1
|
McNew JF, Davis DJ, Grimsrud KN, Bryda EC. Comparison of Thermal and Mechanical Pain Testing Modalities in Sprague Dawley and Fischer 344 Rats ( Rattus norvegicus). Comp Med 2024; 74:173-178. [PMID: 39107939 PMCID: PMC11267441 DOI: 10.30802/aalas-cm-24050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/14/2023] [Accepted: 02/13/2024] [Indexed: 08/10/2024]
Abstract
While rodents are used extensively for studying pain, there is a lack of reported direct comparisons of thermal and mechanical pain testing methods in rats of different genetic backgrounds. Understanding the range of interindividual variability of withdrawal thresholds and thermal latencies based on these testing methods and/or genetic background is important for appropriate experimental design. Testing was performed in two common rat genetic backgrounds: outbred Sprague-Dawley (SD) and inbred Fischer 344 (F344). Male and female, 10- to 14-wk-old F344 and SD rats were used to assess withdrawal thresholds in 3 different modalities: the Randall-Selitto test (RST), Hargreaves test (HT), and tail flick test (TFT). The RST was performed by using an operator-controlled handheld instrument to generate a noxious pressure stimulus to the left hind paw. The HT and the TFT used an electronically controlled light source to deliver a noxious thermal stimulus to the left hind paw or tail tip, respectively. Rats of each sex and genetic background underwent one type of test on day 0 and day 7. Withdrawal thresholds and thermal latencies were compared among tests. No significant differences were observed. Our findings can serve as a guide for researchers considering these nociceptive tests for their experiments.
Collapse
Affiliation(s)
- James F McNew
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
- Comparative Medicine Program, University of Missouri, Columbia, Missouri
| | - Daniel J Davis
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
- Comparative Medicine Program, University of Missouri, Columbia, Missouri
- Animal Modeling Core, University of Missouri, Columbia, Missouri
| | - Kristin N Grimsrud
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, California
- Mouse Biology Program, University of California, Davis, Davis, California; and
| | - Elizabeth C Bryda
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
- Comparative Medicine Program, University of Missouri, Columbia, Missouri
- Animal Modeling Core, University of Missouri, Columbia, Missouri
- Rat Resource and Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
2
|
Karimi SA, Zahra FT, Martin LJ. IUPHAR review: Navigating the role of preclinical models in pain research. Pharmacol Res 2024; 200:107073. [PMID: 38232910 DOI: 10.1016/j.phrs.2024.107073] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Chronic pain is a complex and challenging medical condition that affects millions of people worldwide. Understanding the underlying mechanisms of chronic pain is a key goal of preclinical pain research so that more effective treatment strategies can be developed. In this review, we explore nociception, pain, and the multifaceted factors that lead to chronic pain by focusing on preclinical models. We provide a detailed look into inflammatory and neuropathic pain models and discuss the most used animal models for studying the mechanisms behind these conditions. Additionally, we emphasize the vital role of these preclinical models in developing new pain-relief drugs, focusing on biologics and the therapeutic potential of NMDA and cannabinoid receptor antagonists. We also discuss the challenges of TRPV1 modulation for pain treatment, the clinical failures of neurokinin (NK)- 1 receptor antagonists, and the partial success story of Ziconotide to provide valuable lessons for preclinical pain models. Finally, we highlight the overall success and limitations of current treatments for chronic pain while providing critical insights into the development of more effective therapies to alleviate the burden of chronic pain.
Collapse
Affiliation(s)
- Seyed Asaad Karimi
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Fatama Tuz Zahra
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Loren J Martin
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
3
|
Wotton JM, Peterson E, Flenniken AM, Bains RS, Veeraragavan S, Bower LR, Bubier JA, Parisien M, Bezginov A, Haselimashhadi H, Mason J, Moore MA, Stewart ME, Clary DA, Delbarre DJ, Anderson LC, D'Souza A, Goodwin LO, Harrison ME, Huang Z, Mckay M, Qu D, Santos L, Srinivasan S, Urban R, Vukobradovic I, Ward CS, Willett AM, Braun RE, Brown SD, Dickinson ME, Heaney JD, Kumar V, Lloyd KK, Mallon AM, McKerlie C, Murray SA, Nutter LM, Parkinson H, Seavitt JR, Wells S, Samaco RC, Chesler EJ, Smedley D, Diatchenko L, Baumbauer KM, Young EE, Bonin RP, Mandillo S, White JK. Identifying genetic determinants of inflammatory pain in mice using a large-scale gene-targeted screen. Pain 2022; 163:1139-1157. [PMID: 35552317 PMCID: PMC9100450 DOI: 10.1097/j.pain.0000000000002481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/17/2021] [Accepted: 09/07/2021] [Indexed: 02/03/2023]
Abstract
ABSTRACT Identifying the genetic determinants of pain is a scientific imperative given the magnitude of the global health burden that pain causes. Here, we report a genetic screen for nociception, performed under the auspices of the International Mouse Phenotyping Consortium. A biased set of 110 single-gene knockout mouse strains was screened for 1 or more nociception and hypersensitivity assays, including chemical nociception (formalin) and mechanical and thermal nociception (von Frey filaments and Hargreaves tests, respectively), with or without an inflammatory agent (complete Freund's adjuvant). We identified 13 single-gene knockout strains with altered nocifensive behavior in 1 or more assays. All these novel mouse models are openly available to the scientific community to study gene function. Two of the 13 genes (Gria1 and Htr3a) have been previously reported with nociception-related phenotypes in genetically engineered mouse strains and represent useful benchmarking standards. One of the 13 genes (Cnrip1) is known from human studies to play a role in pain modulation and the knockout mouse reported herein can be used to explore this function further. The remaining 10 genes (Abhd13, Alg6, BC048562, Cgnl1, Cp, Mmp16, Oxa1l, Tecpr2, Trim14, and Trim2) reveal novel pathways involved in nociception and may provide new knowledge to better understand genetic mechanisms of inflammatory pain and to serve as models for therapeutic target validation and drug development.
Collapse
Affiliation(s)
| | - Emma Peterson
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Ann M. Flenniken
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Rasneer S. Bains
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxfordshire, United Kingdom
| | - Surabi Veeraragavan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
| | - Lynette R. Bower
- Mouse Biology Program, University of California-Davis, Davis, CA, United States
| | | | - Marc Parisien
- Department of Anesthesia, Faculty of Medicine, Faculty of Dentistry, McGill University, Genome Building, Montreal, QC, Canada
| | - Alexandr Bezginov
- The Centre for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Hamed Haselimashhadi
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, United Kingdom
| | - Jeremy Mason
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, United Kingdom
| | | | - Michelle E. Stewart
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxfordshire, United Kingdom
| | - Dave A. Clary
- Mouse Biology Program, University of California-Davis, Davis, CA, United States
| | - Daniel J. Delbarre
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire, United Kingdom
| | | | - Abigail D'Souza
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | | | - Mark E. Harrison
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxfordshire, United Kingdom
| | - Ziyue Huang
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Matthew Mckay
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Dawei Qu
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Luis Santos
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire, United Kingdom
| | - Subhiksha Srinivasan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Rachel Urban
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Igor Vukobradovic
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Christopher S. Ward
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States
| | | | | | - Steve D.M. Brown
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire, United Kingdom
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States
| | - Jason D. Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Vivek Kumar
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - K.C. Kent Lloyd
- Mouse Biology Program, University of California-Davis, Davis, CA, United States
- Department of Surgery, School of Medicine, University of California-Davis, Davis, CA, United States
| | - Ann-Marie Mallon
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire, United Kingdom
| | - Colin McKerlie
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Lauryl M.J. Nutter
- The Centre for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Helen Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, United Kingdom
| | - John R. Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Sara Wells
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxfordshire, United Kingdom
| | - Rodney C. Samaco
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
| | | | - Damian Smedley
- William Harvey Research Institute, Charterhouse Square, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Luda Diatchenko
- Department of Anesthesia, Faculty of Medicine, Faculty of Dentistry, McGill University, Genome Building, Montreal, QC, Canada
| | | | - Erin E. Young
- Anesthesiology, University of Kansas School of Medicine, KU Medical Center, Kansas City, KS, United States
| | - Robert P. Bonin
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Silvia Mandillo
- Institute of Biochemistry and Cell Biology-National Research Council, IBBC-CNR, Monterotondo (RM), Italy
| | | |
Collapse
|
4
|
Smith JC. A Review of Strain and Sex Differences in Response to Pain and Analgesia in Mice. Comp Med 2019; 69:490-500. [PMID: 31822324 DOI: 10.30802/aalas-cm-19-000066] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pain and its alleviation are currently a highly studied issue in human health. Research on pain and response to analgesia has evolved to include the effects of genetics, heritability, and sex as important components in both humans and animals. The laboratory mouse is the major animal studied in the field of pain and analgesia. Studying the inbred mouse to understand how genetic heritable traits and/or sex influence pain and analgesia has added valuable information to the complex nature of pain as a human disease. In the context of biomedical research, identifying pain and ensuring its control through analgesia in research animals remains one of the hallmark responsibilities of the research community. Advancements in both human and mouse genomic research shed light not only on the need to understand how both strain and sex affect the mouse pain response but also on how these research achievements can be used to improve the humane use of all research animal species. A better understanding of how strain and sex affect the response to pain may allow researchers to improve study design and thereby the reproducibility of animal research studies. The need to use both sexes, along with an improved understanding of how genetic heritability affects nociception and analgesic sensitivity, remains a key priority for pain researchers working with mice. This review summarizes the current literature on how strain and sex alter the response to pain and analgesia in the modern research mouse, and highlights the importance of both strain and sex selection in pain research.
Collapse
Affiliation(s)
- Jennifer C Smith
- Department of Bioresources, Henry Ford Health System, Detroit, Michigan;,
| |
Collapse
|
5
|
Lakkakula BV, Sahoo R, Verma H, Lakkakula S. Pain Management Issues as Part of the Comprehensive Care of Patients with Sickle Cell Disease. Pain Manag Nurs 2018; 19:558-572. [PMID: 30076112 DOI: 10.1016/j.pmn.2018.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 05/14/2018] [Accepted: 06/26/2018] [Indexed: 12/14/2022]
|
6
|
|
7
|
Young EE, Bryant CD, Lee SE, Peng X, Cook B, Nair HK, Dreher KJ, Zhang X, Palmer AA, Chung JM, Mogil JS, Chesler EJ, Lariviere WR. Systems genetic and pharmacological analysis identifies candidate genes underlying mechanosensation in the von Frey test. GENES BRAIN AND BEHAVIOR 2017; 15:604-15. [PMID: 27231153 DOI: 10.1111/gbb.12302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/05/2016] [Accepted: 05/24/2016] [Indexed: 12/22/2022]
Abstract
Mechanical sensitivity is commonly affected in chronic pain and other neurological disorders. To discover mechanisms of individual differences in punctate mechanosensation, we performed quantitative trait locus (QTL) mapping of the response to von Frey monofilament stimulation in BXD recombinant inbred (BXD) mice. Significant loci were detected on mouse chromosome (Chr) 5 and 15, indicating the location of underlying polymorphisms that cause heritable variation in von Frey response. Convergent evidence from public gene expression data implicates candidate genes within the loci: von Frey thresholds were strongly correlated with baseline expression of Cacna2d1, Ift27 and Csnk1e in multiple brain regions of BXD strains. Systemic gabapentin and PF-670462, which target the protein products of Cacna2d1 and Csnk1e, respectively, significantly increased von Frey thresholds in a genotype-dependent manner in progenitors and BXD strains. Real-time polymerase chain reaction confirmed differential expression of Cacna2d1 and Csnk1e in multiple brain regions in progenitors and showed differential expression of Cacna2d1 and Csnk1e in the dorsal root ganglia of the progenitors and BXD strains grouped by QTL genotype. Thus, linkage mapping, transcript covariance and pharmacological testing suggest that genetic variation affecting Cacna2d1 and Csnk1e may contribute to individual differences in von Frey filament response. This study implicates Cacna2d1 and Ift27 in basal mechanosensation in line with their previously suspected role in mechanical hypersensitivity. Csnk1e is implicated for von Frey response for the first time. Further investigation is warranted to identify the specific polymorphisms involved and assess the relevance of these findings to clinical conditions of disturbed mechanosensation.
Collapse
Affiliation(s)
- E E Young
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,School of Nursing, University of Connecticut, Storrs, CT, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - C D Bryant
- Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - S E Lee
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - X Peng
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - B Cook
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - H K Nair
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - K J Dreher
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - X Zhang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - A A Palmer
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA.,Department of Human Genetics, University of Chicago, Chicago, IL, USA.,Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - J M Chung
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - J S Mogil
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - E J Chesler
- Mammalian Genetics & Genomics, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,The Jackson Laboratory, Bar Harbor, ME, USA
| | - W R Lariviere
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Genome-wide association scan of neuropathic pain symptoms post total joint replacement highlights a variant in the protein-kinase C gene. Eur J Hum Genet 2017; 25:446-451. [PMID: 28051079 DOI: 10.1038/ejhg.2016.196] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 11/24/2016] [Accepted: 12/06/2016] [Indexed: 11/08/2022] Open
Abstract
Neuropathic pain-like joint symptoms (NP) are seen in a proportion of individuals diagnosed with osteoarthritis (OA) and post total joint replacement (TJR). In this study, we performed a genome-wide association study (GWAS) using NP as defined by the painDETECT questionnaire (score >12 indicating possible NP) in 613 post-TJR participants recruited from Nottinghamshire (UK). The prevalence of possible NP was 17.8%. The top four hits from the GWAS and two other biologically relevant single-nucleotide polymorphisms (SNPs) were replicated in individuals with OA and post TJR from an independent study in the same area (N=908) and in individuals from the Rotterdam Study (N=212). Three of these SNPs showed effect sizes in the same direction as in the GWAS results in both replication cohorts. The strongest association upon meta-analysis of a recessive model was for the variant allele in rs887797 mapping to the protein kinase C alpha (PRKCA) gene odds ratio (OR)possNP=2.41 (95% CI 1.74-3.34, P=1.29 × 10-7). This SNP has been found to be associated with multiple sclerosis and encodes a functional variant affecting splicing and expression of the PRKCA gene. The PRKCA gene has been associated with long-term potentiation, synaptic plasticity, chronic pain and memory in the literature, making this a biologically relevant finding.
Collapse
|
9
|
Abstract
A functional allele of the mouse catechol-O-methyltransferase (Comt) gene is defined by the insertion of a B2 short interspersed repeat element in its 3'-untranslated region (UTR). This allele has been associated with a number of phenotypes, such as pain and anxiety. In comparison with mice carrying the ancestral allele (Comt+), Comt B2i mice show higher Comt mRNA and enzymatic activity levels. Here, we investigated the molecular genetic mechanisms underlying this allelic specific regulation of Comt expression. Insertion of the B2 element introduces an early polyadenylation signal generating a shorter Comt transcript, in addition to the longer ancestral mRNA. Comparative analysis and in silico prediction of Comt mRNA potential targets within the transcript 3' to the B2 element was performed and allowed choosing microRNA (miRNA) candidates for experimental screening: mmu-miR-3470a, mmu-miR-3470b, and mmu-miR-667. Cell transfection with each miRNA downregulated the expression of the ancestral transcript and COMT enzymatic activity. Our in vivo experiments showed that mmu-miR-667-3p is strongly correlated with decreasing amounts of Comt mRNA in the brain, and lentiviral injections of mmu-miR-3470a, mmu-miR-3470b, and mmu-miR-667 increase hypersensitivity in the mouse formalin model, consistent with reduced COMT activity. In summary, our data demonstrate that the Comt+ transcript contains regulatory miRNA signals in its 3'-untranslated region leading to mRNA degradation; these signals, however, are absent in the shorter transcript, resulting in higher mRNA expression and activity levels.
Collapse
|
10
|
Streit F, Bekrater-Bodmann R, Diers M, Reinhard I, Frank J, Wüst S, Seltzer Z, Flor H, Rietschel M. Concordance of Phantom and Residual Limb Pain Phenotypes in Double Amputees: Evidence for the Contribution of Distinct and Common Individual Factors. THE JOURNAL OF PAIN 2015; 16:1377-1385. [DOI: 10.1016/j.jpain.2015.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 07/13/2015] [Accepted: 08/27/2015] [Indexed: 12/12/2022]
|
11
|
Liu SB, Zhang MM, Cheng LF, Shi J, Lu JS, Zhuo M. Long-term upregulation of cortical glutamatergic AMPA receptors in a mouse model of chronic visceral pain. Mol Brain 2015; 8:76. [PMID: 26585043 PMCID: PMC4653882 DOI: 10.1186/s13041-015-0169-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/15/2015] [Indexed: 12/13/2022] Open
Abstract
Background Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders and it causes long-lasting visceral pain and discomfort. AMPA receptor mediated long-term potentiation (LTP) has been shown to play a critical role in animal models of neuropathic and inflammatory pain. No report is available for central changes in the ACC of mice with chronic visceral pain. Results In this study, we used integrative methods to investigate potential central plastic changes in the anterior cingulate cortex (ACC) of a visceral pain mouse model induced by intracolonic injection of zymosan. We found that visceral pain induced an increased expression of AMPA receptors (at the post synapses) in the ACC via an enhanced trafficking of the AMPA receptors to the membrane. Both GluA1 and GluA2/3 subunits were significantly increased. Supporting biochemical changes, excitatory synaptic transmission in the ACC were also significantly enhanced. Microinjection of AMPA receptor inhibitor IEM1460 into the ACC inhibited visceral and spontaneous pain behaviors. Furthermore, we found that the phosphorylation of GluA1 at the Ser845 site was increased, suggesting that GluA1 phosphorylation may contribute to AMPA receptor trafficking. Using genetically knockout mice lacking calcium-calmodulin stimulated adenylyl cyclase subtype 1 (AC1), we found that AMPA receptor phosphorylation and its membrane trafficking induced by zymosan injection were completely blocked. Conclusions Our results provide direct evidence for cortical AMPA receptors to contribute to zymosan-induced visceral and spontaneous pain and inhibition of AC1 activity may help to reduce chronic visceral pain.
Collapse
Affiliation(s)
- Shui-Bing Liu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xian, Shaanxi, 710049, China. .,Department of Pharmacology, Pharmacy of School, Fourth Military Medical University, Xian, Shaanxi, 710032, China. .,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Ming-Ming Zhang
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xian, Shaanxi, 710049, China. .,Department of Pharmacology, Pharmacy of School, Fourth Military Medical University, Xian, Shaanxi, 710032, China. .,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Lin-Feng Cheng
- Department of Microbiology, Fourth Military Medical University, Xian, Shaanxi, 710032, China.
| | - Jiao Shi
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Jing-Shan Lu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xian, Shaanxi, 710049, China.
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xian, Shaanxi, 710049, China. .,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
12
|
Al-Sabbagh M, Okeson JP, Khalaf MW, Bhavsar I. Persistent pain and neurosensory disturbance after dental implant surgery: pathophysiology, etiology, and diagnosis. Dent Clin North Am 2014; 59:131-42. [PMID: 25434562 DOI: 10.1016/j.cden.2014.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many studies have documented the successful outcomes of dental implants, but have also reported the association of sensory disturbances with the surgical implant procedure. Postsurgical pain is a normal response to tissue injury, and usually resolves after the tissue heals. However, some patients who receive dental implants experience persistent pain even after normal healing. This article describes the basic anatomy and pathophysiology associated with nerve injury. The incidence and diagnosis of these problems, in addition to factors that result in the development of chronic persistent neuropathic pain and sensory disturbances associated with surgical implant placement, are discussed.
Collapse
Affiliation(s)
- Mohanad Al-Sabbagh
- Division of Periodontology, Department of Oral Health Practice, University of Kentucky, College of Dentistry, 800 Rose Street, Lexington, KY 40536, USA.
| | - Jeffrey P Okeson
- Department of Oral Health Science, College of Dentistry, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA
| | - Mohd W Khalaf
- Orofacial Pain and Oral Medicine Division, Department of Head and Neck Surgery, Kaiser Permanente, 7300 Wyndham Street, Sacramento, CA 95823, USA
| | - Ishita Bhavsar
- Division of Periodontology, Department of Oral Health Practice, University of Kentucky, College of Dentistry, 800 Rose Street, Lexington, KY 40536, USA
| |
Collapse
|
13
|
Seltzer Z. Nothing in pain makes sense except in the light of genetics. Pain 2014; 155:841-842. [DOI: 10.1016/j.pain.2014.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/03/2014] [Accepted: 02/03/2014] [Indexed: 01/03/2023]
|