw inflammation to compare fentanyl's and NFEPP's potentials to induce side effects and to inhibit spontaneous pain. We demonstrate that low, but not higher, doses of NFEPP produce conditioned place preference but not constipation or motor disturbance, in contrast to fentanyl. Using a peripherally restricted antagonist, we provide evidence that NFEPP-induced place preference is mediated by peripheral opioid receptors. Our results indicate that a low dose of NFEPP produces reward by abolishing spontaneous inflammatory pain.
Collapse
|
10
|
Yamagata R, Nemoto W, Fujita M, Nakagawasai O, Tan-No K. Angiotensin (1-7) Attenuates the Nociceptive Behavior Induced by Substance P and NMDA via Spinal MAS1. Biol Pharm Bull 2021; 44:742-746. [PMID: 33952831 DOI: 10.1248/bpb.b20-01004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intrathecal (i.t.) injection of substance P (SP) and N-methyl-D-aspartate (NMDA) induce transient nociceptive response by activating neurokinin (NK) 1 and NMDA receptors, respectively. We have recently reported that angiotensin (Ang) (1-7), an N-terminal fragment of Ang II, could alleviate several types of pain including neuropathic and inflammatory pain by activating spinal MAS1. Here, we investigated whether Ang (1-7) can inhibit the SP- and NMDA-induced nociceptive response. The nociceptive response induced by an i.t. injection of SP or NMDA was assessed by measuring the duration of hindlimb scratching directed toward the flank, biting and/or licking of the hindpaw or the tail for 5 min. Localization of MAS1 and either NK1 or NMDA receptors in the lumbar superficial dorsal horn was determined by immunohistochemical observation. The nociceptive response induced by SP and NMDA was attenuated by the i.t. co-administration of Ang (1-7) (0.03-3 pmol) in a dose-dependent manner. The inhibitory effects of Ang (1-7) (3 pmol) were attenuated by A779 (100 pmol), a MAS1 antagonist. Moreover, immunohistochemical analysis showed that spinal MAS1 co-localized with NK1 receptors and NMDA receptors on cells in the dorsal horn. Taken together, the i.t. injection of Ang (1-7) attenuated the nociceptive response induced by SP and NMDA via spinal MAS1, which co-localized with NK1 and NMDA receptors. Thus, the spinal Ang (1-7)/MAS1 pathway could represent a therapeutic target to effectively attenuate spinal pain transmission caused by the activation of NK1 or NMDA receptors.
Collapse
Affiliation(s)
- Ryota Yamagata
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Wataru Nemoto
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Maho Fujita
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Koichi Tan-No
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
11
|
Raja SN, Ringkamp M, Guan Y, Campbell JN. John J. Bonica Award Lecture: Peripheral neuronal hyperexcitability: the "low-hanging" target for safe therapeutic strategies in neuropathic pain. Pain 2021; 161 Suppl 1:S14-S26. [PMID: 33090736 DOI: 10.1097/j.pain.0000000000001838] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Matthias Ringkamp
- Neurological Surgery, Department of Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Yun Guan
- Departments of Anesthesiology and Critical Care Medicine and.,Neurological Surgery, Department of Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - James N Campbell
- Neurological Surgery, Department of Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Huang Q, Ford NC, Gao X, Chen Z, Guo R, Raja SN, Guan Y, He S. Ubiquitin-mediated receptor degradation contributes to development of tolerance to MrgC agonist-induced pain inhibition in neuropathic rats. Pain 2021; 162:1082-1094. [PMID: 33110031 PMCID: PMC7969388 DOI: 10.1097/j.pain.0000000000002119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Agonists to subtype C of the Mas-related G-protein-coupled receptors (MrgC) induce pain inhibition after intrathecal (i.t.) administration in rodent models of nerve injury. Here, we investigated whether tolerance develops after repeated MrgC agonist treatments and examined the underlying mechanisms. In animal behavior studies conducted in male rats at 4 to 5 weeks after an L5 spinal nerve ligation (SNL), the ability of dipeptide MrgC agonist JHU58 (0.1 mM, 10 μL, i.t.) to inhibit mechanical and heat hypersensitivity decreased after 3 days of treatment with a tolerance-inducing dose (0.5 mM, 10 μL, i.t., twice/day). In HEK293T cells, acute treatment with JHU58 or BAM8-22 (a large peptide MrgC agonist) led to MrgC endocytosis from the cell membrane and later sorting to the membrane for reinsertion. However, chronic exposure to JHU58 increased the coupling of MrgC to β-arrestin-2 and led to the ubiquitination and degradation of MrgC. Importantly, pretreatment with TAK-243 (0.2 mM, 5 μL, i.t.), a small-molecule inhibitor of the ubiquitin-activating enzyme, during tolerance induction attenuated the development of tolerance to JHU58-induced inhibition of mechanical and heat hypersensitivity in SNL rats. Interestingly, morphine analgesia was also decreased in SNL rats that had become tolerant to JHU58, suggesting a cross-tolerance. Furthermore, i.t. pretreatment with TAK-243, which reduced JHU58 tolerance, also attenuated the cross-tolerance to morphine analgesia. These findings suggest that tolerance can develop to MrgC agonist-induced pain inhibition after repeated i.t. administrations. This tolerance development to JHU58 may involve increased coupling of MrgC to β-arrestin-2 and ubiquitin-mediated receptor degradation.
Collapse
Affiliation(s)
- Qian Huang
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Neil C. Ford
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Xinyan Gao
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Zhiyong Chen
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Ruijuan Guo
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Srinivasa N. Raja
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Neurological Surgery, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Shaoqiu He
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| |
Collapse
|
13
|
Crook RJ. Behavioral and neurophysiological evidence suggests affective pain experience in octopus. iScience 2021; 24:102229. [PMID: 33733076 PMCID: PMC7941037 DOI: 10.1016/j.isci.2021.102229] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Accepted: 02/19/2021] [Indexed: 11/24/2022] Open
Abstract
Pain is a negative affective state arising from tissue damage or inflammation. Because pain is aversive and its relief is innately rewarding, animals may learn to avoid a context in which pain is experienced and prefer one where pain relief occurs. It is generally accepted that vertebrate animals experience pain; however, there is currently inconclusive evidence that the affective component of pain occurs in any invertebrate. Here, we show that octopuses, the most neurologically complex invertebrates, exhibit cognitive and spontaneous behaviors indicative of affective pain experience. In conditioned place preference assays, octopuses avoided contexts in which pain was experienced, preferred a location in which they experienced relief from pain, and showed no conditioned preference in the absence of pain. Injection site grooming occurred in all animals receiving acetic acid injections, but this was abolished by local anesthesia. Thus, octopuses are likely to experience the affective component of pain. Octopuses avoid a location after it is associated with a noxious stimulus Injection of dilute acetic acid induces lasting, location-specific grooming Nerve recordings show central processing of noxious sensory input Octopuses are capable both of discriminative and affective pain experience
Collapse
Affiliation(s)
- Robyn J Crook
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| |
Collapse
|
14
|
Tøttrup L, Diaz-Valencia G, Kamavuako EN, Jensen W. Modulation of SI and ACC response to noxious and non-noxious electrical stimuli after the spared nerve injury model of neuropathic pain. Eur J Pain 2020; 25:612-623. [PMID: 33166003 DOI: 10.1002/ejp.1697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/14/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND The current knowledge on the role of SI and ACC in acute pain processing and how these contribute to the development of chronic pain is limited. Our objective was to investigate differences in and modulation of intracortical responses from SI and ACC in response to different intensities of peripheral presumed noxious and non-noxious stimuli in the acute time frame of a peripheral nerve injury in rats. METHODS We applied non-noxious and noxious electrical stimulation pulses through a cuff electrode placed around the sciatic nerve and measured the cortical responses (six electrodes in each cortical area) before and after the spared nerve injury model. RESULTS We found that the peak response correlated with the stimulation intensity and that SI and ACC differed in both amplitude and latency of cortical response. The cortical response to both noxious and non-noxious stimulation showed a trend towards faster processing of non-noxious stimuli in ACC and increased cortical processing of non-noxious stimuli in SI after SNI. CONCLUSIONS We found different responses in SI and ACC to different intensity electrical stimulations based on two features and changes in these features following peripheral nerve injury. We believe that these features may be able to assist to track cortical changes during the chronification of pain in future animal studies. SIGNIFICANCE This study showed distinct cortical processing of noxious and non-noxious peripheral stimuli in SI and ACC. The processing latency in ACC and accumulated spiking activity in SI appeared to be modulated by peripheral nerve injury, which elaborated on the function of these two areas in the processing of nociception.
Collapse
Affiliation(s)
- Lea Tøttrup
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Gabriela Diaz-Valencia
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ernest N Kamavuako
- Department of Engineering, King's College London, London, UK.,Faculté de Médecine, Université de Kindu, Maniema, D.R Congo
| | - Winnie Jensen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
15
|
Fight fire with fire: Neurobiology of capsaicin-induced analgesia for chronic pain. Pharmacol Ther 2020; 220:107743. [PMID: 33181192 DOI: 10.1016/j.pharmthera.2020.107743] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Capsaicin, the pungent ingredient in chili peppers, produces intense burning pain in humans. Capsaicin selectively activates the transient receptor potential vanilloid 1 (TRPV1), which is enriched in nociceptive primary afferents, and underpins the mechanism for capsaicin-induced burning pain. Paradoxically, capsaicin has long been used as an analgesic. The development of topical patches and injectable formulations containing capsaicin has led to application in clinical settings to treat chronic pain conditions, such as neuropathic pain and the potential to treat osteoarthritis. More detailed determination of the neurobiological mechanisms of capsaicin-induced analgesia should provide the logical rationale for capsaicin therapy and help to overcome the treatment's limitations, which include individual differences in treatment outcome and procedural discomfort. Low concentrations of capsaicin induce short-term defunctionalization of nociceptor terminals. This phenomenon is reversible within hours and, hence, likely does not account for the clinical benefit. By contrast, high concentrations of capsaicin lead to long-term defunctionalization mediated by the ablation of TRPV1-expressing afferent terminals, resulting in long-lasting analgesia persisting for several months. Recent studies have shown that capsaicin-induced Ca2+/calpain-mediated ablation of axonal terminals is necessary to produce long-lasting analgesia in a mouse model of neuropathic pain. In combination with calpain, axonal mitochondrial dysfunction and microtubule disorganization may also contribute to the longer-term effects of capsaicin. The analgesic effects subside over time in association with the regeneration of the ablated afferent terminals. Further determination of the neurobiological mechanisms of capsaicin-induced analgesia should lead to more efficacious non-opioidergic analgesic options with fewer adverse side effects.
Collapse
|
16
|
Dermorphin [D-Arg2, Lys4] (1-4) amide inhibits below-level heat hypersensitivity in mice after contusive thoracic spinal cord injury. Pain 2020; 160:2710-2723. [PMID: 31365470 DOI: 10.1097/j.pain.0000000000001671] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Opioid use for chronic pain is limited by severe central adverse effects. We examined whether activating mu-opioid receptors (MORs) in the peripheral nervous system attenuates spinal cord injury (SCI) pain-like behavior in mice. We produced a contusive SCI at the T10 vertebral level and examined motor and sensory dysfunction for 6 weeks. At 6 weeks, we tested the effect of subcutaneous (s.c.) injection of dermorphin [D-Arg2, Lys4] (1-4) amide (DALDA), a peripherally acting MOR-preferring agonist, on mechanical and heat hypersensitivity. Basso mouse scale score was significantly decreased after SCI, and mice showed hypersensitivity to mechanical and heat stimulation at the hind paw beginning at 2 weeks, as indicated by increased paw withdrawal frequency to mechanical stimulation and decreased paw withdrawal latency to heat stimulation. In wild-type SCI mice, DALDA (1 mg/kg, s.c.) attenuated heat but not mechanical hypersensitivity. The effect was blocked by pretreatment with an intraperitoneal injection of methylnaltrexone (5 mg/kg), a peripherally restricted opioid receptor antagonist, and was also diminished in Pirt-MOR conditional knockout mice. DALDA did not adversely affect exploratory activity or induced preference to drug treatment in SCI mice. In vivo calcium imaging showed that DALDA (1, 10 mg/kg, s.c.) inhibited responses of small dorsal root ganglion neurons to noxious heat stimulation in Pirt-GCaMP6s mice after SCI. Western blot analysis showed upregulation of MOR in the lumbar spinal cord and sciatic nerves at 6 weeks after SCI. Our findings suggest that peripherally acting MOR agonist may inhibit heat hypersensitivity below the injury level with minimal adverse effects.
Collapse
|
17
|
Stine C, Coleman DL, Flohrschutz AT, Thompson AL, Mishra S, Blagg BS, Largent-Milnes TM, Lei W, Streicher JM. Heat shock protein 90 inhibitors block the antinociceptive effects of opioids in mouse chemotherapy-induced neuropathy and cancer bone pain models. Pain 2020; 161:1798-1807. [PMID: 32701840 PMCID: PMC8607824 DOI: 10.1097/j.pain.0000000000001886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heat shock protein 90 (Hsp90) is a ubiquitous signal transduction regulator, and Hsp90 inhibitors are in clinical development as cancer therapeutics. However, there have been very few studies on the impact of Hsp90 inhibitors on pain or analgesia, a serious concern for cancer patients. We previously found that Hsp90 inhibitors injected into the brain block opioid-induced antinociception in tail flick, paw incision, and HIV neuropathy pain. This study extended from that initial work to test the cancer-related clinical impact of Hsp90 inhibitors on opioid antinociception in cancer-induced bone pain in female BALB/c mice and chemotherapy-induced peripheral neuropathy in male and female CD-1 mice. Mice were treated with Hsp90 inhibitors (17-AAG, KU-32) by the intracerebroventricular, intrathecal, or intraperitoneal routes, and after 24 hours, pain behaviors were evaluated after analgesic drug treatment. Heat shock protein 90 inhibition in the brain or systemically completely blocked morphine and oxymorphone antinociception in chemotherapy-induced peripheral neuropathy; this effect was partly mediated by decreased ERK and JNK MAPK activation and by increased protein translation, was not altered by chronic treatment, and Hsp90 inhibition had no effect on gabapentin antinociception. We also found that the Hsp90 isoform Hsp90α and the cochaperone Cdc37 were responsible for the observed changes in opioid antinociception. By contrast, Hsp90 inhibition in the spinal cord or systemically partially reduced opioid antinociception in cancer-induced bone pain. These results demonstrate that Hsp90 inhibitors block opioid antinociception in cancer-related pain, suggesting that Hsp90 inhibitors for cancer therapy could decrease opioid treatment efficacy.
Collapse
Affiliation(s)
- Carrie Stine
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724 USA
| | - Deziree L. Coleman
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724 USA
| | - Austin T. Flohrschutz
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724 USA
| | - Austen L. Thompson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724 USA
| | - Sanket Mishra
- Department of Chemistry and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Brian S. Blagg
- Department of Chemistry and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Tally M. Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724 USA
| | - Wei Lei
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724 USA
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Presbyterian College, Clinton, SC 29325 USA
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724 USA
| |
Collapse
|
18
|
Ablation of TRPV1+ Afferent Terminals by Capsaicin Mediates Long-Lasting Analgesia for Trigeminal Neuropathic Pain. eNeuro 2020; 7:ENEURO.0118-20.2020. [PMID: 32404326 PMCID: PMC7266139 DOI: 10.1523/eneuro.0118-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
Trigeminal neuropathic pain (TNP) is often resistant to current pharmacotherapy, and there is a pressing need to develop more efficacious treatments. Capsaicin is a pungent ingredient of chili peppers and specifically activates transient receptor potential vanilloid subtype 1 (TRPV1), a Ca2+-permeable ion channel. Topical capsaicin invariably induces burning pain. Paradoxically, the transient pain is often followed by prolonged attenuation of the preexisting pathologic pain from the same region. However, the mechanisms underlying capsaicin-induced analgesia are not well understood. Although the reports of the involvement of TRPV1 and TRPV1+ afferents in neuropathic pain are controversial, we recently demonstrated that TRPV1 and TRPV1+ afferents are involved in mechanical hyperalgesia in mice with chronic constriction injury of the infraorbital nerve (ION-CCI). Consistently, chemogenetic inhibition of TRPV1-lineage (TRPV1-LN) afferents attenuated mechanical hyperalgesia and ongoing pain. In mice with ION-CCI, we found that a single focal injection of capsaicin into facial skin led to attenuation of mechanical hyperalgesia over two weeks. Capsaicin treatment also attenuated secondary hyperalgesia in extraterritorial mandibular skin. Furthermore, capsaicin treatment decreased ongoing pain. Longitudinal in vivo two-photon imaging of cutaneous nerve fibers showed that such capsaicin-induced analgesia is correlated with cutaneous nerve terminal density. Furthermore, preventing capsaicin-induced ablation of afferent terminals by co-administration of capsaicin with MDL28170, an inhibitor of calpain, abolished capsaicin-induced analgesia. These results suggest that a single focal injection of capsaicin induces long-lasting analgesia for neuropathic pain via selective ablation of TRPV1+ afferent terminals and that TRPV1+ afferents contribute to the maintenance of TNP.
Collapse
|
19
|
Abstract
Trigeminal spinal subnucleus caudalis (Vc) neurons that project to the ventral posteromedial thalamic nucleus (VPM) and parabrachial nucleus (PBN) are critical for orofacial pain processing. We hypothesized that persistent trigeminal nerve injury differentially alters the proportion of Vc neurons that project to VPM and PBN in a modality-specific manner. Neuroanatomical approaches were used to quantify the number of Vc neurons projecting to VPM or PBN after chronic constriction injury of the infraorbital nerve (ION-CCI) and subsequent upper-lip stimulation. Male rats received injections of retrograde tracer fluorogold into the contralateral VPM or PBN on day 7 after ION-CCI, and at 3 days after that, either capsaicin injection or noxious mechanical stimulation was applied to the upper lip ipsilateral to nerve injury. Infraorbital nerve chronic constriction injury rats displayed greater forelimb wiping to capsaicin injection and mechanical allodynia of the lip than sham rats. Total cell counts for phosphorylated extracellular signal-regulated kinase-immunoreactive (pERK-IR) neurons after capsaicin or mechanical lip stimuli were higher in ION-CCI than sham rats as was the percentage of pERK-IR PBN projection neurons. However, the percentage of pERK-IR VPM projection neurons was also greater in ION-CCI than sham rats after capsaicin but not mechanical lip stimuli. The present findings suggest that persistent trigeminal nerve injury increases the number of Vc neurons activated by capsaicin or mechanical lip stimuli. By contrast, trigeminal nerve injury modifies the proportion of Vc nociceptive neurons projecting to VPM and PBN in a stimulus modality-specific manner and may reflect differential involvement of ascending pain pathways receiving C fiber and mechanosensitive afferents.
Collapse
|
20
|
Okada S, Katagiri A, Saito H, Lee J, Ohara K, Iinuma T, Iwata K. Functional involvement of nucleus tractus solitarii neurons projecting to the parabrachial nucleus in trigeminal neuropathic pain. J Oral Sci 2019; 61:370-378. [PMID: 31217389 DOI: 10.2334/josnusd.18-0355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Peripheral nerve injury can induce neuroplastic changes in the central nervous system and result in neuropathic pain. This study investigated functional involvement in dorsal paratrigeminal nucleus (dPa5) and nucleus tractus solitarii (NTS) neurons projecting to the parabrachial nucleus (PBN) after trigeminal nerve injury. Anatomical quantification was performed based on phosphorylated extracellular signal-regulated kinase (pERK) expression underlying orofacial neuropathic pain associated with infraorbital nerve chronic constriction injury (ION-CCI) in rats. ION-CCI rats exhibited heat and mechanical hypersensitivity in the ipsilateral upper lip. After injection of retrograde tracer fluorogold (FG) into the contralateral PBN, ION-CCI rats received capsaicin or noxious mechanical stimulation to the upper lip. The total number of FG-labeled neurons in dPa5 and NTS did not change after ION-CCI, and pERK expression in dPa5 did not differ between sham and ION-CCI rats. In the NTS contralateral to ION-CCI, the number of pERK-immunoreactive neurons and percentage of pERK-immunoreactive FG-labeled PBN projection neurons were increased after capsaicin stimulation in ION-CCI rats. The present findings suggest that enhanced noxious inputs from the NTS to the PBN after trigeminal nerve injury modulates PBN neuron activity, which accompanies the affective components of orofacial neuropathic pain.
Collapse
Affiliation(s)
- Shinji Okada
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry.,Department of Physiology, Nihon University School of Dentistry
| | - Ayano Katagiri
- Department of Physiology, Nihon University School of Dentistry.,Department of Oral Physiology, Osaka University Graduate School of Dentistry
| | - Hiroto Saito
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry.,Department of Physiology, Nihon University School of Dentistry
| | - Jun Lee
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry
| | - Kinuyo Ohara
- Department of Endodontics, Nihon University School of Dentistry
| | - Toshimitsu Iinuma
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry
| |
Collapse
|
21
|
Ma L, Yue L, Zhang Y, Wang Y, Han B, Cui S, Liu FY, Wan Y, Yi M. Spontaneous Pain Disrupts Ventral Hippocampal CA1-Infralimbic Cortex Connectivity and Modulates Pain Progression in Rats with Peripheral Inflammation. Cell Rep 2019; 29:1579-1593.e6. [DOI: 10.1016/j.celrep.2019.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/02/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
|
22
|
Tappe-Theodor A, King T, Morgan MM. Pros and Cons of Clinically Relevant Methods to Assess Pain in Rodents. Neurosci Biobehav Rev 2019; 100:335-343. [PMID: 30885811 PMCID: PMC6528820 DOI: 10.1016/j.neubiorev.2019.03.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/14/2019] [Accepted: 03/14/2019] [Indexed: 01/03/2023]
Abstract
The primary objective of preclinical pain research is to improve the treatment of pain. Decades of research using pain-evoked tests has revealed much about mechanisms but failed to deliver new treatments. Evoked pain-tests are often limited because they ignore spontaneous pain and motor or disruptive side effects confound interpretation of results. New tests have been developed to focus more closely on clinical goals such as reducing pathological pain and restoring function. The objective of this review is to describe and discuss several of these tests. We focus on: Grimace Scale, Operant Behavior, Wheel Running, Burrowing, Nesting, Home Cage Monitoring, Gait Analysis and Conditioned Place Preference/ Aversion. A brief description of each method is presented along with an analysis of the advantages and limitations. The pros and cons of each test will help researchers identify the assessment tool most appropriate to meet their particular objective to assess pain in rodents. These tests provide another tool to unravel the mechanisms underlying chronic pain and help overcome the translational gap in drug development.
Collapse
Affiliation(s)
- Anke Tappe-Theodor
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Tamara King
- Department of Biomedical Sciences, College of Osteopathic Medicine, Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA
| | - Michael M Morgan
- Department of Psychology, Washington State University, Vancouver, WA, USA
| |
Collapse
|
23
|
Abstract
Spinal projection neurons convey nociceptive signals to multiple brain regions including the parabrachial (PB) nucleus, which contributes to the emotional valence of pain perception. Despite the clear importance of projection neurons to pain processing, our understanding of the factors that shape their intrinsic membrane excitability remains limited. Here, we investigate a potential role for the Na leak channel NALCN in regulating the activity of spino-PB neurons in the developing rodent. Pharmacological reduction of NALCN current (INALCN), or the genetic deletion of NALCN channels, significantly reduced the intrinsic excitability of lamina I spino-PB neurons. In addition, substance P (SP) activated INALCN in ascending projection neurons through downstream Src kinase signaling, and the knockout of NALCN prevented SP-evoked action potential discharge in this neuronal population. These results identify, for the first time, NALCN as a strong regulator of neuronal activity within central pain circuits and also elucidate an additional ionic mechanism by which SP can modulate spinal nociceptive processing. Collectively, these findings indicate that the level of NALCN conductance within spino-PB neurons tightly governs ascending nociceptive transmission to the brain and thereby potentially influences pain perception.
Collapse
|
24
|
Abstract
Chronic itch is clinically correlated with the development of mood disorders such as anxiety and depression. Nonetheless, whether this relevance exists in rodents is unknown, and evidence demonstrating chronic itch can affect mood is lacking. The aim of this study is to characterize the affective consequences of chronic itch, and explore potential mechanisms and interventional strategy. We subjected mice to chronic itch by repetitive cutaneous treatment with acetone and diethylether followed by water (AEW) that models "dry skin." After 3 to 4 weeks AEW treatment, the mice developed behavioral phenotypes of anxiety and depression assessed by a battery of behavioral paradigms, such as light-dark box and forced swim test. These behavioral symptoms of mood disturbance were independent of cutaneous barrier disruption, but correlated well with the degree of the irritating itch sensation. Although AEW mice showed normal circadian hypothalamic-pituitary-adrenal (HPA) axis activity, their neuroendocrine functionality was dampened, including impaired endocrine stress responsivity, altered neuroendocrine-immune interaction, and blunted corticosterone response to both dexamethasone and CRF. Parameters of HPA functionality at the level of mRNA transcripts are altered in stress-related brain regions of AEW mice, implying an overdrive of central CRF system. Remarkably, chronic treatment of AEW mice with antalarmin, a CRFR1 antagonist, ameliorated both their mood impairment and stress axis dysfunction. This is the first evidence revealing mood impairment, HPA axis dysfunction, and potential therapeutic efficacy by CRFR1 antagonist in mice with chronic itch, thus providing a preclinical model to investigate the affective consequence of chronic itch and the underlying mechanisms.
Collapse
|
25
|
Spinal Cord Stimulation for Pain Treatment After Spinal Cord Injury. Neurosci Bull 2018; 35:527-539. [PMID: 30560438 DOI: 10.1007/s12264-018-0320-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/11/2018] [Indexed: 12/30/2022] Open
Abstract
In addition to restoration of bladder, bowel, and motor functions, alleviating the accompanying debilitating pain is equally important for improving the quality of life of patients with spinal cord injury (SCI). Currently, however, the treatment of chronic pain after SCI remains a largely unmet need. Electrical spinal cord stimulation (SCS) has been used to manage a variety of chronic pain conditions that are refractory to pharmacotherapy. Yet, its efficacy, benefit profiles, and mechanisms of action in SCI pain remain elusive, due to limited research, methodological weaknesses in previous clinical studies, and a lack of mechanistic exploration of SCS for SCI pain control. We aim to review recent studies and outline the therapeutic potential of different SCS paradigms for traumatic SCI pain. We begin with an overview of its manifestations, classification, potential underlying etiology, and current challenges for its treatment. The clinical evidence for using SCS in SCI pain is then reviewed. Finally, future perspectives of pre-clinical research and clinical study of SCS for SCI pain treatment are discussed.
Collapse
|
26
|
Horváth Á, Borbély É, Bölcskei K, Szentes N, Kiss T, Belák M, Rauch T, Glant T, Zákány R, Juhász T, Karanyicz E, Boldizsár F, Helyes Z, Botz B. Regulatory role of capsaicin-sensitive peptidergic sensory nerves in the proteoglycan-induced autoimmune arthritis model of the mouse. J Neuroinflammation 2018; 15:335. [PMID: 30509328 PMCID: PMC6276168 DOI: 10.1186/s12974-018-1364-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022] Open
Abstract
Objective The regulatory role of capsaicin-sensitive peptidergic sensory nerves has been shown in acute inflammation, but little is known about their involvement in T/B-cell driven autoimmune arthritis. This study integratively characterized the function of these nerve endings in the proteoglycan-induced chronic arthritis (PGIA), a translational model of rheumatoid arthritis. Methods Peptidergic afferents were defunctionalized by resiniferatoxin (RTX) pretreatment in BALB/c mice, PGIA was induced by repeated antigen challenges. Hind paw volume, arthritis severity, grasping ability and the mechanonociceptive threshold were monitored during the 17-week experiment. Myeloperoxidase activity, vascular leakage and bone turnover were evaluated by in vivo optical imaging. Bone morphology was assessed using micro-CT, the intertarsal small joints were processed for histopathological analysis. Results Following desensitization of the capsaicin-sensitive afferents, ankle edema, arthritis severity and mechanical hyperalgesia were markedly diminished. Myeloperoxidase activity was lower in the early, but increased in the late phase, whilst plasma leakage and bone turnover were not altered. Desensitized mice displayed similar bone spurs and erosions, but increased trabecular thickness of the tibia and bony ankylosis of the spine. Intertarsal cartilage thickness was not altered in the model, but desensitization increased this parameter in both the non-arthritic and arthritic groups. Conclusion This is the first integrative in vivo functional and morphological characterization of the PGIA mouse model, wherein peptidergic afferents have an important regulatory function. Their overall effect is proinflammatory by increasing acute inflammation, immune cell activity and pain. Meanwhile, their activation decreases spinal ankylosis, arthritis-induced altered trabecularity, and cartilage thickness in small joints. Electronic supplementary material The online version of this article (10.1186/s12974-018-1364-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ádám Horváth
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti u. 12, Pécs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, National Brain Research Program 20017-1.2.1-NKP-2017-00002, Chronic Pain Research Group, University of Pécs Medical School, Pécs, Hungary
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti u. 12, Pécs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, National Brain Research Program 20017-1.2.1-NKP-2017-00002, Chronic Pain Research Group, University of Pécs Medical School, Pécs, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti u. 12, Pécs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, National Brain Research Program 20017-1.2.1-NKP-2017-00002, Chronic Pain Research Group, University of Pécs Medical School, Pécs, Hungary
| | - Nikolett Szentes
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti u. 12, Pécs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, National Brain Research Program 20017-1.2.1-NKP-2017-00002, Chronic Pain Research Group, University of Pécs Medical School, Pécs, Hungary
| | - Tamás Kiss
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti u. 12, Pécs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, National Brain Research Program 20017-1.2.1-NKP-2017-00002, Chronic Pain Research Group, University of Pécs Medical School, Pécs, Hungary
| | - Mátyás Belák
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti u. 12, Pécs, 7624, Hungary
| | - Tibor Rauch
- Department of Orthopedic Surgery, Section of Molecular Medicine, Rush University Medical Center, Chicago, USA
| | - Tibor Glant
- Department of Orthopedic Surgery, Section of Molecular Medicine, Rush University Medical Center, Chicago, USA
| | - Róza Zákány
- Department of Anatomy, Histology, and Embryology, University of Debrecen, Debrecen, Hungary
| | - Tamás Juhász
- Department of Anatomy, Histology, and Embryology, University of Debrecen, Debrecen, Hungary
| | - Edina Karanyicz
- Department of Anatomy, Histology, and Embryology, University of Debrecen, Debrecen, Hungary
| | - Ferenc Boldizsár
- Medical School, Department of Immunology, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti u. 12, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary. .,Department of Pharmacology and Pharmacotherapy, National Brain Research Program 20017-1.2.1-NKP-2017-00002, Chronic Pain Research Group, University of Pécs Medical School, Pécs, Hungary.
| | - Bálint Botz
- János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Medical School, Department of Radiology, University of Pécs, Pécs, Hungary
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW The goal of this review is to provide a broad overview of the current understanding of mechanisms underlying bone and joint pain. RECENT FINDINGS Bone or joint pathology is generally accompanied by local release of pro-inflammatory cytokines, growth factors, and neurotransmitters that activate and sensitize sensory nerves resulting in an amplified pain signal. Modulation of the pain signal within the spinal cord and brain that result in net increased facilitation is proposed to contribute to the development of chronic pain. Great strides have been made in our understanding of mechanisms underlying bone and joint pain that will guide development of improved therapeutic options for these patients. Continued research is required for improved understanding of mechanistic differences driving different components of bone and/or joint pain such as movement related pain compared to persistent background pain. Advances will guide development of more individualized and comprehensive therapeutic options.
Collapse
Affiliation(s)
- Joshua Havelin
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04043, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA
| | - Tamara King
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04043, USA.
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA.
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, 11 Hills Beach Rd., Biddeford, ME, 04005, USA.
| |
Collapse
|
28
|
Emotional and Motivational Pain Processing: Current State of Knowledge and Perspectives in Translational Research. Pain Res Manag 2018; 2018:5457870. [PMID: 30123398 PMCID: PMC6079355 DOI: 10.1155/2018/5457870] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/03/2018] [Indexed: 01/13/2023]
Abstract
Pain elicits fear and anxiety and promotes escape, avoidance, and adaptive behaviors that are essential for survival. When pain persists, motivational priority and attention shift to pain-related information. Such a shift often results in impaired functionality, leading to maladaptive pain-related fear and anxiety and escape and avoidance behaviors. Neuroimaging studies in chronic pain patients have established that brain activity, especially in cortical and mesolimbic regions, is different from activity observed during acute pain in control subjects. In this review, we discuss the psychophysiological and neuronal factors that may be associated with the transition to chronic pain. We review information from human studies on neural circuits involved in emotional and motivational pain processing and how these circuits are altered in chronic pain conditions. We then highlight findings from animal research that can increase our understanding of the molecular and cellular mechanisms underlying emotional-motivational pain processing in the brain. Finally, we discuss how translational approaches incorporating results from both human and animal investigations may aid in accelerating the discovery of therapies.
Collapse
|
29
|
Tiwari V, Anderson M, Yang F, Tiwari V, Pharm M, Zheng Q, He SQ, Zhang T, Shu B, Chen X, Grenald SA, Stephens KE, Chen Z, Dong X, Raja SN, Guan Y. Peripherally Acting μ-Opioid Receptor Agonists Attenuate Ongoing Pain-associated Behavior and Spontaneous Neuronal Activity after Nerve Injury in Rats. Anesthesiology 2018; 128:1220-1236. [PMID: 29601322 PMCID: PMC5953805 DOI: 10.1097/aln.0000000000002191] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Ongoing neuropathic pain is difficult to treat. The authors examined whether dermorphin [D-Arg2, Lys4] (1-4) amide, a peripherally acting µ-opioid receptor agonist, attenuates ongoing pain-associated manifestations after nerve injury in rats and mice. METHODS Using conditioned place preference assay, the authors tested whether animals show a preference to the environment associated with drug treatment. Wide-dynamic range and dorsal root ganglion neuronal activities were measured by electrophysiology recording and calcium imaging. RESULTS Nerve-injured animals stayed longer in dermorphin [D-Arg2, Lys4] (1-4) amide-paired chamber after conditioning than during preconditioning (rats: 402.4 ± 61.3 vs. 322.1 ± 45.0 s, 10 mg/kg, n = 9, P = 0.009; mice: 437.8 ± 59.4 vs. 351.3 ± 95.9 s, 2 mg/kg, n = 8, P = 0.047). Topical ganglionic application of dermorphin [D-Arg2, Lys4] (1-4) amide (5 μM, 1 μl, n = 5) reduced the numbers of small-diameter dorsal root ganglion neurons that showed spontaneous activity (1.1 ± 0.4 vs. 1.5 ± 0.3, P = 0.044) and that were activated by test stimulation (15.5 ± 5.5 vs. 28.2 ± 8.2, P = 0.009) after injury. In neuropathic rats, dermorphin [D-Arg2, Lys4] (1-4) amide (10 mg/kg, n = 8) decreased spontaneous firing rates in wide-dynamic range neurons to 53.2 ± 46.6% of predrug level, and methylnaltrexone (5 mg/kg, n = 9) blocked dermorphin [D-Arg2, Lys4] (1-4) amide-induced place preference and inhibition of wide-dynamic range neurons. Dermorphin [D-Arg2, Lys4] (1-4) amide increased paw withdrawal threshold (17.5 ± 2.2 g) from baseline (3.5 ± 0.7 g, 10 mg/kg, n = 8, P = 0.002) in nerve-injured rats, but the effect diminished after repeated administrations. CONCLUSIONS Peripherally acting μ-opioids may attenuate ongoing pain-related behavior and its neurophysiologic correlates. Yet, repeated administrations cause antiallodynic tolerance.
Collapse
Affiliation(s)
- Vinod Tiwari
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Michael Anderson
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Fei Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | | | - M. Pharm
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Qin Zheng
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Shao-Qiu He
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Tong Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Neurology, Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Bin Shu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Wuhan, 430030, China
| | - Xueming Chen
- Department of Orthopedics, Luhe Hospital, Capital Medical University, Beijing, 100020, China
| | - Shaness A. Grenald
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Kimberly E. Stephens
- Department of Pharmacology and Molecular Sciences, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Center for Epigenetics, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Zhiyong Chen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Srinivasa N. Raja
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| |
Collapse
|
30
|
Jayaraj ND, Bhattacharyya BJ, Belmadani AA, Ren D, Rathwell CA, Hackelberg S, Hopkins BE, Gupta HR, Miller RJ, Menichella DM. Reducing CXCR4-mediated nociceptor hyperexcitability reverses painful diabetic neuropathy. J Clin Invest 2018. [PMID: 29533926 DOI: 10.1172/jci92117] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Painful diabetic neuropathy (PDN) is an intractable complication of diabetes that affects 25% of patients. PDN is characterized by neuropathic pain and small-fiber degeneration, accompanied by dorsal root ganglion (DRG) nociceptor hyperexcitability and loss of their axons within the skin. The molecular mechanisms underlying DRG nociceptor hyperexcitability and small-fiber degeneration in PDN are unknown. We hypothesize that chemokine CXCL12/CXCR4 signaling is central to this mechanism, as we have shown that CXCL12/CXCR4 signaling is necessary for the development of mechanical allodynia, a pain hypersensitivity behavior common in PDN. Focusing on DRG neurons expressing the sodium channel Nav1.8, we applied transgenic, electrophysiological, imaging, and chemogenetic techniques to test this hypothesis. In the high-fat diet mouse model of PDN, we were able to prevent and reverse mechanical allodynia and small-fiber degeneration by limiting CXCR4 signaling or neuronal excitability. This study reveals that excitatory CXCR4/CXCL12 signaling in Nav1.8-positive DRG neurons plays a critical role in the pathogenesis of mechanical allodynia and small-fiber degeneration in a mouse model of PDN. Hence, we propose that targeting CXCR4-mediated DRG nociceptor hyperexcitability is a promising therapeutic approach for disease-modifying treatments for this currently intractable and widespread affliction.
Collapse
Affiliation(s)
| | | | - Abdelhak A Belmadani
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dongjun Ren
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Craig A Rathwell
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Brittany E Hopkins
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Herschel R Gupta
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Richard J Miller
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniela M Menichella
- Department of Neurology and.,Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
31
|
Hyperactivity of Anterior Cingulate Cortex Areas 24a/24b Drives Chronic Pain-Induced Anxiodepressive-like Consequences. J Neurosci 2018; 38:3102-3115. [PMID: 29463643 DOI: 10.1523/jneurosci.3195-17.2018] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/10/2018] [Accepted: 02/10/2018] [Indexed: 11/21/2022] Open
Abstract
Pain associates both sensory and emotional aversive components, and often leads to anxiety and depression when it becomes chronic. Here, we characterized, in a mouse model, the long-term development of these sensory and aversive components as well as anxiodepressive-like consequences of neuropathic pain and determined their electrophysiological impact on the anterior cingulate cortex (ACC, cortical areas 24a/24b). We show that these symptoms of neuropathic pain evolve and recover in different time courses following nerve injury in male mice. In vivo electrophysiological recordings evidence an increased firing rate and bursting activity within the ACC when anxiodepressive-like consequences developed, and this hyperactivity persists beyond the period of mechanical hypersensitivity. Whole-cell patch-clamp recordings also support ACC hyperactivity, as shown by increased excitatory postsynaptic transmission and contribution of NMDA receptors. Optogenetic inhibition of the ACC hyperactivity was sufficient to alleviate the aversive and anxiodepressive-like consequences of neuropathic pain, indicating that these consequences are underpinned by ACC hyperactivity.SIGNIFICANCE STATEMENT Chronic pain is frequently comorbid with mood disorders, such as anxiety and depression. It has been shown that it is possible to model this comorbidity in animal models by taking into consideration the time factor. In this study, we aimed at determining the dynamic of different components and consequences of chronic pain, and correlated them with electrophysiological alterations. By combining electrophysiological, optogenetic, and behavioral analyses in a mouse model of neuropathic pain, we show that the mechanical hypersensitivity, ongoing pain, anxiodepressive consequences, and their recoveries do not necessarily exhibit temporal synchrony during chronic pain processing, and that the hyperactivity of the anterior cingulate cortex is essential for driving the emotional impact of neuropathic pain.
Collapse
|
32
|
Edwards KA, Havelin JJ, Mcintosh MI, Ciccone HA, Pangilinan K, Imbert I, Largent-Milnes TM, King T, Vanderah TW, Streicher JM. A Kappa Opioid Receptor Agonist Blocks Bone Cancer Pain Without Altering Bone Loss, Tumor Size, or Cancer Cell Proliferation in a Mouse Model of Cancer-Induced Bone Pain. THE JOURNAL OF PAIN 2018; 19:612-625. [PMID: 29371114 DOI: 10.1016/j.jpain.2018.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2022]
Abstract
Breast cancer metastasizes to bone, diminishing quality of life of patients because of pain, fracture, and limited mobility. Cancer-induced bone pain (CIBP) is characterized as moderate to severe ongoing pain, primarily managed by mu opioid agonists such as fentanyl. However, opioids are limited by escalating doses and serious side effects. One alternative may be kappa opioid receptor (KOR) agonists. There are few studies examining KOR efficacy on CIBP, whereas KOR agonists are efficacious in peripheral and inflammatory pain. We thus examined the effects of the KOR agonist U50,488 given twice daily across 7 days to block CIBP, tumor-induced bone loss, and tumor burden. U50,488 dose-dependently blocked tumor-induced spontaneous flinching and impaired limb use, without changing tactile hypersensitivity, and was fully reversed by the KOR antagonist nor-binaltorphimine. U50,488 treatment was higher in efficacy and duration of action at later time points. U50,488 blocked this pain without altering tumor-induced bone loss or tumor growth. Follow-up studies in human cancer cell lines confirmed that KOR agonists do not affect cancer cell proliferation. These studies suggest that KOR agonists could be a new target for cancer pain management that does not induce cancer cell proliferation or alter bone loss. PERSPECTIVE This study demonstrates the efficacy of KOR agonists in the treatment of bone cancer-induced pain in mice, without changing tumor size or proliferation in cancer cell lines. This suggests that KOR agonists could be used to manage cancer pain without the drawbacks of mu opioid agonists and without worsening disease progression.
Collapse
Affiliation(s)
- Katie A Edwards
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine
| | - Joshua J Havelin
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine
| | - Mary I Mcintosh
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Haley A Ciccone
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Kathlene Pangilinan
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine
| | - Ian Imbert
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine
| | | | - Tamara King
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine
| | - Todd W Vanderah
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona.
| |
Collapse
|
33
|
|
34
|
Gambeta E, Kopruszinski CM, dos Reis RC, Zanoveli JM, Chichorro JG. Facial pain and anxiety-like behavior are reduced by pregabalin in a model of facial carcinoma in rats. Neuropharmacology 2017; 125:263-271. [DOI: 10.1016/j.neuropharm.2017.07.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
|
35
|
Oral Application of Magnesium-L-Threonate Attenuates Vincristine-induced Allodynia and Hyperalgesia by Normalization of Tumor Necrosis Factor-α/Nuclear Factor-κB Signaling. Anesthesiology 2017; 126:1151-1168. [PMID: 28306698 DOI: 10.1097/aln.0000000000001601] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Antineoplastic agents, including vincristine, often induce neuropathic pain and magnesium deficiency clinically, but the causal link between them has not been determined. No drug is available for treating this form of neuropathic pain. METHODS Injection of vincristine (0.1 mg · kg · day, intraperitoneally, for 10 days) was used to induce nociceptive sensitization, which was accessed with von Frey hairs and the plantar tester in adult male Sprague-Dawley rats. Magnesium-L- threonate was administered through drinking water (604 mg · kg · day). Extracellular and intracellular free Mg were measured by Calmagite chromometry and flow cytometry. Molecular biologic and electrophysiologic experiments were performed to expose the underlying mechanisms. RESULTS Vincristine injection induced allodynia and hyperalgesia (n = 12), activated tumor necrosis factor-α/nuclear factor-κB signaling, and reduced free Mg in cerebrospinal fluid by 21.7 ± 6.3% (mean ± SD; n = 13) and in dorsal root ganglion neurons by 27 ± 6% (n = 11). Reducing Mg activated tumor necrosis factor-α/nuclear factor-κB signaling in cultured dorsal root ganglion neurons. Oral application of magnesium-L-threonate prevented magnesium deficiency and attenuated both activation of tumor necrosis factor-α/nuclear factor-κB signaling and nociceptive sensitization (n = 12). Mechanistically, vincristine induced long-term potentiation at C-fiber synapses, up-regulated N-methyl-D-aspartate receptor type 2B subunit of N-methyl-D-aspartate receptor, and led to peptidergic C-fiber sprouting in spinal dorsal horn (n = 6 each). The vincristine-induced pathologic plasticity was blocked by intrathecal injection of nuclear factor-κB inhibitor (n = 6), mimicked by tumor necrosis factor-α, and substantially prevented by oral magnesium-L-threonate (n = 5). CONCLUSIONS Vincristine may activate tumor necrosis factor-α/nuclear factor-κB pathway by reduction of intracellular magnesium, leading to spinal pathologic plasticity and nociceptive sensitization. Oral magnesium-L-threonate that prevents the magnesium deficiency is a novel approach to prevent neuropathic pain induced by chemotherapy.
Collapse
|
36
|
Wang S, Lim J, Joseph J, Wang S, Wei F, Ro JY, Chung MK. Spontaneous and Bite-Evoked Muscle Pain Are Mediated by a Common Nociceptive Pathway With Differential Contribution by TRPV1. THE JOURNAL OF PAIN 2017; 18:1333-1345. [PMID: 28669862 DOI: 10.1016/j.jpain.2017.06.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/01/2017] [Accepted: 06/20/2017] [Indexed: 01/30/2023]
Abstract
Spontaneous pain and function-associated pain are prevalent symptoms of multiple acute and chronic muscle pathologies. We established mouse models for evaluating spontaneous pain and bite-evoked pain from masseter muscle, and determined the roles of transient receptor potential cation channel subfamily V member 1 (TRPV1) and the contribution of TRPV1- or neurokinin 1 (NK1)-dependent nociceptive pathways. Masseter muscle inflammation increased Mouse Grimace Scale scores and face-wiping behavior, which were attenuated by pharmacological or genetic inhibition of TRPV1. Masseter inflammation led to a significant reduction in bite force. Inhibition of TRPV1 only marginally relieved the inflammation-induced reduction of bite force. These results suggest a differential extent of contribution of TRPV1 to the 2 types of muscle pain. However, chemical ablation of TRPV1-expressing nociceptors or chemogenetic silencing of TRPV1-lineage nerve terminals in masseter muscle attenuated inflammation-induced changes in Mouse Grimace Scale scores as well as bite force. Furthermore, ablation of neurons expressing NK1 receptor in trigeminal subnucleus caudalis also prevented both types of muscle pain. Our results suggest that TRPV1 differentially contributes to spontaneous pain and bite-evoked muscle pain, but TRPV1-expressing afferents and NK1-expressing second-order neurons commonly mediate both types of muscle pain. Therefore, manipulation of the nociceptive circuit may provide a novel approach for management of acute or chronic craniofacial muscle pain. PERSPECTIVE We report the profound contribution of TRPV1 to spontaneous muscle pain but not to bite-evoked muscle pain. These 2 types of muscle pain are transmitted through a common nociceptive pathway. These results may help to develop new strategies to manage multiple modes of muscle pain simultaneously by manipulating pain circuits.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland
| | - Jongseuk Lim
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland
| | - John Joseph
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland
| | - Sen Wang
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland
| | - Feng Wei
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland
| | - Jin Y Ro
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland.
| |
Collapse
|
37
|
Havelin J, Imbert I, Sukhtankar D, Remeniuk B, Pelletier I, Gentry J, Okun A, Tiutan T, Porreca F, King TE. Mediation of Movement-Induced Breakthrough Cancer Pain by IB4-Binding Nociceptors in Rats. J Neurosci 2017; 37:5111-5122. [PMID: 28438966 PMCID: PMC5444195 DOI: 10.1523/jneurosci.1212-16.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 03/30/2017] [Accepted: 04/14/2017] [Indexed: 02/04/2023] Open
Abstract
Cancer-induced bone pain is characterized by moderate to severe ongoing pain that commonly requires the use of opiates. Even when ongoing pain is well controlled, patients can suffer breakthrough pain (BTP), episodic severe pain that "breaks through" the medication. We developed a novel model of cancer-induced BTP using female rats with mammary adenocarcinoma cells sealed within the tibia. We demonstrated previously that rats with bone cancer learn to prefer a context paired with saphenous nerve block to elicit pain relief (i.e., conditioned place preference, CPP), revealing the presence of ongoing pain. Treatment with systemic morphine abolished CPP to saphenous nerve block, demonstrating control of ongoing pain. Here, we show that pairing BTP induced by experimenter-induced movement of the tumor-bearing hindlimb with a context produces conditioned place avoidance (CPA) in rats treated with morphine to control ongoing pain, consistent with clinical observation of BTP. Preventing movement-induced afferent input by saphenous nerve block before, but not after, hindlimb movement blocked movement-induced BTP. Ablation of isolectin B4 (IB4)-binding, but not TRPV1+, sensory afferents eliminated movement-induced BTP, suggesting that input from IB4-binding fibers mediates BTP. Identification of potential molecular targets specific to this population of fibers may allow for the development of peripherally restricted analgesics that control BTP and improve quality of life in patients with skeletal metastases.SIGNIFICANCE STATEMENT We present a novel preclinical measure of movement-induced breakthrough pain (BTP) that is observed in the presence of morphine controlling ongoing pain. Blockade of sensory input before movement prevented BTP, whereas nerve block after movement failed to reverse BTP. These observations indicate that blocking peripheral sensory input may prevent BTP and targeting central sites may be required for pain relief once BTP has been initiated. Preventing sensory input from TRPV1-expressing fibers failed to alter movement-induced BTP. In contrast, preventing sensory input from isolectin B4 (IB4)-binding fibers blocked movement-induced BTP. Therefore, examining molecular targets on this population of nociceptive fibers may prove useful for developing an improved strategy for preventing BTP in cancer patients with skeletal metastases.
Collapse
Affiliation(s)
- Joshua Havelin
- Department of Biomedical Sciences, College of Osteopathic Medicine, Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005, and
| | - Ian Imbert
- Department of Biomedical Sciences, College of Osteopathic Medicine, Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005, and
| | | | | | - Ian Pelletier
- Department of Biomedical Sciences, College of Osteopathic Medicine, Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005, and
| | - Jonathan Gentry
- Department of Biomedical Sciences, College of Osteopathic Medicine, Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005, and
| | - Alec Okun
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724
| | - Timothy Tiutan
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724
| | - Frank Porreca
- Department of Cancer Biology, Arizona Cancer Center, and
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724
| | - Tamara E King
- Department of Biomedical Sciences, College of Osteopathic Medicine, Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005, and
| |
Collapse
|
38
|
Nones C, Claudino R, Ferreira L, Dos Reis R, King T, Chichorro J. Descending facilitatory pain pathways mediate ongoing pain and tactile hypersensitivity in a rat model of trigeminal neuropathic pain. Neurosci Lett 2017; 644:18-23. [DOI: 10.1016/j.neulet.2017.02.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/01/2017] [Accepted: 02/18/2017] [Indexed: 11/24/2022]
|
39
|
Chamessian AG, Qadri YJ, Cummins M, Hendrickson M, Berta T, Buchheit T, Van de Ven T. 5-Hydroxymethylcytosine (5hmC) and Ten-eleven translocation 1-3 (TET1-3) proteins in the dorsal root ganglia of mouse: Expression and dynamic regulation in neuropathic pain. Somatosens Mot Res 2017; 34:72-79. [PMID: 28276837 DOI: 10.1080/08990220.2017.1292237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Epigenetic mechanisms are increasingly implicated in chronic pain pathology. In this study, we demonstrate that the novel epigenetic mark 5-hydroxymethylcytosine (5hmC) is present in dorsal root ganglia (DRG) neurons and glia, and its levels increase following nerve injury. Furthermore, we show that the 5hmC-generating Ten-eleven translocation 1-3 (TET1-3) proteins are expressed in a cell-type specific manner in the DRG, with Tet3 displaying differential upregulation after injury, suggesting a potential role in neuropathic pain.
Collapse
Affiliation(s)
- Alexander G Chamessian
- a Department of Anesthesiology , Duke University Medical Center , Durham , NC , USA.,b Department of Pharmacology and Cancer Biology , Duke University , Durham , NC , USA.,c Medical Scientist Training Program , Duke University School of Medicine , Durham , NC , USA
| | - Yawar J Qadri
- a Department of Anesthesiology , Duke University Medical Center , Durham , NC , USA
| | - Matthew Cummins
- a Department of Anesthesiology , Duke University Medical Center , Durham , NC , USA
| | - Michele Hendrickson
- e Department of Anesthesiology , Cincinnati Children's Hospital , Cincinnati , OH , USA
| | - Temugin Berta
- d Department of Anesthesiology , University of Cincinnati Medical Center , Cincinnati , OH , USA
| | - Thomas Buchheit
- a Department of Anesthesiology , Duke University Medical Center , Durham , NC , USA
| | - Thomas Van de Ven
- a Department of Anesthesiology , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
40
|
Chung MK, Campbell JN. Use of Capsaicin to Treat Pain: Mechanistic and Therapeutic Considerations. Pharmaceuticals (Basel) 2016; 9:ph9040066. [PMID: 27809268 PMCID: PMC5198041 DOI: 10.3390/ph9040066] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/31/2022] Open
Abstract
Capsaicin is the pungent ingredient of chili peppers and is approved as a topical treatment of neuropathic pain. The analgesia lasts for several months after a single treatment. Capsaicin selectively activates TRPV1, a Ca2+-permeable cationic ion channel that is enriched in the terminals of certain nociceptors. Activation is followed by a prolonged decreased response to noxious stimuli. Interest also exists in the use of injectable capsaicin as a treatment for focal pain conditions, such as arthritis and other musculoskeletal conditions. Recently injection of capsaicin showed therapeutic efficacy in patients with Morton’s neuroma, a painful foot condition associated with compression of one of the digital nerves. The relief of pain was associated with no change in tactile sensibility. Though injection evokes short term pain, the brief systemic exposure and potential to establish long term analgesia without other sensory changes creates an attractive clinical profile. Short-term and long-term effects arise from both functional and structural changes in nociceptive terminals. In this review, we discuss how local administration of capsaicin may induce ablation of nociceptive terminals and the clinical implications.
Collapse
Affiliation(s)
- Man-Kyo Chung
- Department of Neural and Pain Sciences, University of Maryland, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, Baltimore, MD 21201, USA.
| | | |
Collapse
|
41
|
Conditioned place preference and spontaneous dorsal horn neuron activity in chronic constriction injury model in rats. Pain 2016; 156:2562-2571. [PMID: 26584420 DOI: 10.1097/j.pain.0000000000000365] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Patients with neuropathic pain commonly present with spontaneous pain, in addition to allodynia and hyperalgesia. Although evoked responses in neuropathic pain models are well characterized, determining the presence of spontaneous pain is more challenging. We determined whether the chronic constriction injury (CCI) model could be used to measure effects of treatment of spontaneous pain, by evaluating dorsal horn neuron (DHN) spontaneous activity and spontaneous pain-related behaviors. We measured conditioned place preference (CPP) to analgesia produced by sciatic nerve block with bupivacaine in rats with established CCI. We undertook another CPP experiment using hind paw incision. We also examined DHN spontaneous activity in CCI rats. Although CCI produced nocifensive responses to mechanical stimuli, CPP to analgesic nerve block was not evident 14 days after injury: Compared with baseline (314 ± 65 seconds), CCI rats did not show a preference for the bupivacaine-paired chamber after conditioning (330 ± 102 seconds). However, sciatic nerve block after hind paw incision produced CPP on postoperative day 1, serving as a positive control. The proportion of spontaneously active DHNs (33%) was not significantly increased in CCI rats compared with the sham (21%). The median rate of spontaneous activity in the CCI group (12.6 impulses per second) was not different from the sham group (9.2 impulses per second). Also, there was no change in DHN spontaneous activity after sciatic nerve block with bupivacaine. Our findings suggest that CCI as a neuropathic pain model should not be used to measure effects of treatment of spontaneous pain driven by the peripheral input.
Collapse
|
42
|
Nerve injury induced activation of fast-conducting high threshold mechanoreceptors predicts non-reflexive pain related behavior. Neurosci Lett 2016; 632:44-9. [PMID: 27544012 DOI: 10.1016/j.neulet.2016.08.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 01/12/2023]
Abstract
The role of specific subsets of peripheral nerves in pain related behavior remains unclear. To better understand the contribution of differential activation of fast-conducting, high-threshold mechanoreceptor (AHTMR) input, we hypothesized that neuronal activation would be distinct with nerve injury, and that nociceptive input would predictt behavior in the freely exploring animal. A series of surfaces was used to deliver mechanical input to the hindpaws of rats upon voluntary movement and exploration. Neuronal activation increased as apex surface decreased (0.2, 0.6, 1.0 and 1.5mm) using in vivo recording in L4 DRG neurons, and this relationship was enhanced following partial ligation of L5 (pSNL). In behaving animals, apex size was correlated to time spent on each surface following pSNL, but not with sham. Morphine normalized the discriminatory behavior following pSNL. These data indicate that noxious mechanical activation of AHTMR upon normal movement predicts behavior using paradigms that do not rely on reflexive withdrawal responses suggesting that AHTMR activation and central nervous system input contribute to higher order pain behavior after nerve injury beyond the immediate early pain input long attributed to these neurons.
Collapse
|
43
|
Activation of Peripheral μ-opioid Receptors by Dermorphin [D-Arg2, Lys4] (1-4) Amide Leads to Modality-preferred Inhibition of Neuropathic Pain. Anesthesiology 2016; 124:706-20. [PMID: 26756519 DOI: 10.1097/aln.0000000000000993] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Opioids have long been regarded as the most effective drugs for the treatment of severe acute and chronic pain. Unfortunately, their therapeutic efficacy and clinical utility have been limited because of central and peripheral side effects. METHODS To determine the therapeutic value of peripheral μ-opioid receptors as a target for neuropathic pain treatment, the authors examined the effects of dermorphin [D-Arg2, Lys4] (1-4) amide (DALDA), a hydrophilic, peripherally acting μ-opioid receptor agonist, in male and female rats with spinal nerve ligation-induced neuropathic pain. The authors also utilized behavioral, pharmacologic, electrophysiologic, and molecular biologic tools to characterize DALDA's possible mechanisms of action in male rats. RESULTS DALDA, administered subcutaneously, had 70 times greater efficacy for inhibiting thermal (n = 8 to 11/group) than mechanical hypersensitivity (n = 6 to 8/group) in male rats. The pain inhibitory effects of DALDA on mechanical and heat hypersensitivity were abolished in animals pretreated with systemic methylnaltrexone (n = 7 to 9/group), a peripheral μ-opioid receptor antagonist. In the spinal wide-dynamic range neurons, systemic DALDA inhibited C-fiber-mediated, but not A-fiber-mediated, response in neuropathic male rats (n = 13). In primary sensory neurons, DALDA inhibited the capsaicin-induced [Ca2+] increase more than the β-alanine-induced [Ca] increase (n = 300); capsaicin and β-alanine activate subpopulations of neurons involved in the signaling of heat and mechanical pain, respectively. DALDA-treated rats (n = 5 to 8/group) did not exhibit motor deficits and locomotor impairment suggesting that it does not induce central side effects. CONCLUSIONS These findings suggest that DALDA may represent a potential alternative to current opioid therapy for the treatment of neuropathic pain and is likely to be associated with minimal adverse effects.
Collapse
|
44
|
Nociceptor Sensitization Depends on Age and Pain Chronicity(1,2,3). eNeuro 2016; 3:eN-NWR-0115-15. [PMID: 26866058 PMCID: PMC4745182 DOI: 10.1523/eneuro.0115-15.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 01/18/2023] Open
Abstract
Peripheral inflammation causes mechanical pain behavior and increased action potential firing. However, most studies examine inflammatory pain at acute, rather than chronic time points, despite the greater burden of chronic pain on patient populations, especially aged individuals. Furthermore, there is disagreement in the field about whether primary afferents contribute to chronic pain. Therefore, we sought to evaluate the contribution of nociceptor activity to the generation of pain behaviors during the acute and chronic phases of inflammation in both young and aged mice. We found that both young (2 months old) and aged (>18 months old) mice exhibited prominent pain behaviors during both acute (2 day) and chronic (8 week) inflammation. However, young mice exhibited greater behavioral sensitization to mechanical stimuli than their aged counterparts. Teased fiber recordings in young animals revealed a twofold mechanical sensitization in C fibers during acute inflammation, but an unexpected twofold reduction in firing during chronic inflammation. Responsiveness to capsaicin and mechanical responsiveness of A-mechanonociceptor (AM) fibers were also reduced chronically. Importantly, this lack of sensitization in afferent firing during chronic inflammation occurred even as these inflamed mice exhibited continued behavioral sensitization. Interestingly, C fibers from inflamed aged animals showed no change in mechanical firing compared with controls during either the acute or chronic inflammatory phases, despite strong behavioral sensitization to mechanical stimuli at these time points. These results reveal the following two important findings: (1) nociceptor sensitization to mechanical stimulation depends on age and the chronicity of injury; and (2) maintenance of chronic inflammatory pain does not rely on enhanced peripheral drive.
Collapse
|
45
|
Navratilova E, Atcherley CW, Porreca F. Brain Circuits Encoding Reward from Pain Relief. Trends Neurosci 2015; 38:741-750. [PMID: 26603560 PMCID: PMC4752429 DOI: 10.1016/j.tins.2015.09.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 01/09/2023]
Abstract
Relief from pain in humans is rewarding and pleasurable. Primary rewards, or reward-predictive cues, are encoded in brain reward/motivational circuits. While considerable advances have been made in our understanding of reward circuits underlying positive reinforcement, less is known about the circuits underlying the hedonic and reinforcing actions of pain relief. We review findings from electrophysiological, neuroimaging, and behavioral studies supporting the concept that the rewarding effect of pain relief requires opioid signaling in the anterior cingulate cortex (ACC), activation of midbrain dopamine neurons, and the release of dopamine in the nucleus accumbens (NAc). Understanding of circuits that govern the reward of pain relief may allow the discovery of more effective and satisfying therapies for patients with acute or chronic pain.
Collapse
Affiliation(s)
- Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85724, USA.
| | | | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85724, USA; Deparment of Research, Mayo Clinic, Scottsdale, AZ 85453, USA.
| |
Collapse
|
46
|
Park HJ, Sandor K, McQueen J, Woller SA, Svensson CI, Corr M, Yaksh TL. The effect of gabapentin and ketorolac on allodynia and conditioned place preference in antibody-induced inflammation. Eur J Pain 2015; 20:917-25. [PMID: 26517300 DOI: 10.1002/ejp.816] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Glucose-6-phosphate isomerase and collagen type II antibody-induced arthritis models (K/BxN and CAIA, respectively) have an inflammatory and a post-inflammatory phase. Both phases display robust tactile allodynia. In previous work, inflammatory phase allodynia was reversed by gabapentin and ketorolac, whereas in late phase only gabapentin was effective. Here, we sought to determine if the effects of these two drugs during the early and late phases of the two arthritis models were observed in the conditioned place preference (CPP) paradigm, indicating a differential drug effect on the aversive state. METHODS Male C57BL/6 mice received K/BxN serum intraperitoneally, while male BALB/c mice received collagen type II antibody cocktail intravenously. After onset of inflammation and allodynia, we assessed effects of i.p. gabapentin (100 mg/kg) or ketorolac (15 mg/kg) using a CPP paradigm: 2 days adaptation, 2 days conditioning (vehicle in morning and drug in afternoon), preference testing on day 5. RESULTS Consistent with the effects upon allodynia, both gabapentin and ketorolac produced a preference for the drug-paired compartment in the early phase of the K/BxN model, while gabapentin, but not ketorolac, resulted in a place preference during late phase. In the CAIA model, consistent with differential effects upon allodynia, gabapentin produced a preference in the early phase and a trend in the late phase, whereas ketorolac was ineffective at either time. CONCLUSIONS CPP validated the aversive state in the inflammatory and post-inflammatory phases of the K/BxN and CAIA arthritis models and correspondence between the anti-hyperpathic pharmacology as defined by thresholds and CPP.
Collapse
Affiliation(s)
- H J Park
- Department of Anesthesiology, University of California San Diego, USA.,Department of Anesthesiology and Pain Medicine, College of Medicine, The Catholic University of Korea, South Korea
| | - K Sandor
- Department of Physiology and Pharmacology, Karolinska Institutet, Sweden
| | - J McQueen
- Department of Anesthesiology, University of California San Diego, USA.,Department of Physiology and Pharmacology, Karolinska Institutet, Sweden
| | - S A Woller
- Department of Anesthesiology, University of California San Diego, USA.,Department of Medicine, University of California San Diego, USA
| | - C I Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, Sweden
| | - M Corr
- Department of Medicine, University of California San Diego, USA
| | - T L Yaksh
- Department of Anesthesiology, University of California San Diego, USA
| |
Collapse
|
47
|
Xu ZZ, Kim YH, Bang S, Zhang Y, Berta T, Wang F, Oh SB, Ji RR. Inhibition of mechanical allodynia in neuropathic pain by TLR5-mediated A-fiber blockade. Nat Med 2015; 21:1326-31. [PMID: 26479925 DOI: 10.1038/nm.3978] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 09/22/2015] [Indexed: 12/19/2022]
Abstract
Mechanical allodynia, induced by normally innocuous low-threshold mechanical stimulation, represents a cardinal feature of neuropathic pain. Blockade or ablation of high-threshold, small-diameter unmyelinated group C nerve fibers (C-fibers) has limited effects on mechanical allodynia. Although large, myelinated group A fibers, in particular Aβ-fibers, have previously been implicated in mechanical allodynia, an A-fiber-selective pharmacological blocker is still lacking. Here we report a new method for targeted silencing of A-fibers in neuropathic pain. We found that Toll-like receptor 5 (TLR5) is co-expressed with neurofilament-200 in large-diameter A-fiber neurons in the dorsal root ganglion (DRG). Activation of TLR5 with its ligand flagellin results in neuronal entry of the membrane-impermeable lidocaine derivative QX-314, leading to TLR5-dependent blockade of sodium currents, predominantly in A-fiber neurons of mouse DRGs. Intraplantar co-application of flagellin and QX-314 (flagellin/QX-314) dose-dependently suppresses mechanical allodynia after chemotherapy, nerve injury, and diabetic neuropathy, but this blockade is abrogated in Tlr5-deficient mice. In vivo electrophysiology demonstrated that co-application of flagellin/QX-314 selectively suppressed Aβ-fiber conduction in naive and chemotherapy-treated mice. TLR5-mediated Aβ-fiber blockade, but not capsaicin-mediated C-fiber blockade, also reduced chemotherapy-induced ongoing pain without impairing motor function. Finally, flagellin/QX-314 co-application suppressed sodium currents in large-diameter human DRG neurons. Thus, our findings provide a new tool for targeted silencing of Aβ-fibers and neuropathic pain treatment.
Collapse
Affiliation(s)
- Zhen-Zhong Xu
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yong Ho Kim
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA.,Pain Cognitive Function Research Center, Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Sangsu Bang
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yi Zhang
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Temugin Berta
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Seog Bae Oh
- Pain Cognitive Function Research Center, Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea.,Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ru-Rong Ji
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
48
|
Remeniuk B, Sukhtankar D, Okun A, Navratilova E, Xie JY, King T, Porreca F. Behavioral and neurochemical analysis of ongoing bone cancer pain in rats. Pain 2015; 156:1864-1873. [PMID: 25955964 PMCID: PMC4578982 DOI: 10.1097/j.pain.0000000000000218] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 01/05/2023]
Abstract
Cancer-induced bone pain is described as dull, aching ongoing pain. Ongoing bone cancer pain was characterized after intratibial injection of breast cancer cells in rats. Cancer produced time-dependent bone remodeling and tactile hypersensitivity but no spontaneous flinching. Conditioned place preference (CPP) and enhanced dopamine (DA) release in the nucleus accumbens (NAc) shell was observed after peripheral nerve block (PNB) selectively in tumor-bearing rats revealing nociceptive-driven ongoing pain. Oral diclofenac reversed tumor-induced tactile hypersensitivity but did not block PNB-induced CPP or NAc DA release. Tumor-induced tactile hypersensitivity, and PNB-induced CPP and NAc DA release, was blocked by prior subcutaneous implantation of a morphine pellet. In sham rats, morphine produced a modest but sustained increase in NAc DA release. In contrast, morphine produced a transient 5-fold higher NAc DA release in tumor bearing rats compared with sham morphine rats. The possibility that this increased NAc DA release reflected the reward of pain relief was tested by irreversible blockade of rostral anterior cingulate cortex (rACC) μ-opioid receptors (MORs). The rACC MOR blockade prevented the morphine-induced transient increased NAc DA release in tumor bearing rats but did not affect morphine-induced effects in sham-operated animals. Consistent with clinical experience, ongoing cancer pain was controlled by morphine but not by a dose of diclofenac that reversed evoked hypersensitivity. Additionally, the intrinsic reward of morphine can be dissociated from the reward of relief of cancer pain by blockade of rACC MOR. This approach allows mechanistic and therapeutic assessment of ongoing cancer pain with likely translation relevance.
Collapse
Affiliation(s)
- Bethany Remeniuk
- Department of Cancer Biology, Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Devki Sukhtankar
- Department of Cancer Biology, Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Alec Okun
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Jennifer Y. Xie
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Tamara King
- Department of Biomedical Sciences, College of Osteopathic Medicine, Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA
| | - Frank Porreca
- Department of Cancer Biology, Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
49
|
Hung CH, Wang JCF, Strichartz GR. Spontaneous Chronic Pain After Experimental Thoracotomy Revealed by Conditioned Place Preference: Morphine Differentiates Tactile Evoked Pain From Spontaneous Pain. THE JOURNAL OF PAIN 2015; 16:903-12. [PMID: 26116369 PMCID: PMC4556597 DOI: 10.1016/j.jpain.2015.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/03/2015] [Accepted: 06/14/2015] [Indexed: 01/19/2023]
Abstract
Chronic pain after surgery limits social activity, interferes with work, and causes emotional suffering. A major component of such pain is reported as resting or spontaneous pain with no apparent external stimulus. Although experimental animal models can simulate the stimulus-evoked chronic pain that occurs after surgery, there have been no studies of spontaneous chronic pain in such models. Here the conditioned place preference (CPP) paradigm was used to reveal resting pain after experimental thoracotomy. Male Sprague Dawley rats received a thoracotomy with 1-hour rib retraction, resulting in evoked tactile hypersensitivity, previously shown to last for at least 9 weeks. Intraperitoneal injections of morphine (2.5 mg/kg) or gabapentin (40 mg/kg) gave equivalent 2- to 3-hour-long relief of tactile hypersensitivity when tested 12 to 14 days postoperatively. In separate experiments, single trial CPP was conducted 1 week before thoracotomy and then 12 days (gabapentin) or 14 days (morphine) after surgery, followed the next day by 1 conditioning session with morphine or gabapentin, both versus saline. The gabapentin-conditioned but not the morphine-conditioned rats showed a significant preference for the analgesia-paired chamber, despite the equivalent effect of the 2 agents in relieving tactile allodynia. These results show that experimental thoracotomy in rats causes spontaneous pain and that some analgesics, such as morphine, that reduce evoked pain do not also relieve resting pain, suggesting that pathophysiological mechanisms differ between these 2 aspects of long-term postoperative pain. Perspective: Spontaneous pain, a hallmark of chronic postoperative pain, is demonstrated here in a rat model of experimental postthoracotomy pain, further validating the use of this model for the development of analgesics to treat such symptoms. Although stimulus-evoked pain was sensitive to systemic morphine, spontaneous pain was not, suggesting different mechanistic underpinnings.
Collapse
Affiliation(s)
- Ching-Hsia Hung
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey Chi-Fei Wang
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gary R Strichartz
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
50
|
Fukuoka T, Noguchi K. A potential anti-allodynic mechanism of GDNF following L5 spinal nerve ligation; Mitigation of NPY up-regulation in the touch sense pathway. Neuroscience 2015. [PMID: 26215916 DOI: 10.1016/j.neuroscience.2015.07.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Intrathecal delivery of glial cell line-derived neurotrophic factor (GDNF) reverses mechanical allodynia after 5th lumbar (L5) spinal nerve ligation (SNL). However, the molecular mechanism behind this process is not fully understood. Following sciatic nerve injury, primary afferent neurons in the injured dorsal root ganglion (DRG) begin to express neuropeptide Y (NPY) that is absent in normal DRG. The aim of the current study was to determine the relationship of this de novo expression of NPY and the anti-allodynic effect of GDNF. Following L5 SNL, 73% of neurons began to express NPY mRNA in the ipsilateral L5 DRG and robust NPY-immunoreactive fibers appeared in the ipsilateral GN where the touch-sense mediating A-fiber primary afferents from the hindpaw terminate. Seven-daylong intrathecal infusion of GDNF at the L5 DRG level, starting on day three when mechanical allodynia had fully developed, reversed once-established these changes. The GN neurons normally expressed NPY Y1 receptor, but not Y2, Y4, or Y5 receptors, and L5 SNL did not change the expression pattern. Bolus intracisternal injection of BIBP3226, a Y1 receptor antagonist, dose-dependently reversed mechanical allodynia. We demonstrated that GDNF reversed once-established mechanical allodynia as well as NPY induction in the touch-sense processing pathway. NPY could facilitate touch-sense processing by Y1 receptor in the gracile nucleus after peripheral nerve injury. GDNF may exert anti-allodynic effects through mitigation of this NPY up-regulation. The effectiveness of delayed treatment further indicates the therapeutic potential of GDNF on neuropathic pain.
Collapse
Affiliation(s)
- T Fukuoka
- Department of Anatomy & Neuroscience, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan; Pain Mechanism Research Group, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.
| | - K Noguchi
- Department of Anatomy & Neuroscience, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|