1
|
Durães-Oliveira J, Palma-Marques J, Moreno C, Rodrigues A, Monteiro M, Alexandre-Pires G, da Fonseca IP, Santos-Gomes G. Chagas Disease: A Silent Threat for Dogs and Humans. Int J Mol Sci 2024; 25:3840. [PMID: 38612650 PMCID: PMC11011309 DOI: 10.3390/ijms25073840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Chagas disease (CD) is a vector-borne Neglected Zoonotic Disease (NZD) caused by a flagellate protozoan, Trypanosoma cruzi, that affects various mammalian species across America, including humans and domestic animals. However, due to an increase in population movements and new routes of transmission, T. cruzi infection is presently considered a worldwide health concern, no longer restricted to endemic countries. Dogs play a major role in the domestic cycle by acting very efficiently as reservoirs and allowing the perpetuation of parasite transmission in endemic areas. Despite the significant progress made in recent years, still there is no vaccine against human and animal disease, there are few drugs available for the treatment of human CD, and there is no standard protocol for the treatment of canine CD. In this review, we highlight human and canine Chagas Disease in its different dimensions and interconnections. Dogs, which are considered to be the most important peridomestic reservoir and sentinel for the transmission of T. cruzi infection in a community, develop CD that is clinically similar to human CD. Therefore, an integrative approach, based on the One Health concept, bringing together the advances in genomics, immunology, and epidemiology can lead to the effective development of vaccines, new treatments, and innovative control strategies to tackle CD.
Collapse
Affiliation(s)
- João Durães-Oliveira
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Joana Palma-Marques
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Cláudia Moreno
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Armanda Rodrigues
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Marta Monteiro
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
- Centre for Interdisciplinary Research in Animal Health, CIISA, Faculty of Veterinary Medicine, FMV, University of Lisbon, ULisboa, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Graça Alexandre-Pires
- Centre for Interdisciplinary Research in Animal Health, CIISA, Faculty of Veterinary Medicine, FMV, University of Lisbon, ULisboa, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Isabel Pereira da Fonseca
- Centre for Interdisciplinary Research in Animal Health, CIISA, Faculty of Veterinary Medicine, FMV, University of Lisbon, ULisboa, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Gabriela Santos-Gomes
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| |
Collapse
|
2
|
Infection and Immunity. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
3
|
Volpedo G, Costa L, Ryan N, Halsey G, Satoskar A, Oghumu S. Nanoparticulate drug delivery systems for the treatment of neglected tropical protozoan diseases. J Venom Anim Toxins Incl Trop Dis 2019; 25:e144118. [PMID: 31130996 PMCID: PMC6483407 DOI: 10.1590/1678-9199-jvatitd-1441-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
Neglected Tropical Diseases (NTDs) comprise of a group of seventeen infectious
conditions endemic in many developing countries. Among these diseases are three
of protozoan origin, namely leishmaniasis, Chagas disease, and African
trypanosomiasis, caused by the parasites Leishmania spp.,
Trypanosoma cruzi, and Trypanosoma brucei
respectively. These diseases have their own unique challenges which are
associated with the development of effective prevention and treatment methods.
Collectively, these parasitic diseases cause more deaths worldwide than all
other NTDs combined. Moreover, many current therapies for these diseases are
limited in their efficacy, possessing harmful or potentially fatal side effects
at therapeutic doses. It is therefore imperative that new treatment strategies
for these parasitic diseases are developed. Nanoparticulate drug delivery
systems have emerged as a promising area of research in the therapy and
prevention of NTDs. These delivery systems provide novel mechanisms for targeted
drug delivery within the host, maximizing therapeutic effects while minimizing
systemic side effects. Currently approved drugs may also be repackaged using
these delivery systems, allowing for their potential use in NTDs of protozoan
origin. Current research on these novel delivery systems has provided insight
into possible indications, with evidence demonstrating their improved ability to
specifically target pathogens, penetrate barriers within the host, and reduce
toxicity with lower dose regimens. In this review, we will examine current
research on these delivery systems, focusing on applications in the treatment of
leishmaniasis, Chagas disease, and African trypanosomiasis. Nanoparticulate
systems present a unique therapeutic alternative through the repositioning of
existing medications and directed drug delivery.
Collapse
Affiliation(s)
- Greta Volpedo
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA.,Ohio State University, Department of Microbiology, Columbus, OH, 43210, USA
| | - Lourena Costa
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA.,Universidade Federal de Minas Gerais, Faculdade de Medicina, Departamento de Infectologia e Medicina Tropical, Belo Horizonte, MG, Brasil
| | - Nathan Ryan
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA
| | - Gregory Halsey
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA
| | - Abhay Satoskar
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA.,Ohio State University, Department of Microbiology, Columbus, OH, 43210, USA
| | - Steve Oghumu
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA
| |
Collapse
|
4
|
Nascentes GAN, Hernández CG, Rabelo RADS, Coelho RF, Morais FRD, Marques T, Batista LR, Meira WSF, Oliveira CJFD, Lages Silva E, Ramírez LE. The Driving of Immune Response by Th1 Adjuvants in Immunization of Mice with Trypanosoma cruzi marinkellei Elicits a Controversial Infection Control. Vector Borne Zoonotic Dis 2016; 16:317-25. [PMID: 26959861 DOI: 10.1089/vbz.2015.1874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In previous studies, we have demonstrated that inoculation with a Trypanosoma cruzi marinkellei (avirulent RM1 strain) was able to reduce parasitemia in mice challenged with T. cruzi, although it was not able to prevent histopathological lesions. Th1 response stimulation by immunization is necessary for T. cruzi infection control, but the resistance is also dependent on immunoregulatory mechanisms, which can be induced by adjuvants. Thus, we evaluated whether inoculation of T. cruzi marinkellei associated with administration of different adjuvants would be capable of inducing different patterns of immune response to maximize the immune response against T. cruzi (virulent Romildo strain) infection. Two hundred eighty nonisogenic mice were divided into 14 groups according to the immunization scheme and the subsequent challenge with virulent Romildo T. cruzi strain. Nonimmunized groups and animals inoculated without adjuvants were also included. Immune protection was not observed with Th2 adjuvants (incomplete Freund's adjuvant [IFA] and Alum) due to high parasitemia. Th1/Th2-polarizing adjuvants also did not induce immune protection because inulin was unable to maintain survival, and immune-stimulating complexes induced intense inflammatory processes. Animals sensitized with RM1 strain without adjuvants were able to reduce parasitemia, increase survival, and protect against severe histological lesions, followed by adequate cytokine stimulation. Finally, our results demonstrate that the early and balanced IFN-γ production becomes critical to promote protection and that Th1 adjuvant elicited a controversial infection control due to increased histopathological damage. Therefore, the host's immunomodulation remains one of the most important challenges in the research for effective protection against T. cruzi infection. Similarly, the identification of protective antigens in the RM1 strain of T. cruzi marinkellei may contribute to further studies on vaccine development against human Chagas disease.
Collapse
Affiliation(s)
- Gabriel Antonio Nogueira Nascentes
- 1 Microbiology and Immunology Discipline, Federal Institute of Education , Science and Technology at Triângulo Mineiro (IFTM), Uberaba, Brazil
| | - César Gómez Hernández
- 2 Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM) , Uberaba, Brazil
| | - Rosiley Aparecida de Souza Rabelo
- 2 Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM) , Uberaba, Brazil
| | - Raquel Fernandes Coelho
- 2 Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM) , Uberaba, Brazil
| | - Fabiana Rossetto de Morais
- 3 School of Pharmaceutical Sciences at Ribeirão Preto, University of São Paulo (USP) , Ribeirão Preto, Brazil
| | - Tatiane Marques
- 2 Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM) , Uberaba, Brazil
| | - Lara Rocha Batista
- 2 Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM) , Uberaba, Brazil
| | - Wendell Sérgio Ferreira Meira
- 2 Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM) , Uberaba, Brazil
| | - Carlo José Freire de Oliveira
- 2 Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM) , Uberaba, Brazil
| | - Eliane Lages Silva
- 2 Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM) , Uberaba, Brazil
| | - Luis Eduardo Ramírez
- 2 Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM) , Uberaba, Brazil
| |
Collapse
|
5
|
Cardoso MS, Reis-Cunha JL, Bartholomeu DC. Evasion of the Immune Response by Trypanosoma cruzi during Acute Infection. Front Immunol 2016; 6:659. [PMID: 26834737 PMCID: PMC4716143 DOI: 10.3389/fimmu.2015.00659] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/24/2015] [Indexed: 12/11/2022] Open
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical disease that affects millions of people mainly in Latin America. To establish a life-long infection, T. cruzi must subvert the vertebrate host's immune system, using strategies that can be traced to the parasite's life cycle. Once inside the vertebrate host, metacyclic trypomastigotes rapidly invade a wide variety of nucleated host cells in a membrane-bound compartment known as the parasitophorous vacuole, which fuses to lysosomes, originating the phagolysosome. In this compartment, the parasite relies on a complex network of antioxidant enzymes to shield itself from lysosomal oxygen and nitrogen reactive species. Lysosomal acidification of the parasitophorous vacuole is an important factor that allows trypomastigote escape from the extremely oxidative environment of the phagolysosome to the cytoplasm, where it differentiates into amastigote forms. In the cytosol of infected macrophages, oxidative stress instead of being detrimental to the parasite, favors amastigote burden, which then differentiates into bloodstream trypomastigotes. Trypomastigotes released in the bloodstream upon the rupture of the host cell membrane express surface molecules, such as calreticulin and GP160 proteins, which disrupt initial and key components of the complement pathway, while others such as glycosylphosphatidylinositol-mucins stimulate immunoregulatory receptors, delaying the progression of a protective immune response. After an immunologically silent entry at the early phase of infection, T. cruzi elicits polyclonal B cell activation, hypergammaglobulinemia, and unspecific anti-T. cruzi antibodies, which are inefficient in controlling the infection. Additionally, the coexpression of several related, but not identical, epitopes derived from trypomastigote surface proteins delays the generation of T. cruzi-specific neutralizing antibodies. Later in the infection, the establishment of an anti-T. cruzi CD8(+) immune response focused on the parasite's immunodominant epitopes controls parasitemia and tissue infection, but fails to completely eliminate the parasite. This outcome is not detrimental to the parasite, as it reduces host mortality and maintains the parasite infectivity toward the insect vectors.
Collapse
Affiliation(s)
- Mariana S Cardoso
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais, Brazil
| | - João Luís Reis-Cunha
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais, Brazil
| | - Daniella C Bartholomeu
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais, Brazil
| |
Collapse
|
6
|
Cardillo F, de Pinho RT, Antas PRZ, Mengel J. Immunity and immune modulation in Trypanosoma cruzi infection. Pathog Dis 2015; 73:ftv082. [PMID: 26438729 DOI: 10.1093/femspd/ftv082] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 12/28/2022] Open
Abstract
Chagas disease is caused by the protozoan Trypanosoma cruzi. The parasite reaches the secondary lymphoid organs, the heart, skeletal muscles, neurons in the intestine and esophagus among other tissues. The disease is characterized by mega syndromes, which may affect the esophagus, the colon and the heart, in about 30% of infected people. The clinical manifestations associated with T. cruzi infection during the chronic phase of the disease are dependent on complex interactions between the parasite and the host tissues, particularly the lymphoid system that may either result in a balanced relationship with no disease or in an unbalanced relationship that follows an inflammatory response to parasite antigens and associated tissues in some of the host organs and/or by an autoimmune response to host antigens. This review discusses the findings that support the notion of an integrated immune response, considering the innate and adaptive arms of the immune system in the control of parasite numbers and also the mechanisms proposed to regulate the immune response in order to tolerate the remaining parasite load, during the chronic phase of infection. This knowledge is fundamental to the understanding of the disease progression and is essential for the development of novel therapies and vaccine strategies.
Collapse
Affiliation(s)
- Fabíola Cardillo
- Oswaldo Cruz Foundation, Bahia, Rua Waldemar Falcão 121, Salvador 40295-001, Brazil
| | - Rosa Teixeira de Pinho
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Paulo Renato Zuquim Antas
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - José Mengel
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil Faculty of Medicine of Petropolis, FMP-FASE, 25680-120, Petrópolis, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
de Morais CGV, Castro Lima AK, Terra R, dos Santos RF, Da-Silva SAG, Dutra PML. The Dialogue of the Host-Parasite Relationship: Leishmania spp. and Trypanosoma cruzi Infection. BIOMED RESEARCH INTERNATIONAL 2015; 2015:324915. [PMID: 26090399 PMCID: PMC4450238 DOI: 10.1155/2015/324915] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 01/11/2023]
Abstract
The intracellular protozoa Leishmania spp. and Trypanosoma cruzi and the causative agents of Leishmaniasis and Chagas disease, respectively, belong to the Trypanosomatidae family. Together, these two neglected tropical diseases affect approximately 25 million people worldwide. Whether the host can control the infection or develops disease depends on the complex interaction between parasite and host. Parasite surface and secreted molecules are involved in triggering specific signaling pathways essential for parasite entry and intracellular survival. The recognition of the parasite antigens by host immune cells generates a specific immune response. Leishmania spp. and T. cruzi have a multifaceted repertoire of strategies to evade or subvert the immune system by interfering with a range of signal transduction pathways in host cells, which causes the inhibition of the protective response and contributes to their persistence in the host. The current therapeutic strategies in leishmaniasis and trypanosomiasis are very limited. Efficacy is variable, toxicity is high, and the emergence of resistance is increasingly common. In this review, we discuss the molecular basis of the host-parasite interaction of Leishmania and Trypanosoma cruzi infection and their mechanisms of subverting the immune response and how this knowledge can be used as a tool for the development of new drugs.
Collapse
Affiliation(s)
- Carlos Gustavo Vieira de Morais
- Laboratório de Bioquímica de Protozoários e Imunofisiologia do Exercício, Disciplina de Parasitologia, DMIP, FCM, Universidade do Estado do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
- Programa de Pós Graduação em Microbiologia/FCM/UERJ, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 3° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Ana Karina Castro Lima
- Laboratório de Bioquímica de Protozoários e Imunofisiologia do Exercício, Disciplina de Parasitologia, DMIP, FCM, Universidade do Estado do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Rodrigo Terra
- Laboratório de Bioquímica de Protozoários e Imunofisiologia do Exercício, Disciplina de Parasitologia, DMIP, FCM, Universidade do Estado do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
- Programa de Pós Graduação em Fisiopatologia Clínica e Experimental/FCM/UERJ, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Rosiane Freire dos Santos
- Programa de Pós Graduação em Microbiologia/FCM/UERJ, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 3° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
- Laboratório de Imunofarmacologia Parasitária, Disciplina de Parasitologia, DMIP, FCM, Universidade do Estado do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Silvia Amaral Gonçalves Da-Silva
- Laboratório de Imunofarmacologia Parasitária, Disciplina de Parasitologia, DMIP, FCM, Universidade do Estado do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Patrícia Maria Lourenço Dutra
- Laboratório de Bioquímica de Protozoários e Imunofisiologia do Exercício, Disciplina de Parasitologia, DMIP, FCM, Universidade do Estado do Rio de Janeiro, Avenida Professor Manuel de Abreu 444, Pavilhão Américo Piquet Carneiro, 5° andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Egui A, Thomas MC, Carrilero B, Segovia M, Alonso C, Marañón C, López MC. Differential phenotypic and functional profiles of TcCA-2 -specific cytotoxic CD8+ T cells in the asymptomatic versus cardiac phase in Chagasic patients. PLoS One 2015; 10:e0122115. [PMID: 25816096 PMCID: PMC4376724 DOI: 10.1371/journal.pone.0122115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/22/2015] [Indexed: 11/18/2022] Open
Abstract
It has been reported that the immune response mediated by T CD8+ lymphocytes plays a critical role in the control of Trypanosoma cruzi infection and that the clinical symptoms of Chagas disease appear to be related to the competence of the CD8+ T immune response against the parasite. Herewith, in silico prediction and binding assays on TAP-deficient T2 cells were used to identify potential HLA-A*02:01 ligands in the T. cruzi TcCA-2 protein. The TcCA-2-specific CD8+ T cells were functionality evaluated by Granzyme B and cytokine production in peripheral blood mononuclear cells (PBMC) from Chagas disease patients stimulated with the identified HLA-A*02:01 peptides. The specific cells were phenotypically characterized by flow cytometry using several surface markers and HLA-A*02:01 APC-labeled dextramer loaded with the peptides. In the T. cruzi TcCA-2 protein four T CD8+ epitopes were identified which are processed and presented during Chagas disease. Interestingly, a differential cellular phenotypic profile could be correlated with the severity of the disease. The TcCA-2-specific T CD8+ cells from patients with cardiac symptoms are mainly effector memory cells (TEM and TEMRA) while, those present in the asymptomatic phase are predominantly naive cells (TNAIVE). Moreover, in patients with cardiac symptoms the percentage of cells with senescence features is significantly higher than in patients at the asymptomatic phase of the disease. We consider that the identification of these new class I-restricted epitopes are helpful for designing biomarkers of sickness pathology as well as the development of immunotherapies against T. cruzi infection.
Collapse
Affiliation(s)
- Adriana Egui
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento S/N, 18016, Granada, Spain
| | - M. Carmen Thomas
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento S/N, 18016, Granada, Spain
| | - Bartolomé Carrilero
- Unidad Regional de Medicina Tropical, Hospital Virgen de la Arrixaca, Carretera Madrid-Cartagena s/n, El Palmar, 30120, Murcia, Spain
| | - Manuel Segovia
- Unidad Regional de Medicina Tropical, Hospital Virgen de la Arrixaca, Carretera Madrid-Cartagena s/n, El Palmar, 30120, Murcia, Spain
| | - Carlos Alonso
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Concepción Marañón
- Genomic Medicine Department, Centre for Genomics and Oncological Research (GENYO): Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Spain
| | - Manuel Carlos López
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento S/N, 18016, Granada, Spain
- * E-mail:
| |
Collapse
|
9
|
YANG HYUNMO. A MATHEMATICAL MODEL TO ASSESS THE IMMUNE RESPONSE AGAINSTTRYPANOSOMA CRUZIINFECTION. J BIOL SYST 2015. [DOI: 10.1142/s0218339015500084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A mathematical model is developed to assess humoral and cellular immune responses against Trypanosoma cruzi infection. Analysis of the model shows a unique non-trivial equilibrium, which is locally asymptotically stable, except in the case of a strong cellular response. When the proliferation of the activated CD8 T cells is increased, this equilibrium becomes unstable and a limit cycle appears. However, this behavior can be avoided by increasing the action of the humoral response. Therefore, unbalanced humoral and cellular responses can be responsible for long asymptomatic period, and the control of Trypanosoma cruzi infection is a consequence of well coordinated action of both humoral and cellular responses.
Collapse
Affiliation(s)
- HYUN MO YANG
- UNICAMP – IMECC – DMA, Praça Sérgio Buarque de Holanda, 651, CEP: 13083-859, Campinas, SP, Brazil
| |
Collapse
|
10
|
Pereira IR, Vilar-Pereira G, Marques V, da Silva AA, Caetano B, Moreira OC, Machado AV, Bruna-Romero O, Rodrigues MM, Gazzinelli RT, Lannes-Vieira J. A human type 5 adenovirus-based Trypanosoma cruzi therapeutic vaccine re-programs immune response and reverses chronic cardiomyopathy. PLoS Pathog 2015; 11:e1004594. [PMID: 25617628 PMCID: PMC4305326 DOI: 10.1371/journal.ppat.1004594] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/02/2014] [Indexed: 12/21/2022] Open
Abstract
Chagas disease (CD), caused by the protozoan Trypanosoma cruzi, is a prototypical neglected tropical disease. Specific immunity promotes acute phase survival. Nevertheless, one-third of CD patients develop chronic chagasic cardiomyopathy (CCC) associated with parasite persistence and immunological unbalance. Currently, the therapeutic management of patients only mitigates CCC symptoms. Therefore, a vaccine arises as an alternative to stimulate protective immunity and thereby prevent, delay progression and even reverse CCC. We examined this hypothesis by vaccinating mice with replication-defective human Type 5 recombinant adenoviruses (rAd) carrying sequences of amastigote surface protein-2 (rAdASP2) and trans-sialidase (rAdTS) T. cruzi antigens. For prophylactic vaccination, naïve C57BL/6 mice were immunized with rAdASP2+rAdTS (rAdVax) using a homologous prime/boost protocol before challenge with the Colombian strain. For therapeutic vaccination, rAdVax administration was initiated at 120 days post-infection (dpi), when mice were afflicted by CCC. Mice were analyzed for electrical abnormalities, immune response and cardiac parasitism and tissue damage. Prophylactic immunization with rAdVax induced antibodies and H-2Kb-restricted cytotoxic and interferon (IFN)γ-producing CD8+ T-cells, reduced acute heart parasitism and electrical abnormalities in the chronic phase. Therapeutic vaccination increased survival and reduced electrical abnormalities after the prime (analysis at 160 dpi) and the boost (analysis at 180 and 230 dpi). Post-therapy mice exhibited less heart injury and electrical abnormalities compared with pre-therapy mice. rAdVax therapeutic vaccination preserved specific IFNγ-mediated immunity but reduced the response to polyclonal stimuli (anti-CD3 plus anti-CD28), CD107a+ CD8+ T-cell frequency and plasma nitric oxide (NO) levels. Moreover, therapeutic rAdVax reshaped immunity in the heart tissue as reduced the number of perforin+ cells, preserved the number of IFNγ+ cells, increased the expression of IFNγ mRNA but reduced inducible NO synthase mRNA. Vaccine-based immunostimulation with rAd might offer a rational alternative for re-programming the immune response to preserve and, moreover, recover tissue injury in Chagas’ heart disease. The idea that Chagas disease (CD) has an important autoimmune involvement contributed to delay the development of therapies and vaccines. CD is a parasitic neglected disease which afflicts millions of people mostly in Latin America. The cardiac form is the main clinical manifestation of CD. Currently, patients with access to therapy receive medicaments that only mitigate symptoms. Because of the limited prospect of treatment, vaccine reemerged as a strategy to prevent infection, interfere with CD progression and, moreover, reverse heart abnormalities. Here we tested a recombinant adenovirus carrying sequences of ASP2 and TS T. cruzi antigens (rAdVax) as prophylactic and therapeutic tool using a model of chronic Chagas’ heart disease. We showed that prophylactic vaccination reduced heart parasite load, inflammation and electrical abnormalities. The rAdVax therapeutic vaccination also reduced heart injury and improved electrical function, preserved specific IFNγ-mediated immunity but reduced response to polyclonal stimuli, CD107a+ CD8+ T-cell frequency and plasma nitric oxide levels. Moreover, therapeutic rAdVax preserved the number IFNγ+ cells, but decreased perforin+ cells in the heart tissue. Therefore, our results support the hypothesis that vaccination can modify the immunological unbalance that concurs to Chagas’ heart disease to improve prognosis.
Collapse
Affiliation(s)
- Isabela Resende Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Virgínia Marques
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrea Alice da Silva
- Departamento de Patologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Bráulia Caetano
- Centro de Pesquisas René Rachou, Fiocruz, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Otacilio Cruz Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Vieira Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Oscar Bruna-Romero
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Maurício Martins Rodrigues
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | - Ricardo Tostes Gazzinelli
- Centro de Pesquisas René Rachou, Fiocruz, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
11
|
CD8(+) T cell-mediated immunity during Trypanosoma cruzi infection: a path for vaccine development? Mediators Inflamm 2014; 2014:243786. [PMID: 25104879 PMCID: PMC4102079 DOI: 10.1155/2014/243786] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/15/2014] [Indexed: 11/05/2022] Open
Abstract
MHC-restricted CD8+ T cells are important during infection with the intracellular protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Experimental studies performed in the past 25 years have elucidated a number of features related to the immune response mediated by these T cells, which are important for establishing the parasite/host equilibrium leading to chronic infection. CD8+ T cells are specific for highly immunodominant antigens expressed by members of the trans-sialidase family. After infection, their activation is delayed, and the cells display a high proliferative activity associated with high apoptotic rates. Although they participate in parasite control and elimination, they are unable to clear the infection due to their low fitness, allowing the parasite to establish the chronic phase when these cells then play an active role in the induction of heart immunopathology. Vaccination with a number of subunit recombinant vaccines aimed at eliciting specific CD8+ T cells can reverse this path, thereby generating a productive immune response that will lead to the control of infection, reduction of symptoms, and reduction of disease transmission. Due to these attributes, activation of CD8+ T lymphocytes may constitute a path for the development of a veterinarian or human vaccine.
Collapse
|
12
|
Genetic vaccination against experimental infection with myotropic parasite strains of Trypanosoma cruzi. Mediators Inflamm 2014; 2014:605023. [PMID: 25061263 PMCID: PMC4098640 DOI: 10.1155/2014/605023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/25/2014] [Indexed: 01/29/2023] Open
Abstract
In earlier studies, we reported that a heterologous prime-boost regimen using recombinant plasmid DNA followed by replication-defective adenovirus vector, both containing Trypanosoma cruzi genes encoding trans-sialidase (TS) and amastigote surface protein (ASP) 2, provided protective immunity against experimental infection with a reticulotropic strain of this human protozoan parasite. Herein, we tested the outcome of genetic vaccination of F1 (CB10XBALB/c) mice challenged with myotropic parasite strains (Brazil and Colombian). Initially, we determined that the coadministration during priming of a DNA plasmid containing the murine IL-12 gene improved the immune response and was essential for protective immunity elicited by the heterologous prime-boost regimen in susceptible male mice against acute lethal infections with these parasites. The prophylactic or therapeutic vaccination of resistant female mice led to a drastic reduction in the number of inflammatory infiltrates in cardiac and skeletal muscles during the chronic phase of infection with either strain. Analysis of the electrocardiographic parameters showed that prophylactic vaccination reduced the frequencies of sinus arrhythmia and atrioventricular block. Our results confirmed that prophylactic vaccination using the TS and ASP-2 genes benefits the host against acute and chronic pathologies caused by T. cruzi and should be further evaluated for the development of a veterinary or human vaccine against Chagas disease.
Collapse
|
13
|
Cazorla SI, Frank FM, Malchiodi EL. Vaccination approaches againstTrypanosoma cruziinfection. Expert Rev Vaccines 2014; 8:921-35. [DOI: 10.1586/erv.09.45] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Salgado-Jiménez B, Arce-Fonseca M, Baylón-Pacheco L, Talamás-Rohana P, Rosales-Encina JL. Differential immune response in mice immunized with the A, R or C domain from TcSP protein of Trypanosoma cruzi or with the coding DNAs. Parasite Immunol 2013; 35:32-41. [PMID: 23106492 DOI: 10.1111/pim.12017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 10/17/2012] [Indexed: 11/26/2022]
Abstract
In a murine model of experimental Trypanosoma cruzi (H8 strain) infection, we investigated the induction of protective immunity against the domains [amino (A), repeats (R) and carboxyl (C)] of the surface protein (SP), a member of the trans-sialidase (TS) superfamily. Recombinant proteins and plasmid DNA coding for the respective proteins were used to immunize BALB/c mice, and the humoral response and cytokine levels were analysed. Immunization with the recombinant proteins induced higher levels of anti-TcSP antibodies than immunization with the corresponding DNAs, and analysis of serum cytokines showed that immunization with both recombinant proteins and naked DNA resulted in a Th1-Th2 mixed T-cell response. Mice immunized with either recombinant proteins or plasmid DNA were infected with blood trypomastigotes. The recombinant protein-immunized mice showed a variable reduction in peak parasitemia, and most died by day 60. Only the pBKTcSPR-immunized mice exhibited a significant reduction in peak parasitemia and survived the lethal challenge. DNA-based immunization with DNA coding for the repeats domain of TcSP is a good candidate for the development of a vaccine against experimental T. cruzi infection.
Collapse
Affiliation(s)
- B Salgado-Jiménez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F, México
| | | | | | | | | |
Collapse
|
15
|
Vaccination using recombinants influenza and adenoviruses encoding amastigote surface protein-2 are highly effective on protection against Trypanosoma cruzi infection. PLoS One 2013; 8:e61795. [PMID: 23637908 PMCID: PMC3634828 DOI: 10.1371/journal.pone.0061795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/13/2013] [Indexed: 12/13/2022] Open
Abstract
In the present study we evaluated the protection raised by immunization with recombinant influenza viruses carrying sequences coding for polypeptides corresponding to medial and carboxi-terminal moieties of Trypanosoma cruzi ´s amastigote surface protein 2 (ASP2). Those viruses were used in sequential immunization with recombinant adenovirus (heterologous prime-boost immunization protocol) encoding the complete sequence of ASP2 (Ad-ASP2) in two mouse strains (C57BL/6 and C3H/He). The CD8 effector response elicited by this protocol was comparable to that observed in mice immunized twice with Ad-ASP2 and more robust than that observed in mice that were immunized once with Ad-ASP2. Whereas a single immunization with Ad-ASP2 sufficed to completely protect C57BL/6 mice, a higher survival rate was observed in C3H/He mice that were primed with recombinant influenza virus and boosted with Ad-ASP2 after being challenged with T. cruzi. Analyzing the phenotype of CD8+ T cells obtained from spleen of vaccinated C3H/He mice we observed that heterologous prime-boost immunization protocol elicited more CD8+ T cells specific for the immunodominant epitope as well as a higher number of CD8+ T cells producing TNF-α and IFN-γ and a higher mobilization of surface marker CD107a. Taken together, our results suggest that immunodominant subpopulations of CD8+ T elicited after immunization could be directly related to degree of protection achieved by different immunization protocols using different viral vectors. Overall, these results demonstrated the usefulness of recombinant influenza viruses in immunization protocols against Chagas Disease.
Collapse
|
16
|
Recombinant yellow fever viruses elicit CD8+ T cell responses and protective immunity against Trypanosoma cruzi. PLoS One 2013; 8:e59347. [PMID: 23527169 PMCID: PMC3601986 DOI: 10.1371/journal.pone.0059347] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/13/2013] [Indexed: 12/19/2022] Open
Abstract
Chagas’ disease is a major public health problem affecting nearly 10 million in Latin America. Despite several experimental vaccines have shown to be immunogenic and protective in mouse models, there is not a current vaccine being licensed for humans or in clinical trial against T. cruzi infection. Towards this goal, we used the backbone of Yellow Fever (YF) 17D virus, one of the most effective and well-established human vaccines, to express an immunogenic fragment derived from T. cruzi Amastigote Surface Protein 2 (ASP-2). The cDNA sequence of an ASP-2 fragment was inserted between E and NS1 genes of YF 17D virus through the construction of a recombinant heterologous cassette. The replication ability and genetic stability of recombinant YF virus (YF17D/ENS1/Tc) was confirmed for at least six passages in Vero cells. Immunogenicity studies showed that YF17D/ENS1/Tc virus elicited neutralizing antibodies and gamma interferon (IFN-γ) producing-cells against the YF virus. Also, it was able to prime a CD8+ T cell directed against the transgenic T. cruzi epitope (TEWETGQI) which expanded significantly as measured by T cell-specific production of IFN-γ before and after T. cruzi challenge. However, most important for the purposes of vaccine development was the fact that a more efficient protective response could be seen in mice challenged after vaccination with the YF viral formulation consisting of YF17D/ENS1/Tc and a YF17D recombinant virus expressing the TEWETGQI epitope at the NS2B-3 junction. The superior protective immunity observed might be due to an earlier priming of epitope-specific IFN-γ-producing T CD8+ cells induced by vaccination with this viral formulation. Our results suggest that the use of viral formulations consisting of a mixture of recombinant YF 17D viruses may be a promising strategy to elicit protective immune responses against pathogens, in general.
Collapse
|
17
|
Ono T, Yamaguchi Y, Oguma T, Takayama E, Takashima Y, Tadakuma T, Miyahira Y. Actively induced antigen-specific CD8+ T cells by epitope-bearing parasite pre-infection but not prime/boost virus vector vaccination could ameliorate the course of Plasmodium yoelii blood-stage infection. Vaccine 2012; 30:6270-8. [PMID: 22902783 DOI: 10.1016/j.vaccine.2012.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/31/2012] [Accepted: 08/04/2012] [Indexed: 12/16/2022]
Abstract
The lack of MHC molecules on red blood cells (RBCs) has led to questions regarding the immunological function of CD8(+) T cells against malarial blood-stage (MBS). However, several recent reports contradicting with this concept have suggested that they play an important role in the course of MBS infection. The present study generated genetically engineered murine malaria, Plasmodium yoelii, which expresses a well-defined Trypanosoma cruzi-derived, H-2K(b)-restricted CD8(+) T cell epitope, ANYNFTLV. Prime/boost vaccination by the use of recombinant adenovirus and recombinant modified vaccinia virus Ankara (MVA), which induced an enhanced number of ANYNFTLV-specific CD8(+) T cells, failed to prevent a pathological outcome to occur upon ANYNFTLV-expressing murine MBS infection. This outcome did not change even with the combination of passive transfer of an appreciable number of in vitro-expanded ANYNFTLV-specific CD8(+) T cells. In contrast, the pre-infection of mice with T. cruzi, which intrinsically bears the same CD8(+) T cell epitope significantly improved the survival of ANYNFTLV-expressing malaria-infected mice but not that of control malaria-infected ones. This protective effect was abrogated by the use of a CD8(+) T cell-depleting monoclonal antibody. Although the protective effect was observed only in certain situations, the actively induced antigen-specific CD8(+) T cells could ameliorate the pathologies caused by the MBS. This is the first study to implicate that the active induction of antigen-specific CD8(+) T cells should be included in the development of a vaccine against MBS.
Collapse
Affiliation(s)
- Takeshi Ono
- Department of Global Infectious Diseases and Tropical Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama 359-8513, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Trypanosoma cruzi paraflagellar rod proteins 2 and 3 contain immunodominant CD8(+) T-cell epitopes that are recognized by cytotoxic T cells from Chagas disease patients. Mol Immunol 2012; 52:289-98. [PMID: 22750229 DOI: 10.1016/j.molimm.2012.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/24/2012] [Accepted: 05/31/2012] [Indexed: 12/21/2022]
Abstract
The protozoan parasite Trypanosoma cruzi is the etiological agent of Chagas disease. To date, no vaccine is available for protection against T. cruzi infection. The CD8(+) T cells immune response against specific antigens has shown to efficiently control the spread of the parasite in murine experimental infection. However, data concerning CD8(+) response in Chagas patients are still restricted to a few epitopes. We have studied the existence of immunodominant CD8(+) T cell epitopes in the paraflagellar rod proteins 2 and 3 (PFR2 and PFR3) from T. cruzi in a mouse model, and analyzed their recognition by cytotoxic T lymphocytes from Chagas disease patients. Immunization of C57BL/6-A2/K(b) transgenic mice with plasmids coding for the fusion proteins PFR2-HSP70 and PFR3-HSP70 induced a specific CTL response against two PFRs epitopes (PFR2(449-457) and PFR3(481-489)), and showed specific lysis percentages of 24 and 12, respectively. Moreover, the PFR2(19-28), PFR2(156-163), PFR2(449-457), PFR3(428-436), PFR3(475-482) and PFR3(481-489) peptides were observed to have a high binding affinity to the HLA-A*02:01 molecule. Remarkably, these HLA-A*02:01-binding peptides are successfully processed and presented during natural infection by T. cruzi in the context of MHC class I as evidenced by using peptide-pulsed K562-A2 cells as antigen presenting cells. The T cells from Chagas disease chronic patients specific for PFR2/PFR3 selected CD8(+) epitopes showed a pro-inflammatory cytokine secretion profile (IFN-γ, TNF-α and IL-6). A positive Granzime B secretion was observed in three out of 16 patients in response to PFR2(156-163) and PFR2(449-457) peptides, two out of 11 patients in response to PFR2(19-28) peptide and one out of 14 and 11 patients in response to PFR3(428-436) and PFR3(481-489) peptides, respectively. The PFRs-specific cytotoxic activity in purified PBMC was only detected in patients in the indeterminate phase of the disease.
Collapse
|
19
|
Dominguez MR, Ersching J, Lemos R, Machado AV, Bruna-Romero O, Rodrigues MM, de Vasconcelos JRC. Re-circulation of lymphocytes mediated by sphingosine-1-phosphate receptor-1 contributes to resistance against experimental infection with the protozoan parasite Trypanosoma cruzi. Vaccine 2012; 30:2882-91. [PMID: 22381075 DOI: 10.1016/j.vaccine.2012.02.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/26/2012] [Accepted: 02/15/2012] [Indexed: 12/23/2022]
Abstract
T-cell mediated immune responses are critical for acquired immunity against infection by the intracellular protozoan parasite Trypanosoma cruzi. Despite its importance, it is currently unknown where protective T cells are primed and whether they need to re-circulate in order to exert their anti-parasitic effector functions. Here, we show that after subcutaneous challenge, CD11c(+)-dependent specific CD8(+) T-cell immune response to immunodominant parasite epitopes arises almost simultaneously in the draining lymph node (LN) and the spleen. However, until day 10 after infection, we observed a clear upregulation of activation markers only on the surface of CD11C(+)PDCA1(+) cells present in the LN and not in the spleen. Therefore, we hypothesized that CD8(+) T cells re-circulated rapidly from the LN to the spleen. We investigated this phenomenon by administering FTY720 to T. cruzi-infected mice to prevent egress of T cells from the LN by interfering specifically with signalling through sphingosine-1-phosphate receptor-1. In T. cruzi-infected mice receiving FTY720, CD8 T-cell immune responses were higher in the draining LN and significantly reduced in their spleen. Most importantly, FTY720 increased susceptibility to infection, as indicated by elevated parasitemia and accelerated mortality. Similarly, administration of FTY720 to mice genetically vaccinated with an immunodominant parasite antigen significantly reduced their protective immunity, as observed by the parasitemia and survival of vaccinated mice. We concluded that re-circulation of lymphocytes mediated by sphingosine-1-phosphate receptor-1 greatly contributes to acquired and vaccine-induced protective immunity against experimental infection with a human protozoan parasite.
Collapse
Affiliation(s)
- Mariana R Dominguez
- Centro de Terapia Celular e Molecular, Universidade Federal de São Paulo-Escola Paulista de Medicina, Brazil
| | | | | | | | | | | | | |
Collapse
|
20
|
Vázquez-Chagoyán JC, Gupta S, Garg NJ. Vaccine development against Trypanosoma cruzi and Chagas disease. ADVANCES IN PARASITOLOGY 2011; 75:121-46. [PMID: 21820554 DOI: 10.1016/b978-0-12-385863-4.00006-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pathology of Chagas disease presents a complicated and diverse picture in humans. The major complications and destructive evolutionary outcomes of chronic infection by Trypanosoma cruzi in humans include ventricular fibrillation, thromboembolism and congestive heart failure. Studies in animal models and human patients have revealed the pathogenic mechanisms during disease progression, pathology of disease and features of protective immunity. Accordingly, several antigens, antigen-delivery vehicles and adjuvants have been tested to elicit immune protection to T. cruzi in experimental animals. This review summarizes the research efforts in vaccine development against Chagas disease during the past decade.
Collapse
Affiliation(s)
- Juan C Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Estado de México, Toluca, Mexico
| | | | | |
Collapse
|
21
|
Dhiman M, Garg NJ. NADPH oxidase inhibition ameliorates Trypanosoma cruzi-induced myocarditis during Chagas disease. J Pathol 2011; 225:583-96. [PMID: 21952987 DOI: 10.1002/path.2975] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 07/04/2011] [Accepted: 07/18/2011] [Indexed: 12/15/2022]
Abstract
Trypanosoma cruzi, the aetiological agent of Chagas disease, invades nucleated mammalian cells including macrophages. In this study, we investigated the crosstalk between T. cruzi-induced immune activation of reactive oxygen species (ROS) and pro-inflammatory responses, and their role in myocardial pathology. Splenocytes of infected mice (C3H/HeN) responded to Tc-antigenic stimulus by more than a two-fold increase in NADPH oxidase (NOX) activity, ROS generation, cytokine production (IFN-γ > IL-4 > TNFα > IL1-β≈ IL6), and predominant expansion of CD4(+) and CD8(+) T cells. Inhibition of NOX, but not of myeloperoxidase and xanthine oxidase, controlled the ROS (>98%) and cytokine (70-89%) release by Tc-stimulated splenocytes of infected mice. Treatment of infected mice with apocynin (NOX inhibitor) in drinking water resulted in a 50-90% decline in endogenous NOX/ROS and cytokine levels, and splenic phagocytes' proliferation. The splenic percentage of T cells was maintained, though more than a 40% decline in splenic index (spleen weight/body weight) indicated decreased T-cell proliferation in apocynin-treated/infected mice. The blood and tissue parasite burden were significantly increased in apocynin-treated/infected mice, yet acute myocarditis, ie inflammatory infiltrate consisting of macrophages, neutrophils, and CD8(+) T cells, and tissue oxidative adducts (eg 8-isoprostanes, 3-nitrotyrosine, and 4-hydroxynonenal) were diminished in apocynin-treated/infected mice. Consequently, hypertrophy (increased cardiomyocytes' size and β-MHC, BNP, and ANP mRNA levels) and fibrosis (increased collagen, glycosaminoglycans, and lipid contents) of the heart during the chronic phase were controlled in apocynin-treated mice. We conclude that NOX/ROS is a critical regulator of the splenic response (phagocytes, T cells, and cytokines) to T. cruzi infection, and bystander effects of heart-infiltrating phagocytes and CD8(+) T cells resulting in cardiac remodelling in chagasic mice.
Collapse
Affiliation(s)
- Monisha Dhiman
- Department of Microbiology and Immunology, Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | |
Collapse
|
22
|
Subdominant/cryptic CD8 T cell epitopes contribute to resistance against experimental infection with a human protozoan parasite. PLoS One 2011; 6:e22011. [PMID: 21779365 PMCID: PMC3136500 DOI: 10.1371/journal.pone.0022011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/11/2011] [Indexed: 11/19/2022] Open
Abstract
During adaptive immune response, pathogen-specific CD8+ T cells recognize preferentially a small number of epitopes, a phenomenon known as immunodominance. Its biological implications during natural or vaccine-induced immune responses are still unclear. Earlier, we have shown that during experimental infection, the human intracellular pathogen Trypanosoma cruzi restricts the repertoire of CD8+ T cells generating strong immunodominance. We hypothesized that this phenomenon could be a mechanism used by the parasite to reduce the breath and magnitude of the immune response, favoring parasitism, and thus that artificially broadening the T cell repertoire could favor the host. Here, we confirmed our previous observation by showing that CD8+ T cells of H-2a infected mice recognized a single epitope of an immunodominant antigen of the trans-sialidase super-family. In sharp contrast, CD8+ T cells from mice immunized with recombinant genetic vaccines (plasmid DNA and adenovirus) expressing this same T. cruzi antigen recognized, in addition to the immunodominant epitope, two other subdominant epitopes. This unexpected observation allowed us to test the protective role of the immune response to subdominant epitopes. This was accomplished by genetic vaccination of mice with mutated genes that did not express a functional immunodominant epitope. We found that these mice developed immune responses directed solely to the subdominant/cryptic CD8 T cell epitopes and a significant degree of protective immunity against infection mediated by CD8+ T cells. We concluded that artificially broadening the T cell repertoire contributes to host resistance against infection, a finding that has implications for the host-parasite relationship and vaccine development.
Collapse
|
23
|
Oral exposure to Trypanosoma cruzi elicits a systemic CD8⁺ T cell response and protection against heterotopic challenge. Infect Immun 2011; 79:3397-406. [PMID: 21628516 DOI: 10.1128/iai.01080-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trypanosoma cruzi infects millions of people in Latin America and often leads to the development of Chagas disease. T. cruzi infection can be acquired at or near the bite site of the triatomine vector, but per os infection is also a well-documented mode of transmission, as evidenced by recent microepidemics of acute Chagas disease attributed to the consumption of parasite-contaminated foods and liquids. It would also be convenient to deliver vaccines for T. cruzi by the oral route, particularly live parasite vaccines intended for the immunization of reservoir hosts. For these reasons, we were interested in better understanding immunity to T. cruzi following oral infection or oral vaccination, knowing that the route of infection and site of antigen encounter can have substantial effects on the ensuing immune response. Here, we show that the route of infection does not alter the ability of T. cruzi to establish infection in muscle tissue nor does it impair the generation of a robust CD8(+) T cell response. Importantly, oral vaccination with attenuated parasites provides protection against wild-type (WT) T. cruzi challenge. These results strongly support the development of whole-organism-based vaccines targeting reservoir species as a means to alleviate the burden of Chagas disease in affected regions.
Collapse
|
24
|
Takayama E, Ono T, Carnero E, Umemoto S, Yamaguchi Y, Kanayama A, Oguma T, Takashima Y, Tadakuma T, García-Sastre A, Miyahira Y. Quantitative and qualitative features of heterologous virus-vector-induced antigen-specific CD8+ T cells against Trypanosoma cruzi infection. Int J Parasitol 2010; 40:1549-61. [PMID: 20620143 DOI: 10.1016/j.ijpara.2010.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/24/2010] [Accepted: 05/26/2010] [Indexed: 12/27/2022]
Abstract
We studied some aspects of the quantitative and qualitative features of heterologous recombinant (re) virus-vector-induced, antigen-specific CD8(+) T cells against Trypanosoma cruzi. We used three different, highly attenuated re-viruses, i.e., influenza virus, adenovirus and vaccinia virus, which all expressed a single, T. cruzi antigen-derived CD8(+) T-cell epitope. The use of two out of three vectors or the triple virus-vector vaccination regimen not only confirmed that the re-vaccinia virus, which was placed last in order for sequential immunisation, was an effective booster for the CD8(+) T-cell immunity in terms of the number of antigen-specific CD8(+) T cells, but also demonstrated that (i) the majority of cells exhibit the effector memory (T(EM)) phenotype, (ii) robustly secrete IFN-γ, (iii) express higher intensity of the CD122 molecule and (iv) present protective activity against T. cruzi infection. In contrast, placing the re-influenza virus last in sequential immunisation had a detrimental effect on the quantitative and qualitative features of CD8(+) T cells. The triple virus-vector vaccination was more effective at inducing a stronger CD8(+) T-cell immunity than using two re-viruses. The different quantitative and qualitative features of CD8(+) T cells induced by different immunisation regimens support the notion that the refinement of the best choice of multiple virus-vector combinations is indispensable for the induction of a maximum number of CD8(+) T cells of high quality.
Collapse
Affiliation(s)
- Eiji Takayama
- Department of Global Infectious Diseases and Tropical Medicine, National Defense Medical College, Tokorozawa City, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rosenberg CS, Martin DL, Tarleton RL. CD8+ T cells specific for immunodominant trans-sialidase epitopes contribute to control of Trypanosoma cruzi infection but are not required for resistance. THE JOURNAL OF IMMUNOLOGY 2010; 185:560-8. [PMID: 20530265 DOI: 10.4049/jimmunol.1000432] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD8(+) T cells are essential for controlling Trypanosoma cruzi infection. During Brazil strain infection, C57BL/6 mice expand parasite-specific CD8(+) T cells recognizing the dominant TSKB20 (ANYKFTLV) and subdominant TSKB74 (VNYDFTLV) trans-sialidase gene (TS)-encoded epitopes with up to 40% of all CD8(+) T cells specific for these epitopes. Although this is one of the largest immunodominant T cell responses described for any infection, most mice fail to clear T. cruzi and subsequently develop chronic disease. To determine if immunodominant TS-specific CD8(+) T cells are necessary for resistance to infection, we epitope-tolerized mice by high-dose i.v. injections of TSKB20 or TSKB74 peptides. Tolerance induction led to deletion of TS-specific CD8(+) T cells but did not prevent the expansion of other effector CD8(+) T cell populations. Mice tolerized against either TSKB20 or TSKB74, or both epitopes simultaneously, exhibited transient increases in parasite loads, although ultimately they controlled the acute infection. Furthermore, BALB/c mice tolerized against the TSKD14 peptide effectively controlled acute T. cruzi infection. These data are consistent with the hypothesis that development of high-frequency CD8(+) T cell populations focused on TS-derived epitopes contributes to optimal control of acute infection but is not required for the development of immune resistance.
Collapse
Affiliation(s)
- Charles S Rosenberg
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
26
|
Cavalli A, Lizzi F, Bongarzone S, Belluti F, Piazzi L, Bolognesi ML. Complementary medicinal chemistry-driven strategies toward new antitrypanosomal and antileishmanial lead drug candidates. ACTA ACUST UNITED AC 2009; 58:51-60. [PMID: 19845762 DOI: 10.1111/j.1574-695x.2009.00615.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trypanosomiases and Leishmaniases are neglected tropical diseases that affect the less developed countries. For this reason, they did not and still do not have high visibility in Western societies. The name neglected diseases also refers to the fact that they often received little interest at the level of public investment, research and development. The drug discovery scenario, however, is changing dramatically. After a period in which different socioeconomic factors have prevented massive research efforts in this field, such efforts have increased considerably in the very recent years, with significant scientific advancements. In this context, we have embarked on a new drug discovery project devoted to identification of new small molecules for the treatment of trypanosomal and leishmanial diseases. Two complementary approaches have been pursued and are reported here. The first deals with a structure-based drug design, and a privileged structure-guided synthesis of quinazoline compounds able to modulate trypanothione reductase activity was accomplished. In the second, a combinatorial library, built on a natural product-based strategy, was synthesized. Using whole parasite assays, different quinones have been identified as promising lead compounds. A combination of both approaches to hopefully overcome some of the challenges of anti-trypanosomatid drug discovery has eventually been proposed.
Collapse
Affiliation(s)
- Andrea Cavalli
- Department of Pharmaceutical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Cavalli A, Bolognesi ML. Neglected Tropical Diseases: Multi-Target-Directed Ligands in the Search for Novel Lead Candidates against Trypanosoma and Leishmania. J Med Chem 2009; 52:7339-59. [DOI: 10.1021/jm9004835] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrea Cavalli
- Department of Pharmaceutical Sciences, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
- Department of Drug Discovery and Development, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Maria Laura Bolognesi
- Department of Pharmaceutical Sciences, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
28
|
Novel protective antigens expressed by Trypanosoma cruzi amastigotes provide immunity to mice highly susceptible to Chagas' disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1292-300. [PMID: 18579696 DOI: 10.1128/cvi.00142-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Earlier studies have demonstrated in A/Sn mice highly susceptible to Chagas' disease protective immunity against lethal Trypanosoma cruzi infection elicited by vaccination with an open reading frame (ORF) expressed by amastigotes. In our experiments, we used this mouse model to search for other amastigote-expressed ORFs with a similar property. Fourteen ORFs previously determined to be expressed in this developmental stage were individually inserted into a eukaryotic expression vector containing a nucleotide sequence that encoded a mammalian secretory signal peptide. Immunization with 13 of the 14 ORFs induced specific antibodies which recognized the amastigotes. Three of those immune sera also reacted with trypomastigotes and epimastigotes. After a lethal challenge with Y strain trypomastigotes, the vast majority of plasmid-injected mice succumbed to infection. In some cases, a significant delay in mortality was observed. Only two of these ORFs provided protective immunity against the otherwise lethal infection caused by trypomastigotes of the Y or Colombia strain. These ORFs encode members of the trans-sialidase family of surface antigens related to the previously described protective antigen amastigote surface protein 2 (ASP-2). Nevertheless, at the level of antibody recognition, no cross-reactivity was observed between the ORFs and the previously described ASP-2 from the Y strain. In immunofluorescence analyses, we observed the presence of epitopes related to both proteins expressed by amastigotes of seven different strains. In conclusion, our approach allowed us to successfully identify two novel protective ORFs which we consider interesting for future studies on the immune response to Chagas' disease.
Collapse
|