1
|
Hunzeker ZE, Zhao L, Kim AM, Parker JM, Zhu Z, Xiao H, Bai Q, Wakefield MR, Fang Y. The role of IL-22 in cancer. Med Oncol 2024; 41:240. [PMID: 39231878 DOI: 10.1007/s12032-024-02481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Interleukin-22, discovered in the year of 2000, is a pleiotropic Th17 cytokine from the IL-10 family of cytokines. IL-22 signals through the type 2 cytokine receptor complex IL-22R and predominantly activates STAT3. This pathway leads to the transcription of several different types of genes, giving IL-22 context-specific functions ranging from inducing antimicrobial peptide expression to target cell proliferation. In recent years, it has been shown that IL-22 is involved in the pathogenesis of neoplasia in some cancers through its pro-proliferative and anti-apoptotic effects. This review highlights studies with recent discoveries and conclusions drawn on IL-22 and its involvement and function in various cancers. Such a study may be helpful to better understand the role of IL-22 in cancer so that new treatment could be developed targeting IL-22.
Collapse
Affiliation(s)
- Zachary E Hunzeker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Department of Internal Medicine, University of Texas Houston Health Science Center, Houston, TX, USA
| | - Lei Zhao
- Department of Respiratory Medicine, the 2nd People's Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Austin M Kim
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Jacob M Parker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Ziwen Zhu
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Huaping Xiao
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA.
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
2
|
Kim WJ, Ryu R, Doo EH, Choi Y, Kim K, Kim BK, Kim H, Kim M, Huh CS. Supplementation with the Probiotic Strains Bifidobacterium longum and Lactiplantibacillus rhamnosus Alleviates Glucose Intolerance by Restoring the IL-22 Response and Pancreatic Beta Cell Dysfunction in Type 2 Diabetic Mice. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10156-5. [PMID: 37804432 DOI: 10.1007/s12602-023-10156-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/09/2023]
Abstract
Type 2 diabetes (T2D) is known as adult-onset diabetes, but recently, T2D has increased in the number of younger people, becoming a major clinical burden in human society. The objective of this study was to determine the effects of Bifidobacterium and Lactiplantibacillus strains derived from the feces of 20 healthy humans on T2D development and to understand the mechanism underlying any positive effects of probiotics. We found that Bifidobacterium longum NBM7-1 (Chong Kun Dang strain 1; CKD1) and Lactiplantibacillus rhamnosus NBM17-4 (Chong Kun Dang strain 2; CKD2) isolated from the feces of healthy Korean adults (n = 20) have anti-diabetic effects based on the insulin sensitivity. During the oral gavage for 8 weeks, T2D mice were supplemented with anti-diabetic drugs (1.0-10 mg/kg body weight) to four positive and negative control groups or four probiotics (200 uL; 1 × 109 CFU/mL) to groups separately or combined to the four treatment groups (n = 6 per group). While acknowledging the relatively small sample size, this study provides valuable insights into the potential benefits of B. longum NBM7-1 and L. rhamnosus NBM17-4 in mitigating T2D development. The animal gene expression was assessed using a qRT-PCR, and metabolic parameters were assessed using an ELISA assay. We demonstrated that B. longum NBM7-1 in the CKD1 group and L. rhamnosus NBM17-4 in the CKD2 group alleviate T2D development through the upregulation of IL-22, which enhances insulin sensitivity and pancreatic functions while reducing liver steatosis. These findings suggest that B. longum NBM7-1 and L. rhamnosus NBM17-4 could be the candidate probiotics for the therapeutic treatments of T2D patients as well as the prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Won Jun Kim
- Department of Agricultural Biotechnology, College of Agriculture Sciences, Seoul National University, Seoul, South Korea
| | - Ri Ryu
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, South Korea
| | - Eun-Hee Doo
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, South Korea
- Department of Yuhan Biotechnology, School of Bio-Health Sciences, Yuhan University, Bucheon, 14780, South Korea
| | - Yukyung Choi
- Research Institute, Chong Kun Dang Bio Co. Ltd, Ansan, South Korea
| | - Kyunghwan Kim
- Research Institute, Chong Kun Dang Bio Co. Ltd, Ansan, South Korea
| | - Byoung Kook Kim
- Research Institute, Chong Kun Dang Bio Co. Ltd, Ansan, South Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, College of Agriculture Sciences, Seoul National University, Seoul, South Korea
- Department of Animal Science and Biotechnology, Seoul National University, Seoul, South Korea
| | - Myunghoo Kim
- Department of Animal Science, Pusan National University, Miryang, South Korea.
| | - Chul Sung Huh
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, South Korea.
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea.
| |
Collapse
|
3
|
de Brito RJVC, do Carmo RF, Silva BMS, Barbosa Júnior WL, Vasconcelos LRS, Pereira LMMB, Moura P. Lack of Association of Polymorphisms in IL22 and IL22RA1 Genes with Fibrosis Severity in Patients with Chronic Hepatitis C. Viral Immunol 2022; 35:509-513. [PMID: 35838587 DOI: 10.1089/vim.2022.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The IL-22 pathway has been shown to play an important role in the pathogenesis of liver fibrosis. However, little is known about the role of single-nucleotide polymorphisms (SNPs) in IL-22-related genes in relation to the severity of liver fibrosis. This study aimed to investigate the association of polymorphisms in IL22 and IL22RA1 genes with the severity of liver fibrosis in patients with chronic hepatitis C. A total of 326 patients (165 with mild fibrosis and 161 with severe fibrosis) were included. Four SNPs in IL22 (rs1179251, rs2227473, rs1012356, and rs2227485) and two in IL22RA1 (rs4648936 and rs3795299) were evaluated by real-time PCR. No significant association was observed between the polymorphisms studied and the severity of liver fibrosis. The SNPs rs1179251, rs2227473, rs1012356, and rs2227485 in IL22 and rs4648936 and rs3795299 in IL22RA1 may not be involved in the pathogenesis of liver fibrosis in patients with chronic hepatitis C.
Collapse
Affiliation(s)
- Rodrigo José Videres Cordeiro de Brito
- Postgraduate Program in Health Sciences, University of Pernambuco (UPE), Recife, Brazil
- College of Medicine, Federal University of the São Francisco Valley (UNIVASF), Petrolina, Brazil
| | | | | | | | | | - Leila Maria Moreira Beltrão Pereira
- Postgraduate Program in Health Sciences, University of Pernambuco (UPE), Recife, Brazil
- Faculty of Medicine, University of Pernambuco (UPE), Recife, Brazil
- Liver Institute of Pernambuco (IFP), Recife, Brazil
| | - Patrícia Moura
- Postgraduate Program in Health Sciences, University of Pernambuco (UPE), Recife, Brazil
- Institute of Biological Sciences, University of Pernambuco (UPE), Recife, Brazil
| |
Collapse
|
4
|
Jin M, Zhang H, Wu M, Wang Z, Chen X, Guo M, Zhou R, Yang H, Qian J. Colonic interleukin-22 protects intestinal mucosal barrier and microbiota abundance in severe acute pancreatitis. FASEB J 2022; 36:e22174. [PMID: 35137988 DOI: 10.1096/fj.202101371r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/12/2021] [Accepted: 12/29/2021] [Indexed: 12/31/2022]
Abstract
Intestinal barrier dysfunction plays a critical role in the pathophysiology of many diseases including severe acute pancreatitis (SAP). Interleukin-22 (IL-22) is a critical regulator of intestinal epithelial homeostasis. However, the mechanism, origin site, and characteristics of IL-22 in the intestinal barrier dysfunction remains elusive. Studies were conducted in patients with SAP and SAP mice model. SAP mice model was induced by intraductal infusion of 5% taurocholic acid. The level and source of IL-22 were analyzed by flow cytometry. The effect of IL-22 in SAP-associated intestinal injury were examined through knockout of IL-22 (IL-22-/- ) or administration of recombinant IL-22 (rIL-22). IL-22 increased in the early phase of SAP but declined more quickly than that of proinflammatory cytokines, such as IL-6 and TNF-α. CD177+ neutrophils contributed to IL-22 expression in SAP. IL-22 was activated in the colon rather than the small intestine during SAP. Deletion of IL-22 worse the severity of colonic injury, whereas administration of rIL-22 reduced colonic injury. Mechanistically, IL-22 ameliorates the intestinal barrier dysfunction in SAP through decreasing colonic mucosal permeability, upregulation of E-cadherin and ZO-1 expression, activation of pSTAT3/Reg3 pathway and restoration of fecal microbiota abundance. This study revealing that early decreased colonic IL-22 aggravates intestinal mucosal barrier dysfunction and microbiota dysbiosis in SAP. Colonic IL-22 is likely a promising treating target in the early phase of SAP management. Research in context Evidence before this study Intestinal barrier dysfunction plays a critical role in the pathophysiology of severe acute pancreatitis (SAP). Interleukin-22 (IL-22) is a critical regulator of intestinal epithelial homeostasis. However, the mechanism, origin site and characteristics of IL-22 in the intestinal barrier dysfunction remains elusive. Added value of this study Firstly, we determined the dynamic expression profile of IL-22 in SAP and found that IL-22 was mostly activated in the pancreas and colon and decreased earlier than proinflammatory cytokines. CD177+ neutrophils contributed to IL-22 expression in SAP. Furthermore, we found that IL-22 ameliorates intestinal barrier dysfunction in SAP through decreasing colonic mucosal permeability, upregulation of E-cadherin and ZO-1 expression, activation of pSTAT3/Reg3 pathway and restoration of fecal microbiota abundance. Implications of all the available evidence This study highlights the role of colonic injury and colonic IL-22 in SAP. IL-22 is likely a promising treating target in the early phase of SAP management.
Collapse
Affiliation(s)
- Meng Jin
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Huimin Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Meixu Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zheng Wang
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuanfu Chen
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingyue Guo
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Runing Zhou
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaming Qian
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Jiang R, Sun B. IL-22 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1290:81-88. [PMID: 33559856 DOI: 10.1007/978-3-030-55617-4_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interleukin (IL)-22 belongs to the IL-10 cytokine family which performs biological functions by binding to heterodimer receptors comprising a type 1 receptor chain (R1) and a type 2 receptor chain (R2). IL-22 is mainly derived from CD4+ helper T cells, CD8+ cytotoxic T cells, innate lymphocytes, and natural killer T cells. It can activate downstream signaling pathways such as signal transducer and activator of transcription (STAT)1/3/5, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT)-mammalian target of rapamycin (mTOR) through these heterodimer receptors. Although IL-22 is produced by immune cells, its specific receptor IL-22R1 is selectively expressed in nonimmune cells, such as hepatocytes, colonic epithelial cells, and pancreatic epithelial cells (Jiang et al. Hepatology 54(3):900-9, 2011; Jiang et al. BMC Cancer 13:59, 2013; Curd et al. Clin Exp Immunol 168(2):192-9, 2012). Immune cells do not respond to IL-22 stimulation directly within tumors, reports from different groups have revealed that IL-22 can indirectly regulate the tumor microenvironment (TME). In the present chapter, we discuss the roles of IL-22 in malignant cells and immunocytes within the TME, meanwhile, the potential roles of IL-22 as a target for drug discovery will be discussed.
Collapse
Affiliation(s)
- Runqiu Jiang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
- Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China.
| |
Collapse
|
6
|
Arshad T, Mansur F, Palek R, Manzoor S, Liska V. A Double Edged Sword Role of Interleukin-22 in Wound Healing and Tissue Regeneration. Front Immunol 2020; 11:2148. [PMID: 33042126 PMCID: PMC7527413 DOI: 10.3389/fimmu.2020.02148] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
Wound healing and tissue regeneration is an intricate biological process that involves repair of cellular damage and maintenance of tissue integrity. Cascades involved in wound healing and tissue regeneration highly overlap with cancer causing pathways. Usually, subsequent tissue damage events include release of a number of cytokines to accomplish post-trauma restoration. IL-22 is one of the cytokines that are immediately produced to initiate immune response against several tissue impairments. IL-22 is a fundamental mediator in inflammation, mucous production, protective role against pathogens, wound healing, and tissue regeneration. However, accumulating evidence suggests pivotal role of IL-22 in instigation of various cancers due to its pro-inflammatory and tissue repairing activity. In this review, we summarize how healing effects of IL-22, when executed in an uncontrollable fashion can lead to carcinogenesis.
Collapse
Affiliation(s)
- Tanzeela Arshad
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Fizzah Mansur
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Richard Palek
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Sobia Manzoor
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology, Islamabad, Pakistan
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Vaclav Liska
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| |
Collapse
|
7
|
Xuan X, Zhou J, Tian Z, Lin Y, Song J, Ruan Z, Ni B, Zhao H, Yang W. ILC3 cells promote the proliferation and invasion of pancreatic cancer cells through IL-22/AKT signaling. Clin Transl Oncol 2020; 22:563-575. [PMID: 31203574 DOI: 10.1007/s12094-019-02160-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/08/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Type 3 innate lymphocytes (ILC3s) are reported to be involved in lung cancer, possibly by producing interleukin-22 (IL-22). However, whether ILC3s and their secreted IL-22 molecules contribute to the pathogenesis of pancreatic cancer (PC) remains unclear. To this end, in this study, we investigated the effects and possible mechanisms of ILC3s on PC pathogenesis. METHOD The IL-22 and IL-2i2R levels and the ILC3s' frequency in cancer tissues from PC patients and in peripheral blood from PC patients and healthy controls were analyzed by flow cytometry, immunochemistry, or immunofluorescence. The effects of IL-22-induced AKT signaling on the proliferation, invasion, and migration of PC cells were examined by co-culturing PC cell lines with ILC3s isolated from PC tissues, with or without the addition of neutralizing IL-22 antibody, IL-22R antibody or AKT inhibitor. RESULTS Our results showed that IL-22 and ILC3s were significantly upregulated in the PBMCs and cancer tissues of PC patients, and the IL-22R level was increased in PC cells. The increased frequency of ILC3s was positively correlated with the clinical features of PC patients. Co-culture experiments indicated that ILC3s promoted the proliferation, invasion, and migration of PC cell lines by secreting IL-22 to activate AKT signaling because IL-22/IL-22R or AKT blockage markedly counteracted such effects on PC cells. CONCLUSION Our data demonstrated that ILC3s may promote PC pathogenesis through IL-22/IL-22R-AKT signaling, suggesting a potential intervention target for PC treatment in the future.
Collapse
Affiliation(s)
- X Xuan
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, 400038, China
- Department of Kidney, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan Street, District Shapingba, Chongqing, 400038, China
| | - J Zhou
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China
| | - Z Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China
| | - Y Lin
- Bellevue Christian High School, 1601 98th Ave NE, Bellevue, WA, 98004, USA
| | - J Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, TX, 77843, USA
| | - Z Ruan
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - B Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - H Zhao
- Department of Kidney, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan Street, District Shapingba, Chongqing, 400038, China.
| | - W Yang
- Department of Dermatology, The 181th Hospital of PLA, No. 1 Xinqiaoyuan Road, Guilin, 541002, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|