1
|
Matak I, Lacković Z. Native botulinum toxin type A vs. redesigned botulinum toxins in pain: What did we learn so far? Curr Opin Pharmacol 2024; 78:102476. [PMID: 39178620 DOI: 10.1016/j.coph.2024.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/26/2024]
Abstract
Driven by the clinical success of botulinum toxin serotype A (BoNT/A) and the need for improved chronic pain management, researchers attempted to develop re-designed botulinum toxin (BoNT)-based molecules as novel analgesics. Various recombinant protein expression strategies including retargeted binding domains, and chimeric toxins combining different serotypes were tested to improve BoNT/A therapeutic safety margin and expand its efficacy. The aim of this review is to re-evaluate the current design strategies for recombinant BoNT-based molecules for pain treatment, compares their analgesic profile against the native BoNT/A, as well as to discuss the main strengths and potential weaknesses of reported approaches.
Collapse
Affiliation(s)
- Ivica Matak
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Institute of Brain Research, University of Zagreb School of Medicine, Šalata 11, 10000 Zagreb, Croatia.
| | - Zdravko Lacković
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Institute of Brain Research, University of Zagreb School of Medicine, Šalata 11, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Kim YM, Son JY, Ahn DK. Botulinum toxin type A is a potential therapeutic drug for chronic orofacial pain. J Oral Biosci 2024; 66:496-503. [PMID: 38908515 DOI: 10.1016/j.job.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Botulinum toxin type A (BTX-A), produced by the gram-positive anaerobic bacterium Clostridium botulinum, acts by cleaving synaptosome-associated protein-25 (SNAP-25), an essential component of the presynaptic neuronal membrane that is necessary for fusion with the membrane proteins of neurotransmitter-containing vesicles. Recent studies have highlighted the efficacy of BTX-A in treating chronic pain conditions, including lower back pain, chronic neck pain, neuropathic pain, and trigeminal neuralgia, particularly when patients are unresponsive to traditional painkillers. This review focuses on the analgesic effects of BTX-A in various chronic pain conditions, with a particular emphasis on the orofacial region. HIGHLIGHT This review focuses on the mechanisms by which BTX-A induces analgesia in patients with inflammatory and temporomandibular joint pain. This review also highlights the fact that BTX-A can effectively manage neuropathic pain and trigeminal neuralgia, which are difficult-to-treat chronic pain conditions. Herein, we present a comprehensive assessment of the central analgesic effects of BTX-A and a discussion of its various applications in clinical dental practice. CONCLUSION BTX-A is an approved treatment option for various chronic pain conditions. Although there is evidence of axonal transport of BTX-A from peripheral to central endings in motor neurons, the precise mechanism underlying its pain-modulating effects remains unclear. This review discusses the evidence supporting the effectiveness of BTX-A in controlling chronic pain conditions in the orofacial region. BTX-A is a promising therapeutic agent for treating pain conditions that do not respond to conventional analgesics.
Collapse
Affiliation(s)
- Yu-Mi Kim
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jo-Young Son
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Dong-Kuk Ahn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
3
|
Hosseindoost S, Inanloo SH, Pestehei SK, Rahimi M, Yekta RA, Khajehnasiri A, Rad MA, Majedi H, Dehpour AR. Cellular and molecular mechanisms involved in the analgesic effects of botulinum neurotoxin: A literature review. Drug Dev Res 2024; 85:e22177. [PMID: 38528637 DOI: 10.1002/ddr.22177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Botulinum neurotoxins (BoNTs), derived from Clostridium botulinum, have been employed to treat a range of central and peripheral neurological disease. Some studies indicate that BoNT may be beneficial for pain conditions as well. It has been hypothesized that BoNTs may exert their analgesic effects by preventing the release of pain-related neurotransmitters and neuroinflammatory agents from sensory nerve endings, suppressing glial activation, and inhibiting the transmission of pain-related receptors to the neuronal cell membrane. In addition, there is evidence to suggest that the central analgesic effects of BoNTs are mediated through their retrograde axonal transport. The purpose of this review is to summarize the experimental evidence of the analgesic functions of BoNTs and discuss the cellular and molecular mechanisms by which they can act on pain conditions. Most of the studies reviewed in this article were conducted using BoNT/A. The PubMed database was searched from 1995 to December 2022 to identify relevant literature.
Collapse
Affiliation(s)
- Saereh Hosseindoost
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Inanloo
- Department of Urology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Khalil Pestehei
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Rahimi
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Atef Yekta
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anesthesiology, Critical Care, and Pain, Dr. Ali Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Khajehnasiri
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anesthesiology, Critical Care, and Pain, Dr. Ali Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Majedi
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Zheng HH, Ben XY, Wang YR, Tian MS, Meng QW, Li DX, Wen SL, Ni PL, Hao JW, Zhang QP, Yang J, Liu QB, Li QF, Yi XN. Experimental study on the effect and mechanism of adipose stem cell-derived exosomes combined with botulinum toxin A on skin trauma in rats. J Cosmet Dermatol 2024; 23:271-283. [PMID: 37464738 DOI: 10.1111/jocd.15922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Adipose stem cell-derived exosomes (ADSC-EXO) and botulinum toxin type A (BTX-A) individually showed a therapeutic effect on skin wound repair. AIMS This study investigated their synergistic effect on promoting skin wound healing in vitro and in vivo and the underlying molecular events. METHODS ADSCs were isolated from Sprague-Dawley (SD) rats to obtain ADSC-EXO by ultrafiltration and ultracentrifugation and were confirmed using nanoparticle tracking analysis and transmission electron microscopy. Human skin fibroblasts (HSF) were cultured and treated with or without ADSC-EXO, BTX-A, or their combination. Changes in cell phenotypes and protein expression were analyzed using different in vitro assays, and a rat skin wound model was used to assess their in vivo effects. RESULTS The isolated ADSC-EXO from primarily cultured ADSCs had a circular vesicle shape with a 30-180 nm diameter. Treatment of HSF with ADSC-EXO and/or BTX-A significantly accelerated HSF migration in vitro and skin wound healing in a rat model. Moreover, ADSC-EXO plus BTX-A treatment dramatically induced VEGFA expression but reduced COL III and COL I levels in vivo. ADSC-EXO and/or BTX-A treatment significantly upregulated TGF-β3 expression on Day 16 after surgery but downregulated TGF-β1 expression, suggesting that ADSC-EXO plus BTX-A promoted skin wound healing and reduced inflammatory cell infiltration. CONCLUSIONS The ADSC-EXO plus BTX-A treatment demonstrated a synergistic effect on skin wound healing through upregulation of VEGF expression and the TGF-β3/TGF-β1 and COL III/COL I ratio.
Collapse
Affiliation(s)
- Hui-Hui Zheng
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Departments of Human Anatomy and Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Xin-Yu Ben
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Departments of Human Anatomy and Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Neuromedicine Center of The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ya-Ru Wang
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Meng-Si Tian
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Qing-Wen Meng
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Neuromedicine Center of The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - De-Xian Li
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Shi-Lei Wen
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Departments of Human Anatomy and Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Pan-Li Ni
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Departments of Human Anatomy and Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Jing-Wen Hao
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Departments of Human Anatomy and Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Quan-Peng Zhang
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Departments of Human Anatomy and Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Juan Yang
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Qi-Bing Liu
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Neuromedicine Center of The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qi-Fu Li
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Departments of Human Anatomy and Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Xi-Nan Yi
- Engineering Research Center of Tropical Medicine, Ministry of Education, The Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Departments of Human Anatomy and Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Neuromedicine Center of The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
5
|
Hosseindoost S, Askari Rad M, Inanloo SH, Rahimi M, Dehghan S, Orandi A, Dehpour AR, Majedi H. The analgesic effects of botulinum neurotoxin by modulating pain-related receptors; A literature review. Mol Pain 2024; 20:17448069241275099. [PMID: 39093638 PMCID: PMC11339750 DOI: 10.1177/17448069241275099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Botulinum neurotoxins (BoNTs), produced by Clostridium botulinum, have been used for the treatment of various central and peripheral neurological conditions. Recent studies have suggested that BoNTs may also have a beneficial effect on pain conditions. It has been hypothesized that one of the mechanisms underlying BoNTs' analgesic effects is the inhibition of pain-related receptors' transmission to the neuronal cell membrane. BoNT application disrupts the integration of synaptic vesicles with the cellular membrane, which is responsible for transporting various receptors, including pain receptors such as TRP channels, calcium channels, sodium channels, purinergic receptors, neurokinin-1 receptors, and glutamate receptors. BoNT also modulates the opioidergic system and the GABAergic system, both of which are involved in the pain process. Understanding the cellular and molecular mechanisms underlying these effects can provide valuable insights for the development of novel therapeutic approaches for pain management. This review aims to summarize the experimental evidence of the analgesic functions of BoNTs and discuss the cellular and molecular mechanisms by which they can act on pain conditions by inhibiting the transmission of pain-related receptors.
Collapse
Affiliation(s)
- Saereh Hosseindoost
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziyar Askari Rad
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Inanloo
- Department of Urology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Rahimi
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Dehghan
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Orandi
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Majedi
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Parenti M, Degliuomini RS, Cosmi E, Vitagliano A, Fasola E, Origoni M, Salvatore S, Buzzaccarini G. Botulinum toxin injection in vulva and vagina. Evidence from a literature systematic review. Eur J Obstet Gynecol Reprod Biol 2023; 291:178-189. [PMID: 38353087 DOI: 10.1016/j.ejogrb.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/20/2023] [Accepted: 10/18/2023] [Indexed: 02/16/2024]
Abstract
INTRODUCTION Botulinum toxin (BoNT) administration has been proposed in the gynecologic field for pelvic, vulvar and vaginal disorders. On this regard, we aimed assessing the therapeutic effectiveness and safety of BoNT usage in the treatment of vaginal, vulvar and pelvic pain disorders. METHODS We searched for all the original articles without date restriction until 31.12.2021. We included all the original articles which administered botulinum toxin in the vulva or vagina of women suffering from vaginismus, dyspareunia, and chronic pelvic pain. Only English language studies and those performed in humans were eligible. We excluded all case reports and pilot study from the qualitative analysis, although we accurately evaluated them. 22 original studies were finally included in the systematic review. RESULTS Botulinum toxin injection was found to be effective in improving vulvar and vaginal dyspareunia, vaginismus, and chronic pelvic pain. No irreversible side effects were detected. Major side effects reported were transient urinary or fecal incontinence, constipation and rectal pain. The risk of bias assessment proved original articles to be of medium quality. No metanalysis could have been performed since lack of congruency in the definition of pathology and methods of botulinum toxin administration. CONCLUSION Data extraction pointed out different endpoints and different methods of analysis. Studies focus on different types of participants and use various techniques and timing. According to the best evidence available, different techniques provide evidence about positive outcomes, with the need for a standardized protocol.
Collapse
Affiliation(s)
- Michele Parenti
- Gynaecologic and Obstetrics Clinic, Department of Women's and Children's Health, University of Padua, 35128, Padua, Italy
| | - Rebecca Susanna Degliuomini
- Department of Obstetrics and Gynaecology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy; Italian Association of Functional and Esthetic Gynecology (AIGEF), Milan, Italy
| | - Erich Cosmi
- Gynaecologic and Obstetrics Clinic, Department of Women's and Children's Health, University of Padua, 35128, Padua, Italy
| | - Amerigo Vitagliano
- Gynaecologic and Obstetrics Clinic, Department of Women's and Children's Health, University of Padua, 35128, Padua, Italy
| | - Elena Fasola
- Italian Association of Functional and Esthetic Gynecology (AIGEF), Milan, Italy
| | - Massimo Origoni
- Department of Obstetrics and Gynaecology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy
| | - Stefano Salvatore
- Department of Obstetrics and Gynaecology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy; Italian Association of Functional and Esthetic Gynecology (AIGEF), Milan, Italy
| | - Giovanni Buzzaccarini
- Department of Obstetrics and Gynaecology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
7
|
Luvisetto S. Botulinum Neurotoxins in Central Nervous System: An Overview from Animal Models to Human Therapy. Toxins (Basel) 2021; 13:toxins13110751. [PMID: 34822535 PMCID: PMC8622321 DOI: 10.3390/toxins13110751] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are potent inhibitors of synaptic vesicle fusion and transmitter release. The natural target of BoNTs is the peripheral neuromuscular junction (NMJ) where, by blocking the release of acetylcholine (ACh), they functionally denervate muscles and alter muscle tone. This leads them to be an excellent drug for the therapy of muscle hyperactivity disorders, such as dystonia, spasticity, and many other movement disorders. BoNTs are also effective in inhibiting both the release of ACh at sites other than NMJ and the release of neurotransmitters other than ACh. Furthermore, much evidence shows that BoNTs can act not only on the peripheral nervous system (PNS), but also on the central nervous system (CNS). Under this view, central changes may result either from sensory input from the PNS, from retrograde transport of BoNTs, or from direct injection of BoNTs into the CNS. The aim of this review is to give an update on available data, both from animal models or human studies, which suggest or confirm central alterations induced by peripheral or central BoNTs treatment. The data will be discussed with particular attention to the possible therapeutic applications to pathological conditions and degenerative diseases of the CNS.
Collapse
Affiliation(s)
- Siro Luvisetto
- National Research Council of Italy-CNR, Institute of Biochemistry and Cell Biology (IBBC), Via Ercole Ramarini 32, Monterotondo Scalo, 00015 Roma, Italy
| |
Collapse
|
8
|
Michoud F, Seehus C, Schönle P, Brun N, Taub D, Zhang Z, Jain A, Furfaro I, Akouissi O, Moon R, Meier P, Galan K, Doyle B, Tetreault M, Talbot S, Browne LE, Huang Q, Woolf CJ, Lacour SP. Epineural optogenetic activation of nociceptors initiates and amplifies inflammation. Nat Biotechnol 2021; 39:179-185. [PMID: 32958958 PMCID: PMC7878280 DOI: 10.1038/s41587-020-0673-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 08/12/2020] [Indexed: 12/25/2022]
Abstract
Activation of nociceptor sensory neurons by noxious stimuli both triggers pain and increases capillary permeability and blood flow to produce neurogenic inflammation1,2, but whether nociceptors also interact with the immune system remains poorly understood. Here we report a neurotechnology for selective epineural optogenetic neuromodulation of nociceptors and demonstrate that nociceptor activation drives both protective pain behavior and inflammation. The wireless optoelectronic system consists of sub-millimeter-scale light-emitting diodes embedded in a soft, circumneural sciatic nerve implant, powered and driven by a miniaturized head-mounted control unit. Photostimulation of axons in freely moving mice that express channelrhodopsin only in nociceptors resulted in behaviors characteristic of pain, reflecting orthodromic input to the spinal cord. It also led to immune reactions in the skin in the absence of inflammation and potentiation of established inflammation, a consequence of the antidromic activation of nociceptor peripheral terminals. These results reveal a link between nociceptors and immune cells, which might have implications for the treatment of inflammation.
Collapse
Affiliation(s)
- Frédéric Michoud
- Laboratory for Soft Bioelectronics Interface, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Corey Seehus
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Philipp Schönle
- Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, Swiss Institute of Technology Zurich (ETHZ), Zurich, Switzerland
| | - Noé Brun
- Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, Swiss Institute of Technology Zurich (ETHZ), Zurich, Switzerland
| | - Daniel Taub
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Zihe Zhang
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Aakanksha Jain
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Ivan Furfaro
- Laboratory for Soft Bioelectronics Interface, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Outman Akouissi
- Laboratory for Soft Bioelectronics Interface, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Rachel Moon
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Pascale Meier
- Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, Swiss Institute of Technology Zurich (ETHZ), Zurich, Switzerland
| | - Katia Galan
- Laboratory for Soft Bioelectronics Interface, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Benjamin Doyle
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Michael Tetreault
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Sébastien Talbot
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Liam E Browne
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Qiuting Huang
- Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, Swiss Institute of Technology Zurich (ETHZ), Zurich, Switzerland.
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
| | - Stéphanie P Lacour
- Laboratory for Soft Bioelectronics Interface, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
| |
Collapse
|
9
|
Grimstad Ø, Kvammen BØ, Swartling C. Botulinum Toxin Type B for Hidradenitis Suppurativa: A Randomised, Double-Blind, Placebo-Controlled Pilot Study. Am J Clin Dermatol 2020; 21:741-748. [PMID: 32761500 PMCID: PMC7473957 DOI: 10.1007/s40257-020-00537-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Botulinum toxin (BTX) is a potent neurotoxin with a long history of therapeutic application in neurological and dermatological conditions, with a strong efficacy and safety profile. Objective Our aim was to assess whether intradermal injection with BTX-B is an effective treatment for hidradenitis suppurativa (HS). Methods Twenty patients with HS stage I–III disease, according to Hurley’s classification, were consecutively included for treatment with either a placebo or BTX-B. At the next intervention after 3 months, all participants received the active substance and another follow-up at 6 months. The primary outcome was quality of life, measured using the Dermatology Life Quality Index (DLQI), while secondary outcomes were the visual analogue scale (VAS) for pain in the worst boil and HS-related impairment of general health (VAS), as well as changes in physician-reported disease activity assessed as the number of total lesions, and reported adverse effects of treatment. Results The DLQI improved from a median of 17 at baseline to 8 at 3 months in the BTX-B group, compared with a reduction from 13.5 to 11 in the placebo group (p <0.05). Improvement of the patients’ own ratings of symptoms and a reduction in total lesions supplemented the primary outcome. Fifty-five percent of the study population reported some degree of hyperhidrosis. Conclusion BTX-B improves the quality of life in patients with HS. Furthermore, comorbidity between HS and hyperhidrosis is suggested. Trial Registration ClinicalTrials.gov identifier: NCT03103074.
Collapse
Affiliation(s)
- Øystein Grimstad
- Department of Dermatology, University Hospital of North Norway, Tromsö, Norway.
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsö, Norway.
| | - Bjørn Øivind Kvammen
- Department of Dermatology, University Hospital of North Norway, Tromsö, Norway
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsö, Norway
| | - Carl Swartling
- Hidrosis Clinic, Stockholm, Sweden
- Department of Medical Sciences, Dermatology and Venereology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
A Comprehensive Review of the Diagnosis, Treatment, and Management of Postmastectomy Pain Syndrome. Curr Pain Headache Rep 2020; 24:41. [PMID: 32529416 DOI: 10.1007/s11916-020-00876-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW Postmastectomy pain syndrome (PMPS) remains poorly defined, although it is applied to chronic neuropathic pain following surgical procedures of the breast, including mastectomy and lumpectomy in breast-conserving surgery. It is characterized by persistent pain affecting the anterior thorax, axilla, and/or medial upper arm following mastectomy or lumpectomy. Though the onset of pain is most likely to occur after surgery, there may also be a new onset of symptoms following adjuvant therapy, including chemotherapy or radiation therapy. RECENT FINDINGS The underlying pathophysiology is likely multifactorial, although exact mechanisms have yet to be elucidated. In this regard, neuralgia of the intercostobrachial nerve is currently implicated as the most common cause of PMPS. Numerous pharmacological options are available in the treatment of PMPS, including gabapentinoids, tricyclic antidepressants, selective serotonin reuptake inhibitors, NMDA receptor antagonists, and nefopam (a non-opioid, non-steroidal benzoxazocine analgesic). Minimally invasive interventional treatment including injection therapy, regional anesthesia, botulinum toxin, and neuromodulation has been demonstrated to have some beneficial effect. A comprehensive update highlighting current perspectives on the treatment of postmastectomy pain syndrome is presented with emphasis on treatments currently available and newer therapeutics currently being evaluated to alleviate this complex and multifactorial condition.
Collapse
|
11
|
Blanshan N, Krug H. The Use of Botulinum Toxin for the Treatment of Chronic Joint Pain: Clinical and Experimental Evidence. Toxins (Basel) 2020; 12:toxins12050314. [PMID: 32397671 PMCID: PMC7291335 DOI: 10.3390/toxins12050314] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic osteoarthritis pain is an increasing worldwide problem. Treatment for osteoarthritis pain is generally inadequate or fraught with potential toxicities. Botulinum toxins (BoNTs) are potent inhibitors of neuropeptide release. Paralytic toxicity is due to inhibition at the neuromuscular junction, and this effect has been utilized for treatments of painful dystonias. Pain relief following BoNT muscle injection has been noted to be more significant than muscle weakness and hypothesized to occur because of the inhibition of peripheral neuropeptide release and reduction of peripheral sensitization. Because of this observation, BoNT has been studied as an intra-articular (IA) analgesic for chronic joint pain. In clinical trials, BoNT appears to be effective for nociceptive joint pain. No toxicity has been reported. In preclinical models of joint pain, BoNT is similarly effective. Examination of the dorsal root ganglion (DRG) and the central nervous system has shown that catalytically active BoNT is retrogradely transported by neurons and then transcytosed to afferent synapses in the brain. This suggests that pain relief may also be due to the central effects of the drug. In summary, BoNT appears to be safe and effective for the treatment of chronic joint pain. The long-term effects of IA BoNT are still being determined.
Collapse
Affiliation(s)
- Nicole Blanshan
- Minneapolis VA Health Care System, Minneapolis, MN 55455, USA;
| | - Hollis Krug
- Minneapolis VA Health Care System, Minneapolis, MN 55455, USA;
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: ; Tel.: +1-612-467-4190
| |
Collapse
|
12
|
Shi X, Gao C, Wang L, Chu X, Shi Q, Yang H, Li T. Botulinum toxin type A ameliorates adjuvant-arthritis pain by inhibiting microglial activation-mediated neuroinflammation and intracellular molecular signaling. Toxicon 2020; 178:33-40. [PMID: 32250746 DOI: 10.1016/j.toxicon.2019.12.153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/17/2019] [Accepted: 12/19/2019] [Indexed: 11/25/2022]
Abstract
Chronic inflammatory pain is a serious clinical problem caused by inflammation of the joints and degenerative diseases and greatly affects patients' quality of life. Persistent pain states are thought to result from the central sensitization of nociceptive pathways in the spinal dorsal horn. Spinal microglia-mediated neuroinflammation plays a pivotal role in the development and maintenance of the central sensitization of chronic inflammatory pain. Botulinum toxin type A (BoNT/A) was recently reported to have analgesic and anti-inflammatory effects. However, the precise mechanism underlying its analgesic effect remains unclear. Although several studies have reported that BoNT/A could regulate neuroflammation, the reduction of neuroinflammation regulated by BoNT/A in chronic inflammatory pain in experimentally induced arthritis has not been reported. The aim of this study was to investigate whether BoNT/A could alleviate adjuvant-arthritis pain via modulating microglia-mediated neuroinflammation and intracellular molecular pathway. The pain behavioral tests were performed before and after CFA immunization as well as after BoNT/A injection. Western blotting and immunofluorescence staining were used to assess the changes of microglial activation markers (ionized calcium binding adaptor molecule 1, IBA-1) and phosphorylation of P38MAPK (P-p38MAPK) in the lumbar spinal cord. TNF-αand P2X4R gene expression were studied by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The results showed that (1) the activation of spinal microglia can be continued till 21 days after CFA injection, which suggested its role in the development and maintenance of chronic inflammatory pain. (2) The intra-articular administration of a single effective dose of BoNT/A (5U/10 U) on day 21 after CFA injection significantly reduced nociceptive behaviors and decreased protein overexpression and immunoreactivity for IBA-1 and P-p38MAPK in CFA induced rat. Simultaneously, BoNT/A (5 U) also inhibited the increase in TNF-α mRNA and P2X4R mRNA expression induced by CFA injection. These results suggested that BoNT/A is a potential therapeutic agent for relieving the neuroinflammation that occurs in chronic inflammatory pain by inhibiting the activation of microglial cells and the release of microglia-derived TNF-α. This effect is likely mediated by inhibiting the activation of the P2X4R-P38MAPK signaling pathways in spinal microglial cells.
Collapse
Affiliation(s)
- Xiaojuan Shi
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China
| | - Chengfei Gao
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Lin Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China
| | - Xiao Chu
- Department of Pharmacy of Qingdao Municipal Hospital, Qingdao, Shandong Province, PR China
| | - Qilin Shi
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China
| | - Hui Yang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China
| | - Tieshan Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China.
| |
Collapse
|
13
|
Botulinum Neurotoxins and Cancer-A Review of the Literature. Toxins (Basel) 2020; 12:toxins12010032. [PMID: 31948115 PMCID: PMC7020400 DOI: 10.3390/toxins12010032] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 01/20/2023] Open
Abstract
Botulinum neurotoxins (BoNT) possess an analgesic effect through several mechanisms including an inhibition of acetylcholine release from the neuromuscular junction as well as an inhibition of specific pain transmitters and mediators. Animal studies have shown that a peripheral injection of BoNTs impairs the release of major pain transmitters such as substance P, calcitonin gene related peptide (CGRP) and glutamate from peripheral nerve endings as well as peripheral and central neurons (dorsal root ganglia and spinal cord). These effects lead to pain relief via the reduction of peripheral and central sensitization both of which reflect important mechanisms of pain chronicity. This review provides updated information about the effect of botulinum toxin injection on local pain caused by cancer, painful muscle spasms from a remote cancer, and pain at the site of cancer surgery and radiation. The data from the literature suggests that the local injection of BoNTs improves muscle spasms caused by cancerous mass lesions and alleviates the post-operative neuropathic pain at the site of surgery and radiation. It also helps repair the parotid damage (fistula, sialocele) caused by facial surgery and radiation and improves post-parotidectomy gustatory hyperhidrosis. The limited literature that suggests adding botulinum toxins to cell culture slows/halts the growth of certain cancer cells is also reviewed and discussed.
Collapse
|
14
|
Meyer-Frießem CH, Eitner LB, Kaisler M, Maier C, Vollert J, Westermann A, Zahn PK, Avila González CA. Perineural injection of botulinum toxin-A in painful peripheral nerve injury - a case series: pain relief, safety, sensory profile and sample size recommendation. Curr Med Res Opin 2019; 35:1793-1803. [PMID: 31148462 DOI: 10.1080/03007995.2019.1626228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objectives: Subcutaneous injection of botulinum toxin-A (sBONT-A) is a novel treatment for peripheral neuropathic pain. While its analgesic effects are well documented, this treatment is often not comfortable and fails in patients who show signs of sensory loss but rarely allodynia. There are some case reports about perineural BONT-A injection (pBONT-A) which could be an alternative approach. Here we present a retrospective, open label case series of pBONT-A's efficacy and safety regarding neurological consequences involving changes in somatosensory profiles of both responders and non-responders. Methods: Sixty patients (53 ± 13years, 77% males) with PNI were treated with pBONT-A after a test injection with a local anesthetic, which prompted distinctive pain relief. Quantitative sensory testing (QST; DFNS protocol) and pain intensity were assessed before and ≥7 days post pBONT-A injection. Definition of response: satisfactory pain reduction of ≥30% NRS (numerical rating scale: 0 = no pain, 10 = worst pain) for ≥4 days. Statistics: Paired t-test, Mann-Whitney U-test, χ2 test. Results: A temporary weak paresis in one case was clinically verified. The QST -parameters remained unchanged, but patients with more frequent hyperalgesia signs reported less analgesia (p = .04). The pBONT-A injection prompted pain relief by 24.8% (NRS: 6.0 ± 1.7 vs. 4.5 ± 2.1; p < .0001); 57% (n = 34) were responders (NRS: 6.0 ± 1.6 vs. 3.4 ± 1.6, relief of 43.4%; p < .0001). Based on these results, we suggest that future parallel design trials on pBONT-A need to include at least 84 patients. Discussion: Ultrasound-guided pBONT-A injection seems to be a safe treatment leading to a sufficient pain relief for some months without sensory changes. Surprisingly, pBONT-A showed a pronounced analgesic effect also in patients without signs of hyperalgesia.
Collapse
Affiliation(s)
- Christine H Meyer-Frießem
- Department of Pain Medicine, Ruhr-University Bochum, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH Bochum , Bochum , Germany
- Department of Anaesthesiology, Intensive Care, Palliative Care and Pain Medicine, Medical Faculty of Ruhr-University Bochum, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH Bochum , Bochum , Germany
| | - Lynn B Eitner
- Department of Pain Medicine, Ruhr-University Bochum, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH Bochum , Bochum , Germany
- Department of Neuropediatrics, Ruhr-University Bochum, University Children's Hospital , Bochum , Germany
| | - Miriam Kaisler
- Department of Pain Medicine, Ruhr-University Bochum, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH Bochum , Bochum , Germany
| | - Christoph Maier
- Department of Pain Medicine, Ruhr-University Bochum, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH Bochum , Bochum , Germany
- Department of Neuropediatrics, Ruhr-University Bochum, University Children's Hospital , Bochum , Germany
| | - Jan Vollert
- Department of Pain Medicine, Ruhr-University Bochum, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH Bochum , Bochum , Germany
- Pain Research, Department of Surgery and Cancer, Imperial College , London , UK
- Neurophysiology, Center of Biomedicine and Medical Technology Mannheim CBTM, Medical Faculty Mannheim, Heidelberg University , Heidelberg , Germany
| | - Andrea Westermann
- Department of Pain Medicine, Ruhr-University Bochum, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH Bochum , Bochum , Germany
| | - Peter K Zahn
- Department of Anaesthesiology, Intensive Care, Palliative Care and Pain Medicine, Medical Faculty of Ruhr-University Bochum, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH Bochum , Bochum , Germany
| | - Carla A Avila González
- Department of Pain Medicine, Ruhr-University Bochum, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH Bochum , Bochum , Germany
- Department of Anaesthesiology, Intensive Care, Palliative Care and Pain Medicine, Medical Faculty of Ruhr-University Bochum, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH Bochum , Bochum , Germany
- Department of Anesthesiology, Intensive Care and Pain Medicine, Hessing Foundation , Augsburg , Germany
| |
Collapse
|
15
|
Marciniec M, Szczepańska-Szerej A, Kulczyński M, Sapko K, Popek-Marciniec S, Rejdak K. Pain in cervical dystonia and the antinociceptive effects of botulinum toxin: what is currently known? Rev Neurosci 2019; 30:771-779. [DOI: 10.1515/revneuro-2018-0119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 01/25/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Pain is the most common and disabling non-motor symptom in cervical dystonia (CD). Up to 88.9% of patients report pain at some point in the course of the disease. It is still a matter of debate whether CD-related pain originates only from prolonged muscle contraction. Recent data suggest that the alterations of transmission and processing of nociceptive stimuli play a crucial role in pain development. Botulinum toxin (BT) is the first-line therapy for CD. Despite fully elucidated muscle relaxant action, the antinociceptive effect of BT remains unclear and probably exceeds a simple decompression of the nerve fibers due to the reduction in muscle tone. The proposed mechanisms of the antinociceptive action of BT include inhibition of pain mediator release, inhibition of membrane sodium channels, retrograde axonal transport and impact on the other pain pathways. This article summarizes the current knowledge about the antinociceptive properties of BT and the clinical analgesic efficacy in the treatment of CD patients.
Collapse
Affiliation(s)
- Michał Marciniec
- Chair and Department of Neurology , Medical University of Lublin , Independent Public Clinical Hospital , No. 4, ul. Jaczewskiego 8 , 20-954 Lublin , Poland
| | | | - Marcin Kulczyński
- Chair and Department of Neurology , Medical University of Lublin , Lublin , Poland
| | - Klaudia Sapko
- Chair and Department of Neurology , Medical University of Lublin , Lublin , Poland
| | - Sylwia Popek-Marciniec
- Department of Cancer Genetics with Cytogenetics Laboratory , Medical University of Lublin , Lublin , Poland
| | - Konrad Rejdak
- Chair and Department of Neurology , Medical University of Lublin , Lublin , Poland
| |
Collapse
|
16
|
Yaksh TL, Di Nardo A. Complexity of systems and actions underlying neurogenic inflammation. Semin Immunopathol 2018; 40:225-228. [PMID: 29779134 DOI: 10.1007/s00281-018-0683-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Tony L Yaksh
- Department of Anesthesiology and Pharmacology, University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
| | - Anna Di Nardo
- Department of Dermatology, University of California, San Diego, 9500 Gilman Drive #0869 , La Jolla, CA, 92093, USA
| |
Collapse
|
17
|
Therapeutic use of botulinum toxin in pain treatment. Neuronal Signal 2018; 2:NS20180058. [PMID: 32714587 PMCID: PMC7373233 DOI: 10.1042/ns20180058] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 05/22/2018] [Accepted: 06/25/2018] [Indexed: 11/17/2022] Open
Abstract
Botulinum toxin is one of the most potent molecule known to mankind. A neurotoxin, with high affinity for cholinergic synapse, is effectively capable of inhibiting the release of acetylcholine. On the other hand, botulinum toxin is therapeutically used for several musculoskeletal disorders. Although most of the therapeutic effect of botulinum toxin is due to temporary skeletal muscle relaxation (mainly due to inhibition of the acetylcholine release), other effects on the nervous system are also investigated. One of the therapeutically investigated areas of the botulinum neurotoxin (BoNT) is the treatment of pain. At present, it is used for several chronic pain diseases, such as myofascial syndrome, headaches, arthritis, and neuropathic pain. Although the effect of botulinum toxin in pain is mainly due to its effect on cholinergic transmission in the somatic and autonomic nervous systems, research suggests that botulinum toxin can also provide benefits related to effects on cholinergic control of cholinergic nociceptive and antinociceptive systems. Furthermore, evidence suggests that botulinum toxin can also affect central nervous system (CNS). In summary, botulinum toxin holds great potential for pain treatments. It may be also useful for the pain treatments where other methods are ineffective with no side effect(s). Further studies will establish the exact analgesic mechanisms, efficacy, and complication of botulinum toxin in chronic pain disorders, and to some extent acute pain disorders.
Collapse
|
18
|
A Study and Review of Effects of Botulinum Toxins on Mast Cell Dependent and Independent Pruritus. Toxins (Basel) 2018; 10:toxins10040134. [PMID: 29570628 PMCID: PMC5923300 DOI: 10.3390/toxins10040134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 12/03/2022] Open
Abstract
Pruriceptive itch originates following activation of peripheral sensory nerve terminals when pruritogens come in contact with the skin. The ability of botulinum neurotoxins (BoNTs) to attenuate transmitter release from afferent terminals provides a rationale for studying its effect on pruritus. This study investigated the effects of BoNT/A1 and BoNT/B1 on mast cell dependent (Compound 48/80:48/80) and independent (Chloroquine:CQ) scratching. C57Bl/6 male mice received intradermal injection of 1.5 U of BoNT/A1, BoNT/B1 or saline 2, 7, 14 and 21 days prior to ipsilateral 48/80 or CQ at the nape of the neck. Ipsilateral hind paw scratching was determined using an automated recording device. The effect of BoNTs on 48/80 mediated mast cell degranulation was analyzed in human and murine mast cells and the presence of SNAREs was determined using qPCR, immunostaining and Western blot. Pre-treatment with BoNT/A1 and BoNT/B1 reduced 48/80 and CQ induced scratching behavior starting on day 2 with reversal by day 21. Both serotypes inhibited 48/80 induced mast cell degranulation. qPCR and immunostaining detected SNAP-25 mRNA and protein, respectively, in mast cells, however, Western blots did not. This study demonstrates the long-lasting anti-pruritic effects of two BoNT serotypes, in a murine pruritus model using two different mechanistically driven pruritogens. These data also indicate that BoNTs may have a direct effect upon mast cell degranulation.
Collapse
|
19
|
Ramachandran R. Neurogenic inflammation and its role in migraine. Semin Immunopathol 2018; 40:301-314. [PMID: 29568973 DOI: 10.1007/s00281-018-0676-y] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/06/2018] [Indexed: 11/28/2022]
Abstract
The etiology of migraine pain involves sensitized meningeal afferents that densely innervate the dural vasculature. These afferents, with their cell bodies located in the trigeminal ganglion, project to the nucleus caudalis, which in turn transmits signals to higher brain centers. Factors such as chronic stress, diet, hormonal fluctuations, or events like cortical spreading depression can generate a state of "sterile inflammation" in the intracranial meninges resulting in the sensitization and activation of trigeminal meningeal nociceptors. This sterile inflammatory phenotype also referred to as neurogenic inflammation is characterized by the release of neuropeptides (such as substance P, calcitonin gene related peptide) from the trigeminal innervation. This release leads to vasodilation, plasma extravasation secondary to capillary leakage, edema, and mast cell degranulation. Although neurogenic inflammation has been observed and extensively studied in peripheral tissues, its role has been primarily investigated in the genesis and maintenance of migraine pain. While some aspects of neurogenic inflammation has been disregarded in the occurrence of migraine pain, targeted analysis of factors have opened up the possibilities of a dialogue between the neurons and immune cells in driving such a sterile neuroinflammatory state in migraine pathophysiology.
Collapse
Affiliation(s)
- Roshni Ramachandran
- Anesthesiology Research, Department of Anesthesiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
20
|
Li X, Guo R, Sun Y, Li H, Ma D, Zhang C, Guan Y, Li J, Wang Y. Botulinum toxin type A and gabapentin attenuate postoperative pain and NK1 receptor internalization in rats. Neurochem Int 2018; 116:52-62. [PMID: 29572051 DOI: 10.1016/j.neuint.2018.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/23/2018] [Accepted: 03/19/2018] [Indexed: 12/26/2022]
Abstract
Treatment of postoperative pain remains a challenge in clinic. Botulinum toxin type A (BoNT/A) and gabapentin regulate the release of neurotransmitters from primary afferent neurons, but their effects of on postoperative pain are not clear. In the current study, using pain behavioral tests, Western blot analysis, and immunocytochemistry, we examined whether BoNT/A, alone or in combination with intrathecal gabapentin, inhibited pain hypersensitivity and attenuated the increase in neurokinin 1 (NK1) receptor internalization in dorsal horn neurons after plantar incision. Our data showed that pretreatment of rats with an intraplantar (2 U) 24 h before plantar incision or intrathecal (0.5 U) injection of BoNT/A 48 h before plantar incision induced a prolonged (3-5 days) decrease in pain scores and mechanical hypersensitivity, as compared to those observed with saline pretreatment. Both intraplantar and intrathecal BoNT/A pretreatment reduced synaptosomal-associated protein 25 levels in the ipsilateral lumbar dorsal root ganglia and spinal cord dorsal horn, and attenuated the increase in NK1 receptor internalization in dorsal horn neurons. Intrathecal administration of a sub-effective dose of gabapentin (50 μg) with BoNT/A (0.5 U) induced greater inhibition of pain hypersensitivity and NK1 receptor internalization than BoNT/A alone. These findings suggest that pretreatment with BoNT/A, alone or in combination with intrathecal gabapentin, may present a promising multimodal analgesia regimen for postoperative pain treatment.
Collapse
Affiliation(s)
- Xueyang Li
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ruijuan Guo
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100025, China
| | - Yuqing Sun
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Huili Li
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Danxu Ma
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Chen Zhang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Junfa Li
- Department of Neurobiology, Capital Medical University, Beijing 100069, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
21
|
Finocchiaro A, Marinelli S, De Angelis F, Vacca V, Luvisetto S, Pavone F. Botulinum Toxin B Affects Neuropathic Pain but Not Functional Recovery after Peripheral Nerve Injury in a Mouse Model. Toxins (Basel) 2018; 10:toxins10030128. [PMID: 29562640 PMCID: PMC5869416 DOI: 10.3390/toxins10030128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/12/2022] Open
Abstract
Clinical use of neurotoxins from Clostridium botulinum is well established and is continuously expanding, including in treatment of pain conditions. Background: The serotype A (BoNT/A) has been widely investigated, and current data demonstrate that it induces analgesia and modulates nociceptive processing initiated by inflammation or nerve injury. Given that data concerning the serotype B (BoNT/B) are limited, the aim of the present study was to verify if also BoNT/B is able not only to counteract neuropathic pain, but also to interfere with inflammatory and regenerative processes associated with the nerve injury. Methods: As model of neuropathic pain, chronic constriction injury (CCI) of the sciatic nerve was performed in CD1 male mice. Mice were intraplantarly injected with saline (control) or BoNT/B (5 or 7.5 pg/mouse) into the injured hindpaw. For comparison, another mouse group was injected with BoNT/A (15 pg/mouse). Mechanical allodynia and functional recovery of the injured paw was followed for 101 days. Spinal cords and sciatic nerves were collected at day 7 for immunohistochemistry. Results and Conclusions: The results of this study show that BoNT/B is a powerful biological molecule that, similarly to BoNT/A, can reduce neuropathic pain over a long period of time. However, the analgesic effects are not associated with an improvement in functional recovery, clearly highlighting an important difference between the two serotypes for the treatment of this chronic pain state.
Collapse
Affiliation(s)
- Alba Finocchiaro
- National Research Council of Italy-CNR, Institute of Cell Biology and Neurobiology-IBCN, 00143 Roma, Italy.
- Department of Psycology, PhD School of Behavioural Neuroscience, Sapienza University, 00185 Roma, Italy.
| | - Sara Marinelli
- National Research Council of Italy-CNR, Institute of Cell Biology and Neurobiology-IBCN, 00143 Roma, Italy.
- IRCCS Santa Lucia Foundation, 00143-Roma, Italy.
| | | | - Valentina Vacca
- National Research Council of Italy-CNR, Institute of Cell Biology and Neurobiology-IBCN, 00143 Roma, Italy.
- IRCCS Santa Lucia Foundation, 00143-Roma, Italy.
| | - Siro Luvisetto
- National Research Council of Italy-CNR, Institute of Cell Biology and Neurobiology-IBCN, 00143 Roma, Italy.
- IRCCS Santa Lucia Foundation, 00143-Roma, Italy.
| | - Flaminia Pavone
- National Research Council of Italy-CNR, Institute of Cell Biology and Neurobiology-IBCN, 00143 Roma, Italy.
- IRCCS Santa Lucia Foundation, 00143-Roma, Italy.
| |
Collapse
|
22
|
Safarpour Y, Jabbari B. Botulinum toxin treatment of pain syndromes -an evidence based review. Toxicon 2018; 147:120-128. [PMID: 29409817 DOI: 10.1016/j.toxicon.2018.01.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/18/2017] [Accepted: 01/28/2018] [Indexed: 02/07/2023]
Abstract
This review evaluates the existing level of evidence for efficacy of BoNTs in different pain syndromes using the recommended efficacy criteria from the Assessment and Therapeutic Subcommittee of the American Academy of Neurology. There is a level A evidence (effective) for BoNT therapy in post-herpetic neuralgia, trigeminal neuralgia, and posttraumatic neuralgia. There is a level B evidence (probably effective) for diabetic neuropathy, plantar fasciitis, piriformis syndrome, pain associated with total knee arthroplasty, male pelvic pain syndrome, chronic low back pain, male pelvic pain, and neuropathic pain secondary to traumatic spinal cord injury. BoNTs are possibly effective (Level C -one class II study) for female pelvic pain, painful knee osteoarthritis, post-operative pain in children with cerebral palsy after adductor release surgery, anterior knee pain with vastus lateralis imbalance. There is a level B evidence (one class I study) that BoNT treatment is probably ineffective in carpal tunnel syndrome. For myofascial pain syndrome, the level of evidence is U (undetermined) due to contradicting results. More high quality (Class I) studies and studies with different types of BoNTs are needed for better understanding of the role of BoNTs in pain syndromes.
Collapse
Affiliation(s)
- Yasaman Safarpour
- Department of Medicine, Division of Nephrology, University of California, Irvine (UCI), CA, USA
| | - Bahman Jabbari
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
23
|
Knezevic NN, Yekkirala A, Yaksh TL. Basic/Translational Development of Forthcoming Opioid- and Nonopioid-Targeted Pain Therapeutics. Anesth Analg 2017; 125:1714-1732. [PMID: 29049116 PMCID: PMC5679134 DOI: 10.1213/ane.0000000000002442] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Opioids represent an efficacious therapeutic modality for some, but not all pain states. Singular reliance on opioid therapy for pain management has limitations, and abuse potential has deleterious consequences for patient and society. Our understanding of pain biology has yielded insights and opportunities for alternatives to conventional opioid agonists. The aim is to have efficacious therapies, with acceptable side effect profiles and minimal abuse potential, which is to say an absence of reinforcing activity in the absence of a pain state. The present work provides a nonexclusive overview of current drug targets and potential future directions of research and development. We discuss channel activators and blockers, including sodium channel blockers, potassium channel activators, and calcium channel blockers; glutamate receptor-targeted agents, including N-methyl-D-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, and metabotropic receptors. Furthermore, we discuss therapeutics targeted at γ-aminobutyric acid, α2-adrenergic, and opioid receptors. We also considered antagonists of angiotensin 2 and Toll receptors and agonists/antagonists of adenosine, purine receptors, and cannabinoids. Novel targets considered are those focusing on lipid mediators and anti-inflammatory cytokines. Of interest is development of novel targeting strategies, which produce long-term alterations in pain signaling, including viral transfection and toxins. We consider issues in the development of druggable molecules, including preclinical screening. While there are examples of successful translation, mechanistically promising preclinical candidates may unexpectedly fail during clinical trials because the preclinical models may not recapitulate the particular human pain condition being addressed. Molecular target characterization can diminish the disconnect between preclinical and humans' targets, which should assist in developing nonaddictive analgesics.
Collapse
Affiliation(s)
- Nebojsa Nick Knezevic
- From the *Department of Anesthesiology, Advocate Illinois Masonic Medical Center Chicago, Illinois; Departments of †Anesthesiology and ‡Surgery, University of Illinois, Chicago, Illinois; §Department of Neurobiology, Harvard Medical School, and Boston Children's Hospital, Boston, Massachusetts; ‖Blue Therapeutics, Harvard Innovation Launch Lab, Allston, Massachusetts; and Departments of ¶Anesthesiology and #Pharmacology, University of California, San Diego, La Jolla, California
| | | | | |
Collapse
|
24
|
Matak I, Tékus V, Bölcskei K, Lacković Z, Helyes Z. Involvement of substance P in the antinociceptive effect of botulinum toxin type A: Evidence from knockout mice. Neuroscience 2017; 358:137-145. [DOI: 10.1016/j.neuroscience.2017.06.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/09/2017] [Accepted: 06/22/2017] [Indexed: 12/30/2022]
|
25
|
Halb L, Amann BJ, Bornemann-Cimenti H. Einsatz intra- bzw. subkutaner Botulinumtoxine bei Post-Zoster-Neuralgie. DER NERVENARZT 2016; 88:408-414. [PMID: 27924350 DOI: 10.1007/s00115-016-0250-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
26
|
Sikandar S, Gustavsson Y, Marino MJ, Dickenson AH, Yaksh TL, Sorkin LS, Ramachandran R. Effects of intraplantar botulinum toxin-B on carrageenan-induced changes in nociception and spinal phosphorylation of GluA1 and Akt. Eur J Neurosci 2016; 44:1714-22. [PMID: 27108664 DOI: 10.1111/ejn.13261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/06/2016] [Accepted: 04/15/2016] [Indexed: 12/17/2022]
Abstract
Increasing evidence suggests that botulinum neurotoxins (BoNTs) delivered into the skin and muscle in certain human and animal pain states may exert antinociceptive efficacy though their uptake and transport to central afferent terminals. Cleavage of soluble N-methylaleimide-sensitive attachment protein receptor by BoNTs can impede vesicular mediated neurotransmitter release as well as transport/insertion of channel/receptor subunits into plasma membranes, an effect that can reduce activity-evoked facilitation. Here, we explored the effects of intraplantar botulinum toxin- B (BoNT-B) on peripheral inflammation and spinal nociceptive processing in an inflammatory model of pain. C57BL/6 mice (male) received unilateral intraplantar BoNT (1 U, 30 μL) or saline prior to intraplantar carrageenan (20 μL, 2%) or intrathecal N-methyl-D-aspartate (NMDA), substance P or saline (5 μL). Intraplantar carrageenan resulted in edema and mechanical allodynia in the injected paw and increased phosphorylation of a glutamate subunit (pGluA1ser845) and a serine/threonine-specific protein kinase (pAktser473) in spinal dorsal horn along with an increased incidence of spinal c-Fos positive cells. Pre-treatment with intraplantar BoNT-B reduced carrageenan evoked: (i) allodynia, but not edema; (ii) pGluA1 and pAkt and (iii) c-Fos expression. Further, intrathecal NMDA and substance P each increased dorsal horn levels of pGluA1 and pAkt. Intraplantar BoNT-B inhibited NMDA, but not substance P evoked phosphorylation of GluA1 and Akt. These results suggest that intraplantar toxin is transported centrally to block spinal activation and prevent phosphorylation of a glutamate receptor subunit and a kinase, which otherwise contribute to facilitated states.
Collapse
Affiliation(s)
- Shafaq Sikandar
- Wolfson Inst for Biomedical Research, University College London, London, UK
| | | | - Marc J Marino
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Tony L Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Linda S Sorkin
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Roshni Ramachandran
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
27
|
Rostami R, Mittal SO, Radmand R, Jabbari B. Incobotulinum Toxin-A Improves Post-Surgical and Post-Radiation Pain in Cancer Patients. Toxins (Basel) 2016; 8:E22. [PMID: 26771640 PMCID: PMC4728544 DOI: 10.3390/toxins8010022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/10/2015] [Accepted: 12/23/2015] [Indexed: 11/17/2022] Open
Abstract
Cancer patients who undergo surgery or radiation can develop persistent focal pain at the site of radiation or surgery. Twelve patients who had surgery or radiation for local cancer and failed at least two analgesic medications for pain control were prospectively enrolled in a research protocol. Patients were injected up to 100 units of incobotulinum toxin A (IncoA) intramuscularly or subcutaneously depending on the type and location of pain (muscle cramp or neuropathic pain). Two patients passed away, one dropped out due to a skin reaction and another patient could not return for the follow up due to his poor general condition. All remaining 8 subjects (Age 31-70, 4 female) demonstrated significant improvement of Visual Analog Scale (VAS) (3 to 9 degrees, average 3.9 degrees) and reported significant satisfaction in Patients' Global Impression of Change scale (PGIC) (7 out of 8 reported the pain as much improved). Three of the 8 patients reported significant improvement of quality of life.
Collapse
Affiliation(s)
- Rezvan Rostami
- Department of Neurology, Yale University School of Medicine, 15 York Street, LCI Building, New Haven, CT 06520, USA.
| | - Shivam Om Mittal
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-5040, USA.
| | - Reza Radmand
- Department of Surgery, Bridgeport Hospital, 267 Grant Street, Bridgeport, CT 06610, USA.
| | - Bahman Jabbari
- Department of Neurology, Yale University School of Medicine, 15 York Street, LCI Building, New Haven, CT 06520, USA.
| |
Collapse
|
28
|
Current status and future directions of botulinum neurotoxins for targeting pain processing. Toxins (Basel) 2015; 7:4519-63. [PMID: 26556371 PMCID: PMC4663519 DOI: 10.3390/toxins7114519] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/29/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
Current evidence suggests that botulinum neurotoxins (BoNTs) A1 and B1, given locally into peripheral tissues such as skin, muscles, and joints, alter nociceptive processing otherwise initiated by inflammation or nerve injury in animal models and humans. Recent data indicate that such locally delivered BoNTs exert not only local action on sensory afferent terminals but undergo transport to central afferent cell bodies (dorsal root ganglia) and spinal dorsal horn terminals, where they cleave SNAREs and block transmitter release. Increasing evidence supports the possibility of a trans-synaptic movement to alter postsynaptic function in neuronal and possibly non-neuronal (glial) cells. The vast majority of these studies have been conducted on BoNT/A1 and BoNT/B1, the only two pharmaceutically developed variants. However, now over 40 different subtypes of botulinum neurotoxins (BoNTs) have been identified. By combining our existing and rapidly growing understanding of BoNT/A1 and /B1 in altering nociceptive processing with explorations of the specific characteristics of the various toxins from this family, we may be able to discover or design novel, effective, and long-lasting pain therapeutics. This review will focus on our current understanding of the molecular mechanisms whereby BoNTs alter pain processing, and future directions in the development of these agents as pain therapeutics.
Collapse
|
29
|
The effects of intraplantar and intrathecal botulinum toxin type B on tactile allodynia in mono and polyneuropathy in the mouse. Anesth Analg 2015; 121:229-238. [PMID: 26039418 DOI: 10.1213/ane.0000000000000777] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mononeuropathies (MNs: nerve ligation) and polyneuropathies (PNs: cisplatin) produce unilateral and bilateral tactile allodynia, respectively. We examined the effects of intraplantar (IPLT) and intrathecal (IT) botulinum toxin B (BoNT-B) on this allodynia. METHODS Mice (male c57Bl/6) were prepared with an L5 nerve ligation. Others received cisplatin (IP 2.3 mg/kg/d, every other day for 6 injections). Saline and BoNT-B were administered through the IPLT or IT route. We examined mechanical allodynia (von Frey hairs) before and at intervals after BoNT. As a control, we injected IPLT BoNT-B treated with dithiothreitol to cleave heavy chain from light chain. We measured motor function using acute thermal escape and sensorimotor tests. RESULTS MN and PN mice showed a persistent ipsilateral and bilateral allodynia, respectively. IPLT BoNT-B resulted in an ipsilateral dorsal horn reduction in the synaptic protein target of BoNT-B (vesicle-associated membrane protein) and a long-lasting (up to approximately 17 days) reversal of allodynia in PN and MN models. The predominant effect after IPLT delivery was ipsilateral to IPLT BoNT. The effects of IPLT BoNT-B in MN mice were blocked by prior reduction of BoNT-B with dithiothreitol. IT BoNT-B in mice with PN resulted in a bilateral reversal of allodynia. With these dosing parameters, hind paw placing and stepping reflexes were unaltered, and there were no changes in thermal escape latencies. After cisplatin, dorsal root ganglions displayed increases in activation transcription factor 3, which were reduced by IT, but not IPLT BoNT-B. CONCLUSIONS BoNT-B given IPLT and IT yields a long-lasting attenuation of the allodynia in mice displaying MN and PN allodynia.
Collapse
|
30
|
Botulinum Toxin for Neuropathic Pain: A Review of the Literature. Toxins (Basel) 2015; 7:3127-54. [PMID: 26287242 PMCID: PMC4549742 DOI: 10.3390/toxins7083127] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 07/29/2015] [Accepted: 08/07/2015] [Indexed: 12/16/2022] Open
Abstract
Botulinum neurotoxin (BoNT), derived from Clostridium botulinum, has been used therapeutically for focal dystonia, spasticity, and chronic migraine. Its spectrum as a potential treatment for neuropathic pain has grown. Recent opinions on the mechanism behind the antinociceptive effects of BoNT suggest that it inhibits the release of peripheral neurotransmitters and inflammatory mediators from sensory nerves. There is some evidence showing the axonal transport of BoNT, but it remains controversial. The aim of this review is to summarize the experimental and clinical evidence of the antinociceptive effects, mechanisms, and therapeutic applications of BoNT for neuropathic pain conditions, including postherpetic neuralgia, complex regional pain syndrome, and trigeminal neuralgia. The PubMed and OvidSP databases were searched from 1966 to May 2015. We assessed levels of evidence according to the American Academy of Neurology guidelines. Recent studies have suggested that BoNT injection is an effective treatment for postherpetic neuralgia and is likely efficient for trigeminal neuralgia and post-traumatic neuralgia. BoNT could also be effective as a treatment for diabetic neuropathy. It has not been proven to be an effective treatment for occipital neuralgia or complex regional pain syndrome.
Collapse
|
31
|
Eckle VS, Balk M, Thiermann H, Antkowiak B, Grasshoff C. Botulinum toxin B increases intrinsic muscle activity in organotypic spinal cord-skeletal muscle co-cultures. Toxicol Lett 2015; 244:167-171. [PMID: 26260118 DOI: 10.1016/j.toxlet.2015.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 12/21/2022]
Abstract
In organotypic spinal cord-skeletal muscle co-cultures, motoneurons are driven by locomotor commands and induce contractions in surrounding muscle fibres. Using these co-cultures, it has been shown that effects of organophosphorus compounds on neuromuscular synapses can be determined in vitro. In the present study we aimed to extend this in vitro tool for pharmacologic testing of botulinum toxin B. This neurotoxin is widely used for the treatment of dystonia. Besides its effects on the neuromuscular junction, botulinum toxins may also act at centrally located synapses. Incubation with botulinum toxin B (Neurobloc(®)) induced a significant increase in muscular activity after 24, 48 and 72h. Application of the NMDA- and AMPA-receptor antagonists AP5 (20μM) and CNQX (15μM) induced a similar augmentation of muscle activity after 48 and 72h, respectively. Administration of the glycine- and GABA(A)-receptor antagonists strychnine (1μM) and bicuculline (100μM) did not alter intrinsic muscle activity. In contrast, application of a non-depolarizing muscle relaxant rocuronium bromide reduced the muscle activity in a dose-dependent manner. Our findings suggest that glutamatergic synapses in the spinal cord are more sensitive to botulinum toxin B than synaptic contacts between spinal motoneurons and muscle fibres.
Collapse
Affiliation(s)
- Veit-Simon Eckle
- Experimental Anesthesiology Section, Department of Anesthesiology and Intensive Care Medicine, Eberhard-Karls-University, Tübingen, Germany.
| | - Monika Balk
- Experimental Anesthesiology Section, Department of Anesthesiology and Intensive Care Medicine, Eberhard-Karls-University, Tübingen, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Bernd Antkowiak
- Experimental Anesthesiology Section, Department of Anesthesiology and Intensive Care Medicine, Eberhard-Karls-University, Tübingen, Germany
| | - Christian Grasshoff
- Experimental Anesthesiology Section, Department of Anesthesiology and Intensive Care Medicine, Eberhard-Karls-University, Tübingen, Germany
| |
Collapse
|
32
|
Yaksh TL, Woller SA, Ramachandran R, Sorkin LS. The search for novel analgesics: targets and mechanisms. F1000PRIME REPORTS 2015; 7:56. [PMID: 26097729 PMCID: PMC4447049 DOI: 10.12703/p7-56] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The management of the pain state is of great therapeutic relevance to virtually every medical specialty. Failure to manage its expression has deleterious consequence to the well-being of the organism. An understanding of the complex biology of the mechanisms underlying the processing of nociceptive information provides an important pathway towards development of novel and robust therapeutics. Importantly, preclinical models have been of considerable use in determining the linkage between mechanism and the associated behaviorally defined pain state. This review seeks to provide an overview of current thinking targeting pain biology, the use of preclinical models and the development of novel pain therapeutics. Issues pertinent to the strengths and weaknesses of current development strategies for analgesics are considered.
Collapse
|
33
|
Ramachandran R, Yaksh TL. Therapeutic use of botulinum toxin in migraine: mechanisms of action. Br J Pharmacol 2015; 171:4177-92. [PMID: 24819339 DOI: 10.1111/bph.12763] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/25/2014] [Accepted: 05/02/2014] [Indexed: 12/30/2022] Open
Abstract
Migraine pain represents sensations arising from the activation of trigeminal afferents, which innervate the meningeal vasculature and project to the trigeminal nucleus caudalis (TNC). Pain secondary to meningeal input is referred to extracranial regions innervated by somatic afferents that project to homologous regions in the TNC. Such viscerosomatic convergence accounts for referral of migraine pain arising from meningeal afferents to particular extracranial dermatomes. Botulinum toxins (BoNTs) delivered into extracranial dermatomes are effective in and approved for treating chronic migraine pain. Aside from their well-described effect upon motor endplates, BoNTs are also taken up in local afferent nerve terminals where they cleave soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, and prevent local terminal release. However, a local extracranial effect of BoNT cannot account for allthe effects of BoNT upon migraine. We now know that peripherally delivered BoNTs are taken up in sensory afferents and transported to cleave SNARE proteins in the ganglion and TNC, prevent evoked afferent release and downstream activation. Such effects upon somatic input (as from the face) likewise would not alone account for block of input from converging meningeal afferents. This current work suggests that BoNTs may undergo transcytosis to cleave SNAREs in second-order neurons or in adjacent afferent terminals. Finally, while SNAREs mediate exocytotic release, they are also involved in transport of channels and receptors involved in facilitated pain states. The role of such post-synaptic effects of BoNT action in migraine remains to be determined.
Collapse
Affiliation(s)
- Roshni Ramachandran
- Anesthesiology Research, Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
34
|
Botulinum toxin in migraine: Role of transport in trigemino-somatic and trigemino-vascular afferents. Neurobiol Dis 2015; 79:111-22. [PMID: 25958249 DOI: 10.1016/j.nbd.2015.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/11/2015] [Accepted: 04/29/2015] [Indexed: 01/07/2023] Open
Abstract
Migraine secondary to meningeal input is referred to extracranial regions innervated by somatic afferents that project to homologous regions in the trigeminal nucleus caudalis (TNC). Reported efficacy of extracranial botulinum toxin (BoNT) in treating migraine is surprising since a local extracranial effect of BoNT cannot account for its effect upon meningeal input. We hypothesize that intradermal BoNT acts through central transport in somatic afferents. Anesthetized C57Bl/6 mice (male) received unilateral supraorbital (SO) injections of BoNT-B (1.5 U/40 μl) or saline. 3 days later, mice received ipsilateral (ipsi)-SO capsaicin (20 μl of 0.5mM solution) or meningeal capsaicin (4 μl of 0.35 μM). Pre-treatment with ipsi-SO BoNT-B i) decreased nocicsponsive ipsilateral wiping behavior following ipsi-SO capsaicin; ii) produced cleavage of VAMP in the V1 region of ipsi-TG and in TG neurons showing WGA after SO injection; iii) reduced expression of c-fos in ipsi-TNC following ipsi-SO capsaicin; iv) reduced c-fos activation and NK-1 internalization in ipsi-TNC secondary to ipsi-meningeal capsaicin; and vi) SO WGA did not label dural afferents. We conclude that BoNT-B is taken up by peripheral afferents and transported to central terminals where it inhibits transmitter release resulting in decreased activation of second order neurons. Further, this study supports the hypothesis that SO BoNT exerts a trans-synaptic action on either the second order neuron (which receives convergent input from the meningeal afferent) or the terminal/TG of the converging meningeal afferent.
Collapse
|
35
|
Chung E. Botulinum toxin in urology: a review of clinical potential in the treatment of urologic and sexual conditions. Expert Opin Biol Ther 2014; 15:95-102. [DOI: 10.1517/14712598.2015.974543] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Matak I, Lacković Z. Botulinum toxin A, brain and pain. Prog Neurobiol 2014; 119-120:39-59. [PMID: 24915026 DOI: 10.1016/j.pneurobio.2014.06.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/25/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
Botulinum neurotoxin type A (BoNT/A) is one of the most potent toxins known and a potential biological threat. At the same time, it is among the most widely used therapeutic proteins used yearly by millions of people, especially for cosmetic purposes. Currently, its clinical use in certain types of pain is increasing, and its long-term duration of effects represents a special clinical value. Efficacy of BoNT/A in different types of pain has been found in numerous clinical trials and case reports, as well as in animal pain models. However, sites and mechanisms of BoNT/A actions involved in nociception are a matter of controversy. In analogy with well known neuroparalytic effects in peripheral cholinergic synapses, presently dominant opinion is that BoNT/A exerts pain reduction by inhibiting peripheral neurotransmitter/inflammatory mediator release from sensory nerves. On the other hand, growing number of behavioral and immunohistochemical studies demonstrated the requirement of axonal transport for BoNT/A's antinociceptive action. In addition, toxin's enzymatic activity in central sensory regions was clearly identified after its peripheral application. Apart from general pharmacology, this review summarizes the clinical and experimental evidence for BoNT/A antinociceptive activity and compares the data in favor of peripheral vs. central site and mechanism of action. Based on literature review and published results from our laboratory we propose that the hypothesis of peripheral site of BoNT/A action is not sufficient to explain the experimental data collected up to now.
Collapse
Affiliation(s)
- Ivica Matak
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Brain Research Institute, University of Zagreb School of Medicine, Šalata 11, 10000 Zagreb, Croatia
| | - Zdravko Lacković
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Brain Research Institute, University of Zagreb School of Medicine, Šalata 11, 10000 Zagreb, Croatia.
| |
Collapse
|
37
|
Matak I, Rossetto O, Lacković Z. Botulinum toxin type A selectivity for certain types of pain is associated with capsaicin-sensitive neurons. Pain 2014; 155:1516-1526. [PMID: 24793910 DOI: 10.1016/j.pain.2014.04.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/10/2014] [Accepted: 04/23/2014] [Indexed: 01/06/2023]
Abstract
Unlike most classical analgesics, botulinum toxin type A (BoNT/A) does not alter acute nociceptive thresholds, and shows selectivity primarily for allodynic and hyperalgesic responses in certain pain conditions. We hypothesized that this phenomenon might be explained by characterizing the sensory neurons targeted by BoNT/A in the central nervous system after its axonal transport. BoNT/A's central antinociceptive activity following its application into the rat whisker pad was examined in trigeminal nucleus caudalis (TNC) and higher-level nociceptive brain areas using BoNT/A-cleaved synaptosomal-associated protein 25 (SNAP-25) and c-Fos immunohistochemistry. Occurrence of cleaved SNAP-25 in TNC was examined after nonselective ganglion ablation with formalin or selective denervation of capsaicin-sensitive (vanilloid receptor-1 or TRPV1-expressing) neurons, and in relation to different cellular and neuronal markers. Regional c-Fos activation and effect of TRPV1-expressing afferent denervation on toxin's antinociceptive action were studied in formalin-induced orofacial pain. BoNT/A-cleaved SNAP-25 was observed in TNC, but not in higher-level nociceptive nuclei. Cleaved SNAP-25 in TNC disappeared after formalin-induced trigeminal ganglion ablation or capsaicin-induced sensory denervation. Occurrence of cleaved SNAP-25 in TNC and BoNT/A antinociceptive activity in formalin-induced orofacial pain were prevented by denervation with capsaicin. Cleaved SNAP-25 localization demonstrated toxin's presynaptic activity in TRPV1-expressing neurons. BoNT/A reduced the c-Fos activation in TNC, locus coeruleus, and periaqueductal gray. Present experiments suggest that BoNT/A alters the nociceptive transmission at the central synapse of primary afferents. Targeting of TRPV1-expressing neurons might be associated with observed selectivity of BoNT/A action only in certain types of pain.
Collapse
Affiliation(s)
- Ivica Matak
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Brain Research Institute, University of Zagreb School of Medicine, Zagreb 10000, Croatia Department of Biomedical Sciences, University of Padua, Padua 35121, Italy
| | | | | |
Collapse
|
38
|
Pavone F, Ueda H. Is BoNT/B useful for pain treatment? Pain 2014; 155:649-650. [DOI: 10.1016/j.pain.2014.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 11/29/2022]
|